Mass transfer by migration & diffusion (Ch. 4)

Mass transfer equation

Migration

Mixed migration & diffusion near an electrode Mass transfer during electrolysis Effect of excess electrolyte

Diffusion Microscopic view Fick's laws Boundary conditions in electrochemical problems Solution of diffusion equations

Mass transfer equation

Mass transfer by diffusion, migration, convection

- Diffusion & migration result from a gradient in electrochemical potential, $\overline{\mu}$
- Convection results from an imbalance of forces on the solution

Two points in solution; r & s

 $\rightarrow difference \ of \ \overline{\mu}_j$

due to conc. & electric field (φ) differences

Flux
$$\mathbf{J}_{j} \propto \operatorname{grad}\overline{\mu}_{j}$$
 or $\mathbf{J}_{j} \propto \nabla\overline{\mu}_{j}$

1-D:
$$\nabla = \mathbf{i}(\partial/\partial \mathbf{x})$$

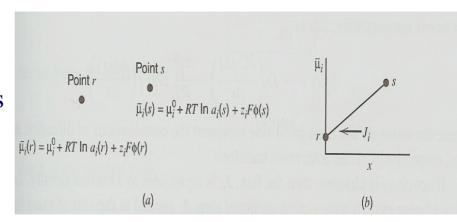
3-D:
$$\nabla = \mathbf{i}(\partial/\partial x) + \mathbf{j}(\partial/\partial y) + \mathbf{k}(\partial/\partial z)$$

$$\mathbf{J}_{j} = -(C_{j}D_{j}/RT)\nabla\overline{\mu_{j}}$$

Minus sign: flux direction opposite the direction of increasing μ_j

If solution moving with a velocity v

$$\mathbf{J}_{j} = -(\mathbf{C}_{j}\mathbf{D}_{j}/\mathbf{R}\mathbf{T})\nabla\overline{\mu_{j}} + \mathbf{C}_{j}\mathbf{v}$$



Nernst-Planck equations

$$J_{j}(x) = -D_{j}(\partial C_{j}(x)/\partial x) - (z_{j}F/RT)D_{j}C_{j}(\partial \phi(x)/\partial x) + C_{j}v(x)$$

In general

$$\mathbf{J}_{j} = -\mathbf{D}_{j} \nabla \mathbf{C}_{j} - (\mathbf{z}_{j} \mathbf{F}/\mathbf{R} \mathbf{T}) \mathbf{D}_{j} \mathbf{C}_{j} \nabla \phi + \mathbf{C}_{j} \mathbf{v}$$
diffusion migration convection

Convection absent in this Chapter (Ch.9 for convection)

→ in an unstirred or stagnant solution

For linear system

$$-J_{j} (mols^{-1}cm^{-2}) = i_{j}/z_{j}FA \ [C/s \ per \ (Cmol^{-1}cm^{2})] = i_{d,j}/z_{j}FA + i_{m,j}/z_{j}FA$$

With
$$i_{d,j}/z_jFA = D_j(\partial C_j/\partial x)$$

$$i_{m,j}/z_jFA = (z_jFD_j/RT)C_j(\partial \varphi/\partial x)$$

 $I_{d,j}$ & $i_{m,j}$: diffusion & migration currents of species j

Total current
$$i = \sum_{i} i_{i}$$

Migration

In the bulk soln (away from the electrode), conc gradient small: migration $i_j = (z_j^2 F^2 A D_j C_j / RT) (\partial \phi / \partial x)$

Einstein-Smoluchowski equation

$$u_j = |z_j| FD_j / RT$$

For a linear electric field

$$i_j = |z_j| FAu_j C_j (\partial \phi / \partial x)$$

$$\partial \Phi / \partial x = \Delta E / l$$

$$i_j = |z_j| FAu_j C_j \Delta E/l$$

Total current

$$i = \sum i_i = (FA\Delta E/l)\sum |z_i|u_iC_i$$

Conductance (L) L = $1/R = i/\Delta E = (FA/l)\sum |z_j|u_jC_j = AK/l$ K: conductivity (Ω^{-1} cm⁻¹)

$$K = F \sum |z_j| u_j C_j$$

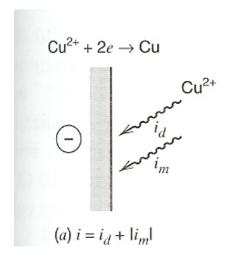
Resistivity $\rho = 1/\kappa$

Transference number

$$t_j = i_j/i = |z_j|u_jC_j/\sum |z_k|u_kC_k = |z_j|C_j\lambda_j/\sum |z_k|C_k\lambda_k$$

Mixed migration and diffusion near an active electrode

$$i = i_d + i_m$$



$$Cu(CN)_4^{2-} + 2e \rightarrow Cu + 4CN^-$$

$$Cu(CN)_4^{2-}$$

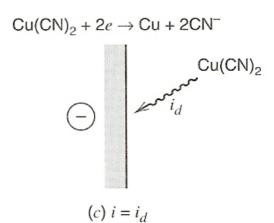
$$Cu(CN)_4^{2-}$$

$$Cu(CN)_4^{2-}$$

$$Cu(CN)_4^{2-}$$

$$Cu(CN)_4^{2-}$$

$$Cu(CN)_4^{2-}$$

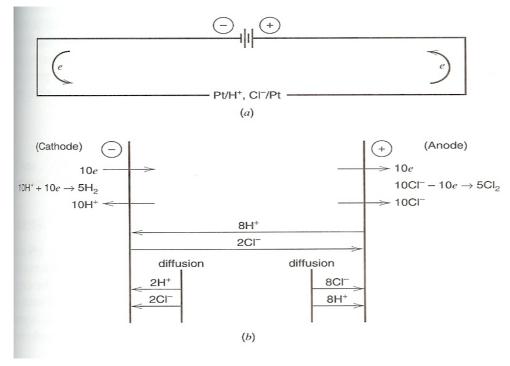


Balance sheets for mass transfer during electrolysis e.g., 4.1. Electrolysis of a solution of HCl at Pt electrode

 λ_+ (conductance of H⁺), λ_- (conductance of Cl⁻): $\lambda_+ \sim 4\lambda_- \rightarrow t_+ = 0.8$, $t_- = 0.2$ Assume total current of 10e/unit time producing $5H_2$ (cathode) & $5Cl_2$ (anode) Total current in bulk soln: $8H^+ + 2Cl^-$

→ diffusion of 2 additional H⁺ to cathode with 2Cl⁻ for electroneutrality diffusion of 8Cl⁻ with 8H⁺

For H⁺: $i_d = 2$, $i_m = 8$, for Cl⁻: $i_d = 8$, $i_m = 2 \rightarrow \text{total current } i = i_d + i_m = 10$ (same direction of $i_d \& i_m$)



For mixture of charged species, current by j^{th} species $i_i = t_i i$

- \rightarrow # of moles of jth species migrating per sec = $t_j i/z_j F$
- \rightarrow # of moles arriving at the electrode per sec by migration = $\pm i_m/nF$ (positive sign for reduction of j, negative sign for oxidation)

$$\pm i_{m}/nF = t_{j}i/z_{j}F$$

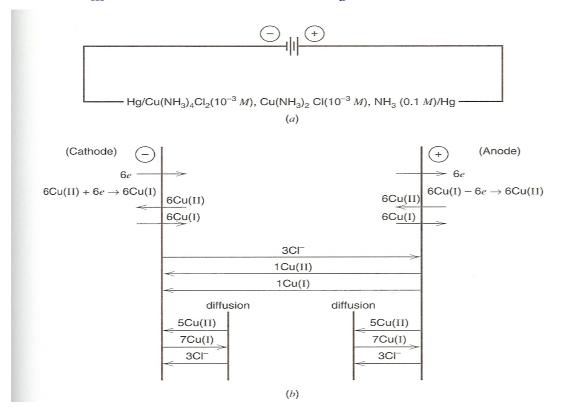
$$i_{m} = \pm (n/z_{j})t_{j}i$$

$$i_{d} = i - i_{m} = i(1 - / + nt_{j}/z_{j})$$

Negative sign for cathodic current, positive sign for anodic current)

e.g., 4.2. Electrolysis of a solution of 10^{-3} M Cu(NH₃)₄²⁺, 10^{-3} M Cu(NH₃)₂⁺, 3×10^{-3} M Cl⁻ in 0.1 M NH₃ at two Hg electrodes

Assume $\lambda_{\text{Cu(II)}} = \lambda_{\text{Cu(I)}} = \lambda_{\text{Cl}-} = \lambda$ From $t_j = i_j/i = |z_j|u_jC_j/\sum |z_k|u_kC_k = |z_j|C_j\lambda_j/\sum |z_k|C_k\lambda_k$ $t_{\text{Cu(II)}} = 1/3$, $t_{\text{Cu(I)}} = 1/6$, $t_{\text{Cl}-} = 1/2$ Assume total current of 6e/unit time, i = 6, n = 1For Cu(II) at cathode: $|i_m| = (1/2)(1/3)(6) = 1$, $i_d = 6 - 1 = 5$, for Cu(I) at anode: $|i_m| = (1/1)(1/6)(6) = 1$, $i_d = 6 + 1 = 7$



Effect of adding excess electrolyte

e.g., 4.3. Electrolysis of a solution of 10^{-3} M Cu(NH₃)₄²⁺, 10^{-3} M Cu(NH₃)₂⁺, 3×10^{-3} M Cl⁻ in 0.1 M NH₃ + 0.1 M NaClO₄ (as excess electrolyte) at two Hg electrodes

Assume
$$\lambda_{Na^+} = \lambda_{ClO4-} = \lambda$$

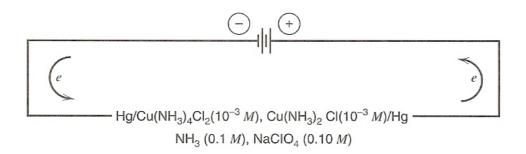
$$\rightarrow t_{\text{Na+}} = t_{\text{ClO4-}} = 0.485, t_{\text{Cu(II)}} = 0.0097, t_{\text{Cu(I)}} = 0.00485, t_{\text{Cl-}} = 0.0146$$

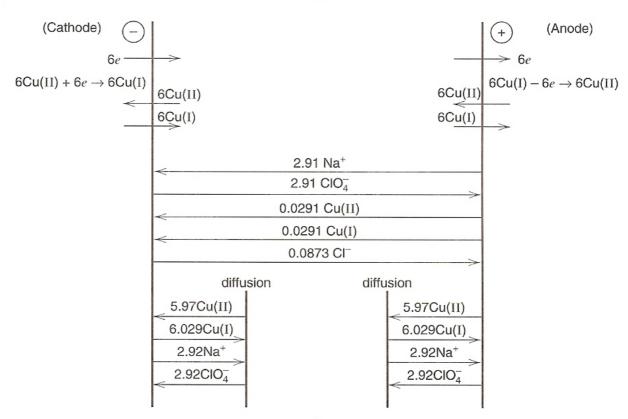
- *Na⁺ & ClO₄⁻ do not participate in e-transfer rxns, but because their conc are high, they carry 97% of the current in the bulk solution
- → Most of Cu(II) reaches the cathode by diffusion & 0.5% flux by migration

Addition of an excess of nonelectroactive ions (a *supporting electrolyte*):

- 1. nearly eliminates the contribution of migration to the mass transfer of the electroactive species \rightarrow eliminate $\nabla \varphi$ or $\partial \varphi / \partial x$ in mass transfer equations
- 2. Decreases the solution resistance, improve the accuracy of WE potential

Disadvantage: impurities, altered medium

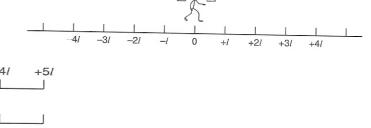


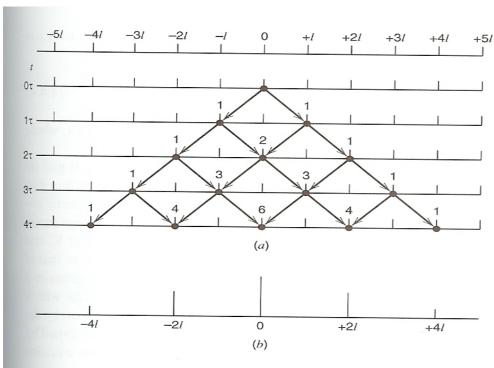


Diffusion

A microscopic view-discontinuous source model

Diffusion occurs by a "random walk" process





Probability, P(m, r) after m time units $(m = t/\tau)$

$$P(m, r) = (m!/r!(m-r)!)(1/2)^{m}$$

where x = (-m + 2r)l with r = 0, 1,...m

Mean square displacement of the molecule

$$\overline{\Delta^2} = ml^2 = (t/\tau)l^2 = 2Dt$$

D: diffusion coefficient (= $l^2/2\tau$), cm²/s (Einstein in 1905)

Root-mean square displacement

$$\overline{\Delta} = \sqrt{2Dt}$$

→ estimating the thickness of diffusion layer

e.g., $D = 5 \times 10^{-5} \text{ cm}^2/\text{s}$: diffusion layer thickness 10^{-4} cm in 1 ms, 10^{-3} cm in 0.1 s, 10^{-2} cm in 10 s

TABLE 4.4.1 Distributions for a Random Walk Process^a

t	n^b	Δ^c	$\Sigma \Delta^2$	$\overline{\Delta^2} = \frac{1}{n} \sum \Delta^2$
				n
0τ	$1(=2^0)$	0	0	0
1τ	$2(=2^1)$	$\pm l(1)$	$2l^{2}$	l^2
2τ	$4(=2^2)$	$0(2)$, $\pm 2 l(1)$	$8l^2$	$2l^{2}$
3τ	$8(=2^3)$	$\pm l(3), \pm 3l(1)$	$24l^2$	$3l^{2}$
4τ	$16(=2^4)$	$0(6)$, $\pm 2 l(4)$,	$64l^2$	$4l^{2}$
		$\pm 4l(1)$		
$m\tau$	2^m		$mnl^2(=m2^ml^2)$	$m l^2$

 $^{^{}a}l = \text{step size}, 1/\tau = \text{step frequency}, t = m\tau = \text{time interval}.$

 $^{^{}b}n = \text{total number of possibilities}.$

 $^{^{}c}\Delta$ = possible positions; relative probabilities are parenthesized.

For N_0 molecules at the original position at $t = 0 \rightarrow$ Gaussian distribution later N(x, t) in a segment Δx wide on x

$$N(x, t)/N_0 = (\Delta x/2\sqrt{\pi}Dt)\exp(-x^2/4Dt)$$

2-D:
$$\overline{\Delta} = \sqrt{4}Dt$$
, 3-D: $\overline{\Delta} = \sqrt{6}Dt$

Diffusional velocity (v_d)

$$v_d = \overline{\Delta}/t = (2D/t)^{1/2}$$

Migration ($v = u_i E$) vs. diffusion (v_d)

Einstein-Smoluchowski equation

mobility
$$u_j = |z_j| FD_j/RT$$

$$v = |z_j|FD_jE/RT$$
 (E: e

(E: electric field strength)

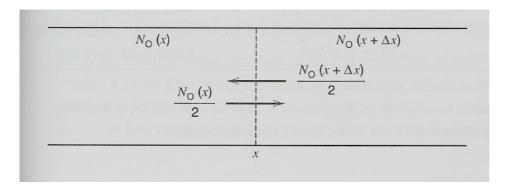
$${\bf v} << {\bf v_d}$$
 ${\bf D_i} E/({\bf RT}/|{\bf z_i}|{\bf F}) << (2{\bf D_i}/t)^{1/2}$ rearrange $(2{\bf D_i}t)^{1/2}E << 2{\bf RT}/|{\bf z_i}|{\bf F}$

 \rightarrow voltage drop over length scale of diffusion \ll 2RT/ $|z_i|F$: migration negligible

Fick's laws of diffusion

Fick's 1st law: flux \propto conc gradient

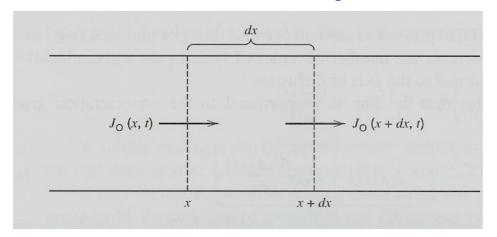
$$-J_{O}(x, t) = D_{O}(\partial C_{O}(x, t)/\partial x)$$



Fick's 2nd law: change in concentration of O with time

$$\partial C_{O}(x, t)/\partial t = D_{O}(\partial^{2}C_{O}(x, t)/\partial x^{2})$$

 \rightarrow solution gives concentration profiles, $C_O(x, t)$



General formulation of Fick's 2nd law

$$\partial \mathbf{C}_{\mathcal{O}}/\partial \mathbf{t} = \mathbf{D}_{\mathcal{O}} \nabla^2 \mathbf{C}_{\mathcal{O}}$$

Type	Variables	∇^2	Example
Linear	Х	$\partial^2/\partial x^2$	Shielded disk electrode
Spherical	r	$\partial^2/\partial r^2 + (2/r)(\partial/\partial r)$	Hanging drop electrode
Cylindrical (axial)	r	$\partial^2/\partial r^2 + (1/r)(\partial/\partial r)$	Wire electrode
Disk	r, z	$\partial^2/\partial r^2 + (1/r)(\partial/\partial r) + \partial^2/\partial z^2$	Inlaid disk ultramicroelectrode ^b
Band	X, Z	$\partial^2/\partial x^2 + \partial^2/\partial z^2$	Inlaid band electrode ^c

^aSee also J. Crank, "The Mathematics of Diffusion," Clarendon, Oxford, 1976.

 $^{^{}b}r$ = radial distance measured from the center of the disk; z = distance normal to the disk surface.

 $^{^{}c}x = \text{distance}$ in the plane of the band; z = distance normal to the band surface.

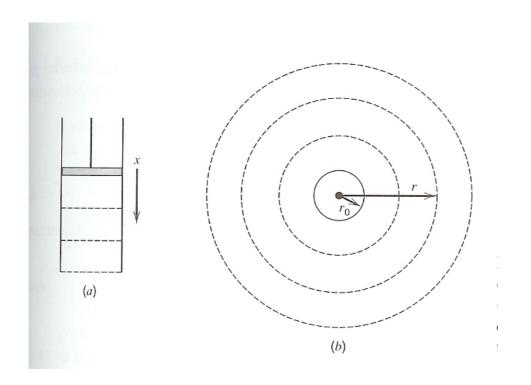


Fig. (a): Planar electrode (linear diffusion equation)

$$\partial C_O(x, t)/\partial t = D_O(\partial^2 C_O(x, t)/\partial x^2)$$

Fig. (b): spherical electrode (hanging Hg drop)

$$\partial C_{O}(r, t)/\partial t = D_{O}[(\partial^{2}C_{O}(r, t)/\partial x^{2}) + (2/r)(\partial C_{O}(r, t)/\partial r)]$$

Consider O transported purely by diffusion to an electrode

$$O + ne = R$$

$$-J_O(0, t) = i/nFA = D_O[\partial C_O(x, t)/\partial x]_{x=0}$$