PHYSICS OF SOLID POLYMERS

Professor Goran Ungar

WCU C2E2, Department of Chemical and Biological Engineering Seoul National University

Course content

- Which polymers can crystallize and which can not? Conformation of polymer chains why helices? why coils? Polymer crystal structure the atomic scale

- Comparison between synthetic and biopolymers Polymer crystals and chain folding the nanoscale
- Crystallinity in polymers basics of wide and small-angle X-ray scattering Why chains fold? Polymer crystallization a controversial topic. Case study: "self-poisoning effect in uniform model polymers the "misled molecules"
- Spherulites and cylindrites the microscale; basics of birefringence and polarized light microscopy Deformation of semicrystalline polymers microfibrils, yielding, crazing; Synthetic fibers

- Routes to high modulus and strength in flexible polymers: ultradrawing, solid-state extrusion, get-spinning; the story of *Spectra* Routes to high modulus and strength in rigid polymers: thermotropic and lyotropic liquid crystal polymers; the story of *Vectra* and *Kevlar*
- Polymer blends: miscibility, bimodal and spinodal decomposition Viscoelasticity and glass transition why it's difficult to catch "silly putty"?
- Linear and nonlinear viscoelasticity, creep, stress-relaxation; Dynamic Mechanical Spectroscopy, dielectric spectroscopy Rubber elasticity; rubber band vs metal spring

STRUCTURAL HYERARCHY IN SEMICRYSTALLINE POLYMERS

atomic scale - crystal unit cell

- several Angstroms (<1 nm to a few nm)
- detailed crystal structure, conformation of individual bonds - wide-angle XRD

scale of crystal thickness -100-500 Å (10 - 50 nm) - electron microscopy, small-angle XRD

scale of crystal aggregates (spherulites etc.)

-μm scale - optical microscopy

World Class Univ.

Crystallizable polymers must also be: • homopolymers • stereoregular • regioregular				
		Can crystallize?		
Homopolymer	АААААААААААА	yes		
random copolymer	AABABBABBBABA	no		
block copolymer	AAAAAABBBBBB	partially		
graft copolymer	ААААААААААААААА ВВВВВВВВВВ	partially		

World Class Univ.

Rotational Isomeric State Model

- RIS model an approximation
- neglects all dihedral (torsion) angles other than 180° and ±60° (Flory)

Random Coil

• Polymer chain in solution, melt, or amorphous glass

Gaussian Coil ''ideal chain" = freely-jointed non-self-avoiding chain freely jointed: any angle between a, and a, a equa

- freely jointed: any angle between a_i and a_{i+1} equally probable
 non-self-avoiding: chain can overlap with itself
- Distribution of end-to-end distances

Synthetic polymers form regular helices.					
- To fit into crystal lattice chains must be:					
	- straight - periodic				
- Helix: avoids close contact between side groups.					
Notation of single-strand helices					
	m/n	or	m _n		
m:	number of chemical repeat units (monomers) in a full crystallographic period (unit cell length)				
n:	number of turns of crystallographic period	the (continuou	us) helix per full		

World Class Univ.

