Potential Sweep Methods (Ch. 6)

Nernstian (reversible) systems Totally irreversible systems Quasireversible systems Cyclic voltammetry Multicomponent systems & multistep charge transfers

Introduction

Linear sweep voltammetry (LSV)

Cyclic voltammetry (CV)

Nernstian (reversible) systems

Solution of the boundary value problem

O + ne = R (semi-infinite linear diffusion, initially O present)

$$\mathbf{E}(\mathbf{t}) = \mathbf{E}_{\mathbf{i}} - \mathbf{v}\mathbf{t}$$

Sweep rate (or scan rate): v (V/s)

Rapid e-transfer rate at the electrode surface

 $C_0(0, t)/C_R(0, t) = f(t) = \exp[nF(E_i - vt - E^{0'})/RT]$

 $i = nFAC_0^*(\pi D_0 \sigma)^{1/2} \chi(\sigma t)$

 $\sigma = (nF/RT)v$

$\frac{n(E-E_{1/2})}{RT/F}$	$n(E - E_{1/2})$ mV at 25°C	$\pi^{1/2}\chi(\sigma t)$	$\phi(\sigma t)$	$\frac{n(E-E_{1/2})}{RT/F}$	$n(E - E_{1/2})$ mV at 25°C	$\pi^{1/2}\chi(\sigma t)$	$\phi(\sigma t)$
4.67	120	0.009	0.008	-0.19	-5	0.400	0.548
3.89	100	0.020	0.019	-0.39	-10	0.418	0.596
3.11	80	0.042	0.041	-0.58	-15	0.432	0.641
2.34	60	0.084	0.087	-0.78	-20	0.441	0.685
1.95	50	0.117	0.124	-0.97	-25	0.445	0.725
1.75	45	0.138	0.146	-1.109	-28.50	0.4463	0.7516
1.56	40	0.160	0.173	-1.17	-30	0.446	0.763
1.36	35	0.185	0.208	-1.36	-35	0.443	0.796
1.17	30	0.211	0.236	-1.56	-40	0.438	0.826
0.97	25	0.240	0.273	-1.95	-50	0.421	0.875
0.78	20	0.269	0.314	-2.34	-60	0.399	0.912
0.58	15	0.298	0.357	-3.11	-80	0.353	0.957
0.39	10	0.328	0.403	-3.89	-100	0.312	0.980
0.19	5	0.355	0.451	-4.67	-120	0.280	0.991
0.00	0	0.380	0.499	-5.84	-150	0.245	0.997

 TABLE 6.2.1
 Current Functions for Reversible Charge Transfer (3)^{a,b}

Peak current and potential

Peak current: $\pi^{1/2}\chi(\sigma t) = 0.4463$ $i_p = 0.4463(F^3/RT)^{1/2}n^{3/2}AD_0^{1/2}C_0^*v^{1/2}$

At 25°C, for A in cm², D₀ in cm²/s, C₀^{*} in mol/cm³, v in V/s \rightarrow i_p in amperes $i_p = (2.69 \text{ x } 10^5)n^{3/2}AD_0^{1/2}C_0^*v^{1/2}$

Peak potential, $E_p = E_{1/2} - 1.109(RT/nF) = E_{1/2} - 28.5/n \text{ mV at } 25^{\circ}\text{C}$

Half-peak potential, $E_{p/2}$ $E_{p/2} = E_{1/2} + 1.09(RT/nF) = E_{1/2} + 28.0/n$ mV at 25°C

 $E_{1/2}\ is \ located\ between \ E_p\ and\ E_{p/2}$

 $|E_p - E_{p/2}| = 2.20(RT/nF) = 56.5/n$ mV at °C

For reversible wave, <u> E_p is independent of scan rate, i_p is proportional to v^{1/2}</u>

Spherical electrodes and UMEs

Spherical electrode (e.g., a hanging mercury drop)

 $i = i(plane) + nFAD_0C_0 * \phi(\sigma t)/r_0$

 $\phi(\sigma t)$: tabulated function (Table 6.2.1)

For large v in conventional-sized electrode \rightarrow i(plane) >> 2nd term Same for hemispherical & UME at fast scan rate

For UME at very small v: r_0 is small \rightarrow i(plane) << 2nd term \rightarrow voltammogram is a steady-state response independent of v \rightarrow v << RTD/nFr₀² $r_0 = 5 \ \mu\text{m}, D = 10^{-5} \ \text{cm}^2/\text{s}, T = 298 \ \text{K} \rightarrow \text{steady-state voltammogram at v} < 1 \ \text{V/s}$ $r_0 = 0.5 \ \mu\text{m} \rightarrow \text{steady-state behavior up to 10 V/s}$

Transition from typical peak-shaped voltammograms at fast v to steady-state voltammograms at small v

cf. For potential sweep (Ch.1) Linear potential sweep with a sweep rate v (in V/s)

$$E = vt$$

$$E = E_R + E_C = iR_s + q/C_d$$

$$vt = R_s(dq/dt) + q/C_d$$
If q = 0 at t = 0, $i = vC_d[1 - exp(-t/R_sC_d)]$

- Current rises from 0 and attains a steady-state value (vC_d) : measure C_d

Effect of double-layer capacitance & uncompensated resistance Charging current at potential sweep

$$|\mathbf{i}_c| = \mathbf{A}\mathbf{C}_d\mathbf{v}$$

Faradaic current measured with baseline of i_c i_p varies with $v^{1/2}$, i_c varies with $v \rightarrow \underline{i_c}$ more important at faster v

$$|i_c|/i_p = [C_d v^{1/2} (10^{-5})]/[2.69n^{3/2} D_0^{-1/2} C_0^{*}]$$

At high v & low $C_0^* \rightarrow$ severe distortion of the LSV wave

 R_u cause E_p to be a function of v

Totally irreversible systemsSolution of the boundary value problemk_f

Totally irreversible one-step, one-electron reaction: $O + e \rightarrow R$

$$i/FA = D_O(\partial C_O(x, t)/\partial x)_{x=0} = k_f(t)C_O(0, t)$$

Where $k_f = k^0 e^{-\alpha f(E(t) - E0')}$, $E(t) = E_i - vt$

Where $b = \alpha f v \& k_{fi} = k^0 exp[-\alpha f(E_i - E^{0'})]$

 $i = FAC_{O} * D_{O}^{1/2} v^{1/2} (\alpha F/RT)^{1/2} \chi(bt)$

 χ (bt) (Table 6.3.1). i varies with v^{1/2} and C₀^{*}

For spherical electrodes

 $i = i(plane) + FAD_OC_O^* \phi(bt)/r_0$

Dimensionless Potential ^b	Potential ^c mV at 25°C	$\pi^{1/2}\chi(bt)$	$\phi(bt)$	Dimensionless Potential ^b	Potential ^c mV at 25°C	$\pi^{1/2}\chi(bt)$	$\phi(bt)$
6.23	160	0.003		0.58	15	0.437	0.323
5.45	140	0.008		0.39	10	0.462	0.396
4.67	120	0.016		0.19	5	0.480	0.482
4.28	110	0.024		0.00	0	0.492	0.600
3.89	100	0.035		-0.19	-5	0.496	0.685
3.50	90	0.050		-0.21	-5.34	0.4958	0.694
3.11	80	0.073	0.004	-0.39	-10	0.493	0.755
2.72	70	0.104	0.010	-0.58	-15	0.485	0.823
2.34	60	0.145	0.021	-0.78	-20	0.472	0.895
1.95	50	0.199	0.042	-0.97	-25	0.457	0.952
1.56	40	0.264	0.083	-1.17	-30	0.441	0.992
1.36	35	0.300	0.115	-1.36	-35	0.423	1.000
1.17	30	0.337	0.154	-1.56	-40	0.406	
0.97	25	0.372	0.199	-1.95	-50	0.374	
0.78	20	0.406	0.253	-2.72	-70	0.323	

TABLE 6.3.1Current Functions for Irreversible Charge Transfer (3)^a

Peak current and potential

Maximum $\chi(bt)$ at $\pi^{1/2}\chi(bt) = 0.4958$ Peak current

$$i_p = (2.99 \text{ x } 10^5) \alpha^{1/2} A C_0^* D_0^{1/2} v^{1/2}$$

n-electron process with RDS: n in right side

Peak potential $\alpha(E_p - E^{0'}) + (RT/F)\ln[(\pi D_0 b)^{1/2}/k^0] = -0.21(RT/F) = -5.34 \text{ mV at } 25^{\circ}\text{C}$ Or $E_p = E^{0'} - (RT/\alpha F)[0.780 + \ln(D_0^{1/2}/k^0) + \ln(\alpha Fv/RT)^{1/2}]$

$$E_p = E^0 - (RT/\alpha F)[0.780 + \ln(D_0^{1/2}/k^0) + \ln(\alpha Fv/RT)^{1/2}]$$

 $|E_p - E_{p/2}| = 1.857RT/\alpha F = 47.7/\alpha \text{ mV at } 25^{\circ}\text{C}$

 E_p : ftn of v → for reduction, 1.15RT/αF (or 30/α mV at 25°C) negative shift for tenfold increase in v

 $i_p = 0.227 FAC_0^* k^0 exp[-\alpha f(E_P - E^{0'})]$ $\rightarrow i_p vs. E_p - E^{0'}$ plot at different v: slope of $-\alpha f$ and intercept proportional to k^0 n-electron process with RDS: n in right side

Quasireversible systems

For one-step, one-electron system k_{f} O + e = R k_{h}

For the quasireversible one-step, one-electron case (5.5.3, p. 191)

$$i/FA = D_O(\partial C_O(x, t)/\partial x)_{x=0} = k_f C_O(0, t) - k_b C_R(0, t)$$

Where $k_f = k^0 e^{-\alpha f(E - E0')} \& k_b = k^0 e^{(1 - \alpha)f(E - E0')}$, f = F/RT

The shape of peak & peak parameters \rightarrow ftns of $\alpha \& \land$ $\land = k^0/(D_0^{1-\alpha}D_R^{\alpha}fv)^{1/2}$ Or for $D_0 = D_R = D$ $\land = k^0/(Dfv)^{1/2}$ Current $i = FAD_0^{1/2}C_0^*f^{1/2}v^{1/2}\Psi(E)$

 $\Psi(E)$ (Fig. 6.4.1): $\Lambda > 10 \rightarrow$ approach to the reversible

$$\begin{split} \Psi(E) \\ I. & \wedge = 10 \\ II. & \wedge = 1 \\ III. & \wedge = 0.1 \\ IV. & \wedge = 0.01 \\ Dashed line: reversible \end{split}$$

Cyclic voltammetry

$$\begin{array}{ll} (0 < t \leq \lambda) & E = E_i - vt \\ (t > \lambda) & E = E_i - 2v\lambda + vt \end{array}$$

Nernstian systems

i-t curve at different E_{λ}

i-E curve (CV) at different E_{λ}

(1) E_{λ} (1) $E_{1/2} - 90/n$, (2) $E_{1/2} - 130/n$, (3) $E_{1/2} - 200/n$ mV, (4) <u>after $i_{pc} \rightarrow 0$ </u>

 $i_{pa}/i_{pc} = 1$ for nernstian regardless of scan rate, E_{λ} (> 35/n mV past E_{pc}), D

 $i_{pa}/i_{pc} \rightarrow$ kinetic information If actual baseline cannot be determined,

$$i_{pa}/i_{pc} = (i_{pa})_0/i_{pc} + 0.485(i_{sp})_0/i_{pc} + 0.086$$

Reversal charging current is same as forward scan, but opposite sign

 $\Delta E_p = E_{pa} - E_{pc} \sim 2.3 \text{RT/nF} \text{ (or 59/n mV at 25°C)}$

Table 6.5.1 Variation of ΔE_p with E_λ for a Nernstian System at 25°C (3)

$n(E_{\rm pc} - E_{\lambda})$ (mV)	$n(E_{\rm pa} - E_{\rm pc})$ (mV)
71.5	60.5
121.5	59.2
171.5	58.3
271.5	57.8
00	57.0

Quasireversible systems

Wave shape & $\Delta E_p \rightarrow \text{ftns of } v, k^0, \alpha \& E_{\lambda}$ If $E_{\lambda} > 90/n \text{ mV}$ beyond cathodic peak $\rightarrow \text{small } E_{\lambda}$ effect

 $\Psi = \Lambda \pi^{-1/2} = [k^0 (D_0/D_R)^{\alpha}] / (\pi D_0 fv)^{1/2}$

(1) $\Psi = 0.5$, $\alpha = 0.7$, (2) $\Psi = 0.5$, $\alpha = 0.3$, (3) $\Psi = 7$, $\alpha = 0.5$, (4) $\Psi = 0.25$, $\alpha = 0.5$

For $0.3 < \alpha < 0.7 \rightarrow \Delta E_p$ independent of α ; depend only on $\Psi \rightarrow$ estimating k⁰ in quasireversible systems

 $\Delta E_p \text{ vs. } v \rightarrow \Delta E_p \text{ vs } \Psi$

Table 6.5.2Variation of $\Delta E_{\rm p}$ with ψ at 25°C (14)^a

ψ	$E_{ m pa}-E_{ m pc}$ mV
20	61
7	63
6	64
5	65
4	66
3	68
2	72
1	84
0.75	92
0.50	105
0.35	121
0.25	141
0.10	212

Multicomponent systems & Multistep charge transfers O & O´ system

Method for obtaining baselines Constant E after 1

Sweep stop beyond E_{p1}

In vivo applications of LSV & CV e.g., rat brain

