Basics of Multi-rule Systems

Arvind
Computer Science & Artificial Intelligence Lab.

Massachusetts Institute of Technology

September 17, 2009

September 17, 2009 http://csg.csail.mit.edu/korea L06-1

Synchronous Pipeline

A@ ° NEZR

X
inQ sRegl sReg2 outQ
rule sync-pipeline (True); Red and Green tokens
inQ.deqQ); must move even if there
sRegl <= F1(inQ.FirstQ)); is nothing in the inQ!
sReg2 <= f2(sRegl); Also if there is no token
outQ.enq(f3(sReg2)); in sReg2 then nothing
endrule should be enqueued in
the outQ

Modify the rule to deal with these conditions [RAISESIENl
the Maybe type

September 17, 2009 http://csg.csail.mit.edu/korea LO6-2

Synchronous Pipeline using
the Maybe type data

RSl (3

inQ sRegl sReg2 outQ

rule sync-pipeline (True);

it (inQ.notEmpty())
begin sRegl <= Valid F1(inQ.first()); inQ.deq();
else sRegl <= Invalid;

case (sRegl) matches
tagged Valid .sx1: sReg2 <= Valid f2(sx1);
tagged Invalid: sReg2 <= Invalid;

case (sReg2) matches
tagged Valid .sx2: outQ.enq(f3(sx2));

endrule

end

September 17, 2009 http://csg.csail.mit.edu/korea

LO6-3

Asynchronous pipeline

Use FIFOs instead of pipeline registers

e

inQ fifol fifo2 outQ

rule stagel (True);
fifol.enq(FL(inQ.First()); Firing conditions?
inQ.deqQ; endrule

rule stage2 (True);
fifo2.enq(Ff2(Fifol.first());
fifol.deq(Q; endrule

rule stage3 (True);
outQ.enq(F3(Fifo2.first());
fifo2.deq(; endrule

September 17, 2009 http://csg.csail.mit.edu/korea

LO6-4

Asynchronous pipeline:
Some Issues

& Easier to write but will not behave like a
pipeline unless all rules can execute
simultaneously

& It must be possible to enqueue and
dequeue in a FIFO simultaneously

September 17, 2009 http://csg.csail.mit.edu/korea

LO6-5

Rule scheduling and the
synthesis of a scheduler

September 17, 2009 http://csg.csail.mit.edu/korea

L06-6

Guarded Atomic Actions (GAA):
Execution model

Repeatedly:

®Select a rule to execute
#Compute the state updates
#Make the state updates

Implementation concern: Schedule
multiple rules concurrently without
violating one-rule-at-a-time semantics

September 17, 2009 http://csg.csail.mit.edu/korea LO6-7

Rule: As a State Transformer

A rule may be decomposed into two parts
n(s) and 3(s) such that

S = if n(s) then 8(s) else s

next

n(s) is the condition (predicate) of the rule,
a.k.a. the “CAN_FIRE” signal of the rule. nis
a conjunction of explicit and implicit
conditions

o(s) is the “state transformation” function,
i.e., computes the next-state values from the
current state values

September 17, 2009 http://csg.csail.mit.edu/korea LO6-8

September 17, 2009

s

Compiling a Rule

http://csg.csail.mit.edu/korea

rule r (f.first() > 0) ;
x<=x+1; f.deq(;
endrule
— enable
— T
current S
state rdy signals enable signals
read method action
parameters
n = enabling condition
8 = action signals & values L

next
state
values

LO6-9

next state .

Combining State Updates:
strawman
Uz
7’s from the rules :
that update R . OR
Tcn
latch
enable
81,R .
o's from the rules . :
that update R : .
5 ~ value
n,R >
September 17, 2009 http://csg.csail.mit.edu/korea

L06-10

Combining State Updates

. b1
1
's from all . Scheduler: .
z ° Priority : OR |]
the rules ° °
- Encoder
n
bn
latch
enable
51,R -
o's from the rules . :
that update R N . next state
5 > value
n,R

Scheduler ensures that at most one ¢ is true

September 17, 2009 http://csg.csail.mit.edu/korea L06-11

‘One-rule-at-a-time Scheduler

T — — gl
TT. _ _—
2 —— JScheduler: ——— *?
e)} Priority [| :
e $||090909292 e
Tl R I ¢n
1.¢ =7
2. M VIVt VI, 20V P Vool V@,

3. One rewrite at a time
i.e. at most one ¢, is true

September 17, 2009 http://csg.csail.mit.edu/korea L06-12

A compiler can determine if two
rules can be executed in parallel
without violating the one-rule-

at-a-time semantics
James Hoe, Ph.D., 200C

=/

September 17, 2009 http://csg.csail.mit.edu/korea L06-13

Executing Multiple Rules Per Cycle:
Conflict-free rules

rule ra (z > 10);
X <= X + 1; .
endrule P_arallel execution pehaves
like ra < rb or equivalently
rule rb (z > 20); b <ra
y <=y + 2;
endrule

Rule, and Rule, are conflict-free if
Vs . my(S) A T(S) = 1. ma(8,(S)) A my(8a(S))
2. 8,(8(8)) == 8,(84())

September 17, 2009 http://csg.csail.mit.edu/korea L06-14

Mutually Exclusive Rules

#® Rule, and Rule, are mutually exclusive if they
can never be enabled simultaneously

V8- iy (8) =~ my(S)

Mutually-exclusive rules are Conflict-free
by definition

September 17, 2009 http://csg.csail.mit.edu/korea L06-15

Executing Multiple Rules Per Cycle:
Sequentially Composable rules

rule ra (z > 10);
X <=y+1; Parallel execution behaves
encrule like ra < rb
rule rb (z > 20); - R(rb) is the range of rule rb
Y- S=iy 425 - Prj, is the projection
endrule selecting st from the total state

/

Rule, and Rule, are sequentially composable if
VS . 1 (8) A mp(s) = 1. m,(5,(5))
2. Prigemy(6p(8)) == Prigemy(Pp(54(s)))

September 17, 2009 http://csg.csail.mit.edu/korea L06-16

Multiple-Rules-per-Cycle
Scheduler

m ———— ¢

n, ———— Scheduler g ooy ¢, | Divide the rules
SRS N | -, , |into smallest

. ———— scheduler —— .« |conflicting

o e | groups; provide

. : * | a scheduler for

e . . |each group

A g Scheduler [g— ¢,

1. =7

2. M VI Voo VI, PV v, VP,

3. Multiple operations such that

$ » ¢, = R;and R; are conflict-free or
sequentially composable

September 17, 2009 http://csg.csail.mit.edu/korea L06-17

Compiler determines if two rules
can be executed in parallel

Rule, and Rule, are conflict-free if D(Ra) nR(Rb) = ¢
Vs . n,(s) A m(s) = D(Rb) nR(Ra) = ¢
1. 1,(3,(S)) A 1p(84(5)) R(Ra) N R(Rb) = ¢

2. 8,(8,(5)) == 8,(5,(5))

Rule, and Rule, are sequentially composable if ‘ D(Rb) N R(Ra) = ¢ ‘
VS . my(S) A mp(s) =
1. m,(8,(8))
2. Prir@rby(85(S)) == Prirern)(8,(34(s)))

These properties can be determined by examining the
domains and ranges of the rules in a pairwise manner.

September 17, 2009 http://csg.csail.mit.edu/korea L06-18

September 17, 2009

Muxing structure

& Muxing logic requires determining for each
register (action method) the rules that update

it and under what conditions

Conflict Free/Mutually Exclusive)

5
1
™ and | or |—
S, —
o and
2 | S |

Sequentially Composable

o

m, and * 2 and _’
8, —
o and

http://csg.csail.mit.edu/korea

If two CF rules
update the same
element then they
must be mutually
exclusive

(ny 2 ~my)

L06-19

Scheduling and control logic

“'Modules

(C

September 17, 2009

urrent state) Ty

“CAN_FIRE”

“WILL_FIRE” Modules

Rules

Scheduler

T — .
[] -

(1 (Next state)

_¢§, R

5
cond U — .
. : Muxing
action 6n _\i>

s

Compiler synthesizes a scheduler such that at any

given time ¢’s for only non-conflicting rules are true

http://csg.csail.mit.edu/korea

L06-20

Does our pipeline behave
properly?

e fe

X
inQ fifol fifo2 outQ
rule stagel (True);
fifol.enq(F1(inQ.first()); Can all three rules
inQ.deq(); endrule fire concurrently?
rule stage2 (True);
fifo2_enq(Ff2(fifol.first()); next time

fifol.deq(Q; endrule
rule stage3 (True);

outQ.enq(f3(fifo2.first());

fifo2.deqQ; endrule

September 17, 2009 http://csg.csail.mit.edu/korea L06-21

