

Asynchronous pipeline: Some Issues

- Easier to write but will not behave like a pipeline unless all rules can execute simultaneously
- It must be possible to enqueue and dequeue in a FIFO simultaneously

September 17, 2009

http://csg.csail.mit.edu/korea

L06-5

Guarded Atomic Actions (GAA): Execution model

Repeatedly:

- Select a rule to execute
- Compute the state updates
- Make the state updates

Implementation concern: Schedule multiple rules concurrently without violating one-rule-at-a-time semantics

September 17, 2009

http://csg.csail.mit.edu/korea

L06-7

Rule: As a State Transformer

A rule may be decomposed into two parts $\pi(s)$ and $\delta(s)$ such that

$$s_{next} = if \pi(s) then \delta(s) else s$$

 $\pi(s)$ is the condition (predicate) of the rule, a.k.a. the "CAN_FIRE" signal of the rule. π is a conjunction of explicit and implicit conditions

 $\delta(s)$ is the "state transformation" function, i.e., computes the next-state values from the current state values

September 17, 2009

http://csg.csail.mit.edu/korea

106-8

A compiler can determine if two rules can be executed in parallel without violating the one-rule-at-a-time semantics

James Hoe, Ph.D., 2000

http://csg.csail.mit.edu/korea

September 17, 2009

```
Executing Multiple Rules Per Cycle:
       Conflict-free rules
         rule ra (z > 10);
            x \le x + 1;
                                               Parallel execution behaves
         endrule
                                               like ra < rb or equivalently
                                               rb < ra
         rule rb (z > 20);
          y <= y + 2;
         endrule
         Rule<sub>a</sub> and Rule<sub>b</sub> are conflict-free if
           \forall s . \pi_a(s) \wedge \pi_b(s) \Rightarrow 1. \pi_a(\delta_b(s)) \wedge \pi_b(\delta_a(s))
                                      2. \delta_a(\delta_b(s)) = \delta_b(\delta_a(s))
September 17, 2009
                               http://csg.csail.mit.edu/korea
```

Mutually Exclusive Rules

Rule_a and Rule_b are mutually exclusive if they can never be enabled simultaneously

$$\forall s . \pi_a(s) \Rightarrow \ \sim \pi_b(s)$$

Mutually-exclusive rules are Conflict-free by definition

September 17, 2009

http://csg.csail.mit.edu/korea

L06-1

```
Executing Multiple Rules Per Cycle:
      Sequentially Composable rules
         rule ra (z > 10);
            x \le y + 1;
                                             Parallel execution behaves
         endrule
                                             like ra < rb
         rule rb (z > 20);
                                              - R(rb) is the range of rule rb
           y \le y + 2;
                                              - Prj<sub>st</sub> is the projection
                                              selecting st from the total state
         endrule
         Rule<sub>a</sub> and Rule<sub>b</sub> are sequentially composable if
                  \forall s . \pi_a(s) \wedge \pi_b(s) \Rightarrow 1. \pi_b(\delta_a(s))
                                       2. Prj_{R(rb)}(\delta_b(s)) = Prj_{R(rb)}(\delta_b(\delta_a(s)))
September 17, 2009
                               http://csg.csail.mit.edu/korea
```


