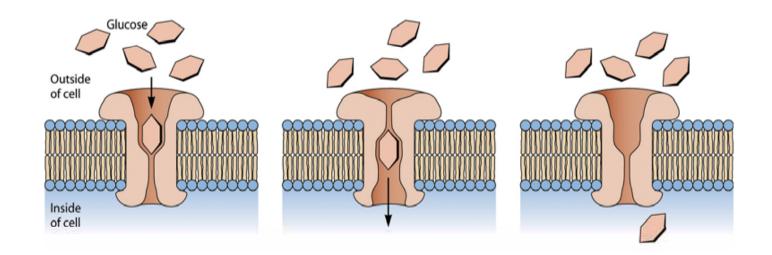

Chapter 7

# **Cells Maintain Their Internal Environments**

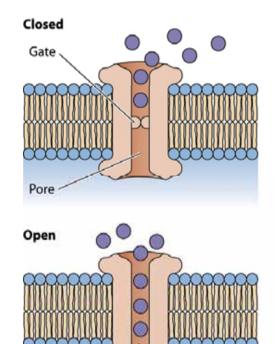

## **Cell Membrane**

- Components of cell membrane
  - Lipid: ..
  - Embedded proteins : receptor proteins, adhesion proteins, recognition proteins, transport proteins
    - Transmembrane proteins
    - Attachment to cytosolic or exterior face of membrane



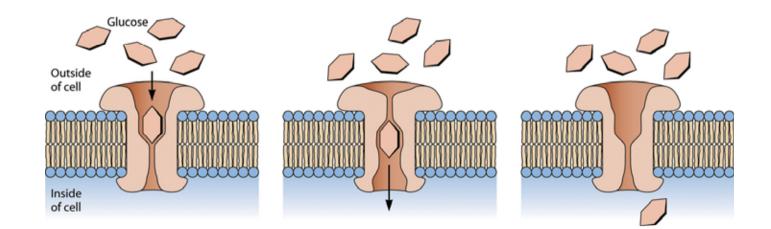
## **Cell Membrane**

- Membrane-spanning domains of membrane proteins
  - Hydrophobic .. and hydrophilic ..
  - Transport of sugars, amino acids and ions (... through the ..
     core of transport proteins




#### **Transport Across Membrane**

- Hydro.. substances and very small molecules can cross the membrane unassisted.
- Diffusion
  - Free diffusion by concentration gradient
  - Hydrophobic substance, nonpolar molecules (O<sub>2</sub>, CO<sub>2</sub>), small polar molecules (water, ethanol)


#### **Transport Proteins**

- Channel proteins
  - Transport of ions (Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+</sup>, Cl<sup>-</sup>)
  - Along the ...
  - Aquaporin: channel for water (much faster than the diffusion across the membrane)
  - Gated channel



## **Transport Proteins**

- Carrier proteins
  - Escort energy substrates and metabolic building blocks, such as glucose, amino acids, and nucleosides
  - Along the ...
  - Slower than simple diffusion



# **Active Transport**

#### Pump

- One type of proteins that uses energy to move substances
- Transport against the ..
- Different concentrations between intracellular and extracellular fluids are maintained through pumps.

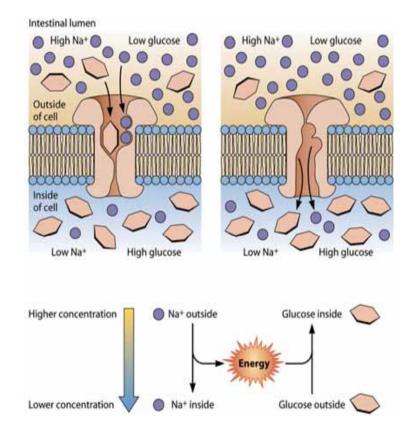

| lon <sup>a</sup>            | Intracellular concn (mM) | Interstitial concn (mM) |
|-----------------------------|--------------------------|-------------------------|
| Sodium (Na <sup>+</sup> )   | 10                       | 145                     |
| Potassium (K <sup>+</sup> ) | 150                      | 5                       |
| Calcium (Ca <sup>2+</sup> ) | 0                        | 3                       |
| Chloride (C1 <sup>-</sup> ) | 5                        | 110                     |

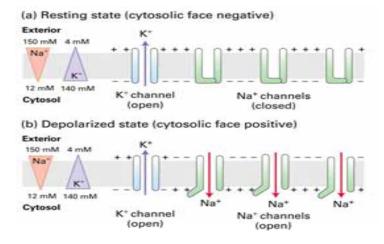
Table 7.1 Approximate concentrations of ions in intracellular and extracellular fluids

<sup>*a*</sup>The most abundant ions in interstitial fluid are sodium and chloride ions, which are the components of table salt.

# Pump

- Two different energy sources
  - ATP
    - -- e.g. Pumping Na<sup>+</sup> and K<sup>+</sup> against their gradients using ATP
    - (Na<sup>+</sup>/K<sup>+</sup> ATPase)
  - Energy inherent in gradient




#### **Transport Proteins in Animals**

#### Nerve Impulses



## **Nerve Impulses**

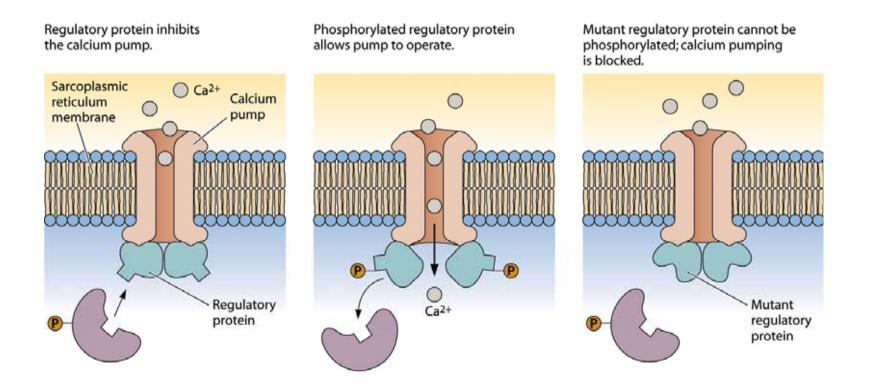
- Key players: ..
- Resting membrane potential of -70mV
- Opening of Na<sup>+</sup> channel by stimulation
  - Generation of action potential 50 mV



- Opening of voltage-gated K<sup>+</sup> channel
  - Repolarization of membrane potential
- Restoration of membrane potential by Na<sup>+</sup>/K<sup>+</sup> ATPase

## **Muscle Contraction**

- Key player: ..
- Inside muscle cells, Ca<sup>2+</sup> are packed into a membrane-bound compartment called the sarcoplasmic reticulum (SR).
- When the nerve impulse (powered by Na<sup>+</sup>/K<sup>+</sup> gradients) reaches the muscle cells, it triggers Ca<sup>2+</sup> channel in the SR to open.
- Opening of Ca<sup>2+</sup> channel in SR
  - $\rightarrow$  Release of Ca<sup>2+</sup>
  - $\rightarrow$  Released Ca<sup>2+</sup> binding to troponin (protein)
  - → Muscle contraction

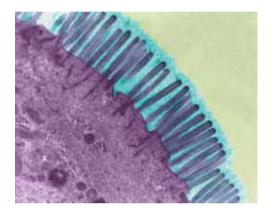

#### **When Gradients Fail**

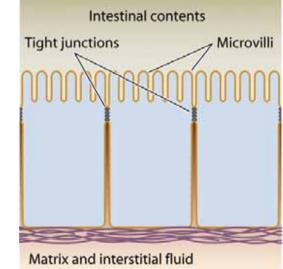
#### Long QT (LQT) syndrome

- Long recovery periods before new heart contraction
- Cell to cell variation of recovery periods
  - Can cause arrhythmia (lack of rhythm)
- Defects in K<sup>+</sup> or Na<sup>+</sup> channels

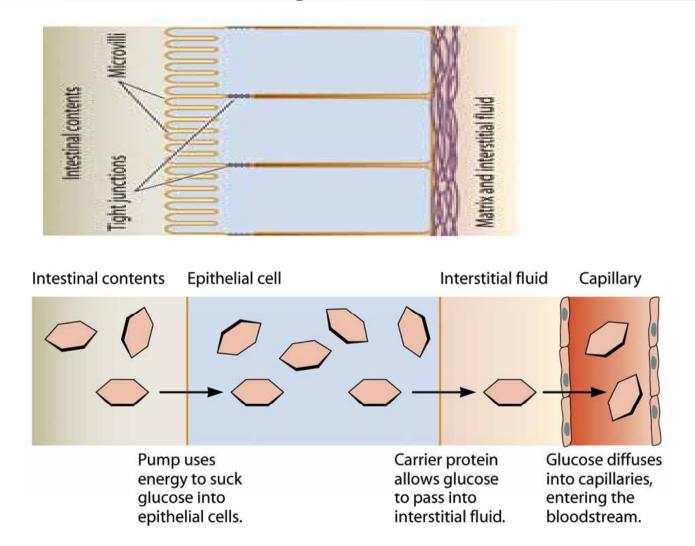
#### **When Gradients Fail**

- Inherited heart failure
  - Mutation in the regulatory protein of Ca<sup>2+</sup> channel in SR (The pump can not transport Ca<sup>2+</sup> back into SR)



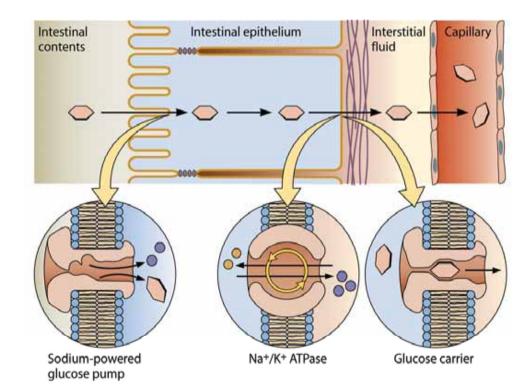


# Pumps, Carriers, and Nutrient Distribution

- Nutrient components must move from the intestine to the blood stream through intestinal epithelium.
- Epithelium
  - The body's version of ..
  - Epithelial cells
    - Cells cover body surfaces and line internal organs
- Intestinal epithelium
  - Cells lining the digestive tract


# **Intestinal Epithelium**

- Microvilli
  - Facing the intestinal track
  - Enzymes and transport proteins are located.
    - The enzymes break down complex sugars into simple sugars.
      - lactose, sucrose  $\rightarrow$  glucose
- Tight Junction between Cells
  - Preventing transport of ...
  - Barrier between the intestinal contents and the interstitial fluid
- Extracellular Matrix
  - Supporting epithelial cells
  - Tough network of extracellular ...

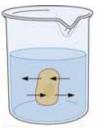


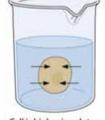



## **Transport of Nutrients** across Epithelial Cells



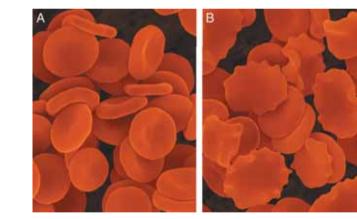
# **Transport of Nutrients** across Epithelial Cells


- Intestinal side
  - active transport of glucose powered by Na<sup>+</sup> gradient
  - co-transport of two Na<sup>+</sup> and one glucose molecule
- Interstitial fluid side
  - glucose
    - -- by carrier proteins
  - Na<sup>+</sup>
    - -- by Na+/K+ ATPase
- Capillary wall
  - Glucose diffusion
  - Designed to let all but the large molecules (e.g. blood proteins) cross over




#### **Cells, Salts, and Water Balance**

#### Movement of water across the cell


- Water movement to equalize the total concentration of solutes
- Osmosis: movement of water across membranes
- Osmotic balance: no net water movement





Cell is in osmotic balance with extracellular fluid.

Cell is higher in solutes than is extracellular fluid. Water enters the cell. Water enters the cell.



- Cells in osmotic balance
  - Cells contain many proteins, amino acids, and other small molecules.
  - Concentration of total ions is higher outside than inside cells to keep the osmotic balance.

#### Water follows salt

- Water in human body (75 kg man)
  - 45 L of water
    - 30 L: intracellular
    - 3.75 L: blood plasma
      Almost same solute (salt), since blood
    - 11.25 L: extracellular fluid capillaries are permeable to small molecules

#### Water balance

- Lactose intolerance
  - Lack of lactase breaking lactose into glucose and galactose
  - No digestion of lactose  $\rightarrow$  movement of water into the intestine
  - Metabolize of lactose by intestinal bacteria  $\rightarrow$  gas production
- High-magnesium laxative : relieving constipation
- Cystic fibrosis (by impaired salt transport)
  - Mutation in Cl<sup>-</sup> channel : reduced water secretion → thick mucus in epithelia of respiratory and gastrointestinal tracts

# **Biotechnology**

- Rehydration therapy
  - Diarrhea: kill 2 million children/year by dehydration
  - Solution of sugar and salt is effective to treat dehydration: e.g. sports drinks
- Enzyme treatments
  - Lactose intolerance
    - Add lactase ( $\beta$ -galactosidase) in milk or dairy products
  - When you eat a bean-rich meal in a Mexican restaurant
    - Beans contain galactose-containing sugars (galactosides)
    - Humans lack enzymes for breaking down galactosides.
    - Microbial munching on galactosides  $\rightarrow$  gas production
    - Buy  $\alpha$ -galactosidase (Beano) in a drugstore