3.4 Immobilized Enzyme Systems

The restriction of enzyme mobility in a fixed space is known as *enzyme immobilization*. Immobilization of enzymes provides important advantages, such as enzyme reutilization and elimination of enzyme recovery and purification processes, and may provide a better environment for enzyme activity. Since enzymes are expensive, catalyst reuse is critical for many processes. Since some of the intracellular enzymes are membrane bound, immobilized enzymes provide a model system to mimic and understand the action of some membrane-bound intracellular enzymes. Product purity is usually improved, and effluent handling problems are minimized by immobilization.

- Immobilization ~ enzyme reutilization
 - ~ elimination of enzyme recovery and purification processes
 - may provides a better environment for enzyme activity

3.4.1 Immobilization Methods

Figure 3.16. Major immobilization methods.

3.4.1.1 Entrapment

- Matrix-Entrapment
 - Matrix ~ Ca-alginate, agar, κ-carrageenin, polyacrylamide, and collagen
- Membrane-Entrapment
 - Hollow fiber units
 - Membrane: nylon, cellulose, polysulfone, and polyacrylate

3.4.1.2 Surface Immobilization

- Adsorption
 - Inorganic material ~ alumina, silica, porous glass,

ceramics, diatomaceous earth,

clay, betonite

- Organic material ~ cellulose, starch, activated carbon, ion-exchange resin
- Covalent binding

3.4.2 Diffusional Limitation

Damkoehler Number (Da)

 $Da = \frac{\text{maximum rate of reaction}}{\text{maximum rate of diffusion}} = \frac{V_{m'}}{k_L[S_b]}$

where $[S_b]$ is substrate concentration in bulk liquid (g/cm³) k_L is the mass-transfer coefficient (cm/s)

If Da>>1, the diffusion rate is limiting. If Da<<1, the reaction rate is limiting. If Da is about 1, the diffusion and reaction rates are comparable.

Mass Transfer & Reaction

- Flux (g/cm²/sec) = $k_L \Delta S$
 - k_L : mass transfer coefficient (cm/sec)
 - ΔS : concentration difference (g/cm³)
- Surface reaction rate (g/cm²/sec)

$$\frac{V_m'[\mathbf{S}_s]}{K_m + [\mathbf{S}_s]}$$

where V'_m is the maximum reaction rate per unit of external surface area

3.4.2.1 Surface-Bound Enzyme

At steady state,

the reaction rate is equal to the mass-transfer rate:

 $J_{s} = k_{L} \left(\left[\mathbf{S}_{b} \right] - \left[\mathbf{S}_{s} \right] \right) = \frac{V_{m} \left[\mathbf{S}_{s} \right]}{K_{m} + \left[\mathbf{S}_{s} \right]}$

where V'_m is the maximum reaction rate per unit of external surface area

 k_L is the liquid mass-transfer coefficient.

Solution for S_s

$$J_{s} = k_{L} \left(\left[\mathbf{S}_{b} \right] - \left[\mathbf{S}_{s} \right] \right) = \frac{V_{m}^{'} \left[\mathbf{S}_{s} \right]}{K_{m} + \left[\mathbf{S}_{s} \right]}$$

(i) Analytical solution Above eq. is quadratic in $[S_s]$.

(ii) Graphical solution \rightarrow

Surface-Bound Enzyme

[I] When the system is strongly mass-transfer limited,

 \rightarrow the reaction is rapid compared to mass transfer,

$$\rightarrow [S_s] \approx 0,$$

$$v \approx k_L[\mathbf{S}_b], \quad \text{(for Da >>1)}$$

[II] When the system is reaction limited (Da << 1),

$$v = \frac{V'_m \left[\mathbf{S}_b \right]}{K_{m,\text{app}} + \left[\mathbf{S}_b \right]}$$

Under these circumstances, the apparent Michaelis–Menten "constant" is a function of stirring speed. Usually, $K_{m,app}$ is estimated experimentally as the value of $[S_b]$, giving one-half of the maximal reaction rate.

3.4.2.2 Immobilization in a Porous Matrix

Assumption:

- Enzyme is uniformly distributed.
- There is no partitioning of the substrate between the exterior and interior of the support.
- The reaction rate is expressed by M-M eq.

Mass Balance Equation

- Mass Balance
 Accumulation rate
 - = Input rate Output rate + Generation rate

- Consumption rate

Fick's Law

• Flux_A = - D_{AB}
$$\frac{dC}{Adx}$$

3.4.2.2 Immobilization in a Porous Matrix

 V''_m is the maximum reaction rate per unit volume of support D_e is the effective diffusivity of substrate within the porous matrix

Dimensionless Form

Dimensionless Variables

$$\overline{S} = \frac{[S]}{[S_s]}, \qquad \overline{r} = \frac{r}{R}, \qquad \beta = \frac{K_m}{[S_s]}$$

Dimensionless Equations

$$\frac{d^2 \overline{S}}{d\overline{r}^2} + \frac{2}{\overline{r}} \frac{d\overline{S}}{d\overline{r}} = \frac{R^2 V_m''}{S_s D_e} \left(\frac{\overline{S}}{\overline{S} + \beta}\right)$$
$$\frac{d^2 \overline{S}}{d\overline{r}^2} + \frac{2}{\overline{r}} \frac{d\overline{S}}{d\overline{r}} = \phi^2 \frac{\overline{S}}{1 + \overline{S}/\beta}$$
where $\phi = R \sqrt{\frac{V_m''/K_m}{D_e}}$ = Thiele modulus
B. C. $\left(\frac{\overline{S} = 1 \text{ at } \overline{r} = 1}{d\overline{S}/d\overline{r}} = 0 \text{ at } \overline{r} = 0$

Actual reaction rate (with diffusion limitation)

Reaction rate in bulk solution (without diffusion limitation)

Actual reaction rate
$$r_s = N_s = 4\pi R^2 D_e \frac{d[S]}{dr}\Big|_{r=R}$$

Reaction rate in bulk solution

η

$$\frac{V_m''\left[\mathbf{S}_s\right]}{K_m + \left[\mathbf{S}_s\right]}$$

$$r_{s} = \eta \frac{V_{m}'' \left[\mathbf{S}_{s} \right]}{K_{m} + \left[\mathbf{S}_{s} \right]}$$

- $\eta < 1$ Diffusion limitation
- $\eta \approx 1$ Reaction rate limitation

- For a zero-order reaction ($\beta \rightarrow 0$),
 - $\eta \approx 1$ for a large range of ϕ
- For a first-order reaction ($\beta \rightarrow \infty$),

$$\eta(\phi,\beta) = \frac{3}{\phi} \left[\frac{1}{\tanh \phi} - \frac{1}{\phi} \right]$$

Thiele Modulus

• Φ is a parameter which affects η .

$$\phi = R_{\sqrt{\frac{V_m''/K_m}{D_e}}} = \text{Thiele modulus}$$

- For the design of immobilized enzyme system,
 V_m" and R are main variables, since K_m and D_e are fixed.
- High enzyme content (high φ) → high V_m", but low η
 Low enzyme content (low φ) → low V_m", but high η

