[Case Study]

Anti-Apoptosis Engineering for Animal Cell Culture

Tai Hyun Park School of Chemical Engineering Seoul National University

Cell Death

Apoptosis

Active, intrinsically programmed cell death
 Cell shrinkage, membrane blebbing, and DNA fragmentation

Necrosis

Accidental and passive cell death due to the stress
Cell swelling, mitochondrial swelling, and mild clamping of chromatin

Chromosome

• Tightly packed complex of DNA and histone proteins,

Apoptosis and Necrosis

Apoptosis in Human Disease

Disease associated with increased apoptosis

- Alzheimer's disease and Parkinson's disease (Neurodegenerative disorders)
 - **Bacterial and viral infection such as AIDS**
 - Autoimmune disorders such as Insulin-dependent diabetes mellitus

Disease associated with decreased apoptosis

- Cancer
- Autoimmune disorders such as systematic lupus erythematosus Atherosclerosis

Apoptosis and Its Mechanisms

- Some common pathways despite a wide range of inducing signals.
- Many death signals converge onto mitochondria and are mediated through members of the Bcl-2 protein family.
 - Activation of the caspases and various mitochondrial changes are involved in apoptosis.

Release of Cytochrome C and Activation of Caspases

Bax Conformational Change, Bax Translocation, and Cytochrome C Release

Activation of Caspase

Why Silkworm Hemolymph (SH)?

FBS (Fetal Bovine Serum)SHHigh CostInsect SerumNonreproducibilityLow CostContamination RiskReproducibilityComplicates Down-StreamProcessing

Beneficial Effect of SH on Insect Cell/Baculovirus System Replacement of FBS with SH

Production of Recombinant Protein

Delay of Virus-Infected Host Cell Death

Inhibition of Apoptosis

Effect of SH on Host Cell Viability

(insect cell/baculovirus system)

Collection of Silkworm Hemolymph

Baculovirus - Induced Insect Cell (Sf9) Apoptosis

PI (day) 0 4 5 6 7 8

10% FBS

Virus-Induced Human Cell Apoptosis (Vaccinia virus, HeLa cell)

24	36	48	60	72	Μ	0	24	36	48	60
J	-	-		in all	-		-		-	
	-		1000	-						
a contra		副	ġ.	6			65	ŝ	6	di.
										22
									1	
									808	223

PI (hr)

Insect Cell (Sf9)

- Baculovirus-induced apoptosis
- Actinomycin D-induced apoptosis
- Camptothecin-induced apoptosis
- Staurosporine-induced apoptosis

Mammalian Cell

(i) HeLa

- Vaccinia virus-induced
- Cisplatin-induced
- Staurosporine-induced

(ii) CHO

- Sodium butyrate-induced
- Staurosporine-induced

Isolation and Identification

of the Anti-Apoptotic Compound

Separation Scheme

Heat Treatment (60 °C, 30 min) ⇒ Centrifugation (12,000 rpm, 1hr, 4 °C)

Gel Filtration Chromatography (FPLC, Superdex 200)

Ion Exchange Chromatography (FPLC, Mono Q)

Gel Filtration Chromatography

Ion Exchange Chromatography

Apoptosis Inhibiting Components in Silkworm Hemolymph

	Protein (mg)/ SH(mL)	Protein (mg)/ medium(mL)	Ratio % (each fraction/total)	Relative apoptosis- inhibiting activity (%)
Heat-treated SH	35.43	1.77	100	100
FI	20.62	1.03	58.19	
FI-1	5.49	0.27	15.50	48.25±4.51
FI-2	5.93	0.29	16.75	57.13 ±1.75
FI-3	5.82	0.29	16.43	61.53 ±0.70
FII	10.80	0.54	30.47	
FII-1	4.43	0.22	12.49	73.40 ±1.74
FII-2	4.17	0.21	11.78	92.16 ±3.26
FIII~FV	4.02	0.20	11.34	Negligible

MALDI-TOF Mass Spectrometry Analysis of FII-2

Amino Acid Sequence Homology

11030K ProteinMKPAIVILCLFVASLYAADSFII-2ADS

2131D V P N D I L E E QL Y N S V V A D YD V P N D I L E E QL Y N S V - V A D -

Anti-Apoptosis Engineering by Expressing the 30K gene in CHO Cells

30K Protein Expression in CHO Cell (analyzed by RT-PCR)

Selection of Stable Transfectant

 The expected size for PCR product is 900bp

Effect of 30K Protein Expression on Apoptosis in CHO Cell

CHOK1 cells transfected with pcDNA3

CHOK1 cells transfected with pcDNA3/30K

Apoptosis was induced with staurosporine (STS) for 12 h. The nuclear chromatin was stained with Hoechst 33258 fluorescent dye.

Flow Cytometric Analysis of Apoptosis

Cell Cycle

The Cell Cycle

- Cell Cycle
 - S phase:
 - ---- DNA synthesis (DNA replication)
 - M phase:
 - --- mitosis
 - $-G_1, G_2:$
 - --- G strands for gap between S and M phase --- Cell growth

Effect of 30K Protein Expression on Apoptosis in CHO Cell

Before the induction of apoptosis

12 h after induction (Apoptosis was induced with staurosporine.)

Counts 30 60 90 120 150 66 0 10 10 150

400

600

DNA content

1000

800

CHOK1 cell

30K-transfected CHOK1 cell

Enhancement of Product Quantity and Quality by the Expression of 30K Protein

Transfection of EPO Producing CHO Cell with 30K gene

Effect of 30K Expression on Cell Growth and Viability

Effect of 30K Protein Expression on EPO Production

PO Activity

500

0

Specific EPO Activity (I.U./10⁶ cells)

2500 2000 1500 1000

EPO Activity (I.U./mL)

1

2

2

Time Post Medium Change (day)

Seoul National University

without 30K

5

6

Apoptosis Inhibition Mechanism

Intracellular Caspase-3 Activity (staurosporine-induced HeLa cell)

Intracellular Caspase-9 Activity (staurosporine-induced HeLa cell)

Cytochrome c Release from Mitochondria (staurosporine-induced HeLa cell)

Bax Translocation to Mitochondria (staurosporine-induced HeLa cell)

Summary

- Silkworm hemolymph inhibits the apoptosis.
- The most effective component for the apoptosis inhibition is the 30K protein.
- Intracellular expression of the 30K gene in mammalian cells
 - Inhibition of apoptosis
 - Increase of recombinant protein production
- This novel anti-apoptotic strategy can be used for industrial applications of animal cell cultures.

