
1

Multiple Clock Domains
(MCD)(MCD) Continued …

Arvind with Nirav Dave
Computer Science & Artificial
Intelligence LabIntelligence Lab
Massachusetts Institute of Technology

November 12, 2009 L21-1http://csg.csail.mit.edu/korea

Multiple Clock Domains in
Bluespec

The Clock type, and functions √
Clock families ←
Making clocks
Moving data across clock domain
Revisit the 802.11a Transmitter

November 12, 2009 L21-2http://csg.csail.mit.edu/korea

2

The Clock type
Conceptually, a clock consists of two
signalssignals

an oscillator
a gating signal

In general, implemented as two wires
If ungated, oscillator is running

Whether the oscillator is running when it is Whether the oscillator is running when it is
gated off depends on implementation
library—tool doesn’t care

November 12, 2009 L21-3http://csg.csail.mit.edu/korea

BSV clock
Often, big circuits do not do useful work until some
boolean condition holds
We can save power by combining the boolean condition
with the clock (i.e. clock gating)

gg

ff
gating

Big Circuit

clk input

gating
signal

“BSV Clock”

November 12, 2009 L21-4http://csg.csail.mit.edu/korea

3

Clock families
All clocks in a “family” share the same oscillator

They differ only in gatingThey differ only in gating

If c2 is a gated version of c1, we say c1 is an
“ancestor” of c2

If some clock is running, then so are all its ancestors

The functions isAncestor(c1 c2) and The functions isAncestor(c1,c2) and
sameFamily(c1,c2) are provided to test these
relationships

Can be used to control static elaboration (e.g., to
optionally insert or omit a synchronizer)

November 12, 2009 L21-5http://csg.csail.mit.edu/korea

Clock family discipline
All the methods invoked by a rule (or
by another method) must be clocked by y) y
clocks from one family

The tool enforces this
The rule will fire only when the clocks of all
the called methods are ready (their gates
are true)

Two different clock families can interact
with each other only though some clock with each other only though some clock
synchronizing state element, e.g., FIFO,
register

November 12, 2009 L21-6http://csg.csail.mit.edu/korea

4

Clocks and implicit
conditions

Each action is implicitly guarded by its
clock’s gate; this will be reflected in the clock s gate; this will be reflected in the
guards of rules and methods using that
action

So, if the clock is off, the method is
unready
So, a rule can execute only if all the , y
methods it uses have their clocks gated on

This doesn’t happen for value methods
So, they stay ready if they were ready when
the clock was switched off

November 12, 2009 L21-7http://csg.csail.mit.edu/korea

Clocks and implicit
conditions

Example:

If c is switched off:
f.enq, f.deq and f.clear are unready
f.first remains ready if the fifo was non-

FIFO #(Int #(3)) f <- mkFIFO (clocked_by c);

empty when the clock was switched off

November 12, 2009 L21-8http://csg.csail.mit.edu/korea

5

The clocks of methods and
rules

Every method, and every rule, has a notional
clock
For methods of primitive modules (Verilog
wrapped in BSV):

Their clocks are specified in the BSV wrappers which
import them

For methods of modules written in BSV:
A method’s clock is a clock from the same family as
the clocks of all the methods that it, in turn, invokesthe clocks of all the methods that it, in turn, invokes
The clock is gated on if the clocks of all invoked
methods are gated on
If necessary, this is a new clock

The notional clock for a rule may be calculated
in the same way

November 12, 2009 L21-9http://csg.csail.mit.edu/korea

Multiple Clock Domains in
Bluespec

The Clock type, and functions √
Clock families √
Making clocks ←
Moving data across clock domain
Revisit the 802.11a Transmitter

November 12, 2009 L21-10http://csg.csail.mit.edu/korea

6

Making gated clocks
Bool b = … ;

c0 is a version of the current clock,
gated by b

c0’s gate is the gate of the current clock
AND’ed with b

Clock c0 <- mkGatedClock (b);

AND ed with b

The current clock is an ancestor of c0

November 12, 2009 L21-11http://csg.csail.mit.edu/korea

Making gated clocks
Bool b = … ;
Clock c0 <- mkGatedClock (b);

c1 is a version of c0, gated by b1

Clock c0 < mkGatedClock (b);

Bool b1 = …;
Clock c1 <- mkGatedClock (b1, clocked_by c0);

and is also a version of the current clock,
gated by (b && b1)

current clock, c0 and c1 all same family
current clock and c0 both ancestors of c1

November 12, 2009 L21-12http://csg.csail.mit.edu/korea

7

More Clock constructors
mkGatedClock

(Bool newCond)(Bool newCond)

mkAbsoluteClock
(Integer start, Integer period);

mkClockDivider
#(Integer divider) (ClockDividerIfc clks)

November 12, 2009 L21-13http://csg.csail.mit.edu/korea

Clock Dividers
interface ClockDividerIfc ;

interface Clock fastClock ; // original clock
interface Clock slowClock ; // derived clock
method Bool clockReady ;

endinterface

module mkClockDivider #(Integer divisor)
(ClockDividerIfc ifc) ;Divisor = 3

Fast CLK

Slow CLK

CLK rdy

November 12, 2009 L21-14http://csg.csail.mit.edu/korea

8

Clock Dividers
No need for special synchronizing logic

The clockReady signal can become part
of the implicit condition when needed

November 12, 2009 L21-15http://csg.csail.mit.edu/korea

Multiple Clock Domains in
Bluespec

The Clock type, and functions √
Clock families √
Making clocks √
Moving data across clock domains ←
Revisit the 802.11a Transmitter

November 12, 2009 L21-16http://csg.csail.mit.edu/korea

9

Moving Data Across Clock
Domains

Data moved across clock domains appears
asynchronous to the receiving (destination) asynchronous to the receiving (destination)
domain
Asynchronous data will cause meta-stability
The only safe way: use a synchronizer

clk

d

q Meta-stable data

Setup & hold violation

November 12, 2009 L21-17http://csg.csail.mit.edu/korea

Synchronizers
Good synchronizer design and use
reduces the probability of observing reduces the probability of observing
meta-stable data
Bluespec delivers conservative (speed
independent) synchronizers
User can define and use new
synchronizerssynchronizers
Bluespec does not allow unsynchronized
crossings (compiler static checking error)

November 12, 2009 L21-18http://csg.csail.mit.edu/korea

10

2 - Flop BIT-Synchronizer
Most common type of (bit) synchronizer
FF1 will go meta-stable but FF2 does not look FF1 will go meta stable, but FF2 does not look
at data until a clock period later, giving FF1
time to stabilize
Limitations:

When moving from fast to slow clocks data may be
overrun
Cannot synchronize words since bits may not be y y
seen at same time

sClk dClk

sDIN dD_OUTFF0 FF1 FF2

November 12, 2009 L21-19http://csg.csail.mit.edu/korea

Bluespec’s 2-Flop
Bit-Synchronizer

send() read()FF0

mkSyncBit

sClk dClk

send() read()FF0 FF1 FF2

interface SyncBitIfc ;
method Action send (Bit#(1) bitData) ;
method Bit#(1) read () ;

endinterface

The designer must follow the synchronizer
design guidelines:

No logic between FF0 and FF1
No access to FF1’s output

November 12, 2009 L21-20http://csg.csail.mit.edu/korea

11

Use example: MCD Counter
Up/down counter: Increments when
up down bit is one; the up down bit is set up_down_bit is one; the up_down_bit is set
from a different clock domain.
Registers:
Reg# (Bit#(1)) up_down_bit <-

mkReg(0, clocked_by (writeClk));
Reg# (Bit# (32)) cntr <- mkReg(0); // Default Clk

Th R l (1)The Rule (attempt 1):
rule countup (up_down_bit == 1) ;

cntr <= cntr + 1;
endrule

November 12, 2009 L21-21http://csg.csail.mit.edu/korea

Adding the Synchronizer
SyncBitIfc sync <- mkSyncBit(writeClk,

writeRst, currentClk) ;

rule transfer (True) ;
sync.send (up_down_bit);

endrule

clocked by writeClk

clocked by currentClk

Split the rule into two rules where each
rule operates in one clock domain

rule countup (sync.read == 1) ;
cntr <= cntr + 1;

endrule

November 12, 2009 L21-22http://csg.csail.mit.edu/korea

12

MCD Counter
module mkTopLevel#(Clock writeClk, Reset writeRst)

(Top ifc);
Reg# (Bit# (1)) up down bit < mkReg(0Reg# (Bit# (1)) up_down_bit <- mkReg(0,

clocked_by(writeClk),
reset_by(writeRst)) ;

Reg# (Bit# (32)) cntr <- mkReg (0) ;
// Default Clocking

Clock currentClk <- exposeCurrentClock ;
SyncBitIfc sync <- mkSyncBit (writeClk, writeRst,

currentClk) ;
rule transfer (True) ;() ;

sync.send(up_down_bit);
endrule
rule countup (sync.read == 1) ;

cntr <= cntr + 1;
endrule

We won’t worry about resets for the rest of this lecture
November 12, 2009 L21-23http://csg.csail.mit.edu/korea

Different Synchronizers
Bit Synchronizer
FIFO S h iFIFO Synchronizer
Pulse Synchronizer
Word Synchronizer
Asynchronous RAM
Null Synchronizery
Reset Synchronizers

Documented in Reference Guide

November 12, 2009 L21-24http://csg.csail.mit.edu/korea

13

Multiple Clock Domains in
Bluespec

The Clock type, and functions √
Clock families √
Making clocks √
Moving data across clock domains √
Revisit the 802.11a Transmitter ←

November 12, 2009 L21-25http://csg.csail.mit.edu/korea

802.11 Transmitter
Overview

headers
Clock
speed

Controller Scrambler Encoder

Interleaver Mapper

data

speed

f

f/13

f/52

IFFT
Cyclic
Extend

November 12, 2009 L21-26http://csg.csail.mit.edu/korea

14

The Transmitter without MCD
module mkTransmitter(Transmitter#(24,81));

l t t ll kC t ll ()let controller <- mkController();
let scrambler <- mkScrambler_48();
let conv_encoder <- mkConvEncoder_24_48();
let interleaver <- mkInterleaver();
let mapper <- mkMapper_48_64();
let ifft <- mkIFFT_Pipe();
let cyc_extender <- mkCyclicExtender();

How should we
1. Generate

different
l k ?// rules to stitch these modules together clocks?

2. Pass them to
modules?

3. Introduce clock
synchronizers
and fix the
rules?

November 12, 2009 L21-27http://csg.csail.mit.edu/korea

Step 1: Introduce Clocks
module mkTransmitter(Transmitter#(24,81));

l t l kdi 13 < kCl kDi id (13)...

let controller <- mkController();
let scrambler <- mkScrambler_48();
let conv_encoder <- mkConvEncoder_24_48();
let interleaver <- mkInterleaver();

let clockdiv13 <- mkClockDivider(13);
let clockdiv52 <- mkClockDivider(52);
let clk13 = clockdiv13.slowClock;
let clk52 = clockdiv52.slowClock;

let mapper <- mkMapper_48_64();
let ifft <- mkIFFT_Pipe();
let cyc_extender <- mkCyclicExtender();

// rules to stitch these modules together

November 12, 2009 L21-28http://csg.csail.mit.edu/korea

15

Step 2: Pass the Clocks
module mkTransmitter(Transmitter#(24,81));

let clockdiv13 <- mkClockDivider(13);
let clockdiv52 <- mkClockDivider(52);let clockdiv52 < mkClockDivider(52);
let clk13 = clockdiv13.slowClock;
let clk52 = clockdiv52.slowClock;

let controller <- mkController(clocked_by clk13);
let scrambler <- mkScrambler_48(clocked_by clk13);
let conv_encoder <- mkConvEncoder_24_48(clocked_by clk13);
let interleaver <- mkInterleaver(clocked_by clk13);
let mapper <- mkMapper_48_64(clocked_by clk13);
let ifft <- mkIFFT_Pipe();
let cyc_extender <- mkCyclicExtender(clocked_by clk52);
// rules to stitch these modules together

Default Clock

Now some of the stitch rules have become illegal
because they call methods from different clock families

Introduce Clock Synchronizers
November 12, 2009 L21-29http://csg.csail.mit.edu/korea

Step 3: Introduce Clock
Synchronizers
module mkTransmitter(Transmitter#(24,81));

let m2ifftFF <- mkSyncFIFOToFast(2,clockdiv13);
let ifft2ceSF <- mkSyncFIFOToSlow(2,clockdiv52);y
…
let mapper <- mkMapper_48_64(clocked_by clk13);
let ifft <- mkIFFT_Pipe();
let cyc_extender <- mkCyclicExtender(clocked_by clk52);
rule mapper2fifo(True); //split mapper2ifft rule

stitch(mapper.toIFFT, m2ifftFF.enq);
endrule
rule fifo2ifft(True);

stitch(pop(m2ifftFF) ifft fromMapper);stitch(pop(m2ifftFF), ifft.fromMapper);
endrule
rule ifft2fifo(True); //split ifft2ce rule

stitch(ifft.toCycExtend, ifft2ceFF.enq);
endrule
rule fifo2ce(True);

stitch(pop(ifft2ceFF), cyc_extender.fromIFFT);
endrule

November 12, 2009 L21-30http://csg.csail.mit.edu/korea

16

The Transmitter (after)
module mkTransmitter(Transmitter#(24,81));

let clockdiv13 <- mkClockDivider(13);
let clockdiv52 < mkClockDivider(52);

Synchronizers for clock
domain crossing?let clockdiv52 <- mkClockDivider(52);

let clk13th = clockdiv13.slowClock;
let clk52nd = clockdiv52.slowClock;

let m2ifftFF <- mkSyncFIFOToFast(2,clockdiv13);
let ifft2ceSF <- mkSyncFIFOToSlow(2,clockdiv52);

let controller <- mkController(clocked_by clk13th);
let scrambler <- mkScrambler_48(… " …);
let conv_encoder <- mkConvEncoder_24_48 (… " …);
let interleaver <- mkInterleaver (… " …);

g

let mapper <- mkMapper_48_64 (… " …);
let ifft <- mkIFFT_Pipe();
let cyc_extender <- mkCyclicExtender(clocked_by clk52nd, …);

rule controller2scrambler(True);
stitch(controller.getData, scrambler.fromControl);

endrule
rule mapper2fifo(True);

stitch(mapper.toIFFT, m2ifftFF.enq);
Endrule
l fif 2ifft(T)

November 12, 2009 L21-31http://csg.csail.mit.edu/korea

Did not work...

stoy@forte:~/examples/80211$ bsc -u -verilog Transmitter.bsv

Error: "./Interfaces.bi", line 62, column 15: (G0045)
Method getFromMAC is unusable because it is connected to a

clock not available at the module boundary.

Need to fix the Transmitter’s interface so that
the outside world knows about the clocks that the outside world knows about the clocks that
the interface methods operate on.

(These clocks were defined inside the module)

November 12, 2009 L21-32http://csg.csail.mit.edu/korea

17

The Fix – pass the clocks out

interface Transmitter#(type inN, type out);
method Action getFromMAC(TXMAC2ControllerInfo x);
method Action getDataFromMAC(Data#(inN) x);

method ActionValue#(MsgComplexFVec#(out))
toAnalogTX();

interface Clock clkMAC;
interface Clock clkAnalog;

endinterface

November 12, 2009 L21-33http://csg.csail.mit.edu/korea

Summary
The Clock type, and type checking ensures that
all circuits are clocked by actual clocksy
BSV provides ways to create, derive and
manipulate clocks, safely
BSV clocks are gated, and gating fits into Rule-
enabling semantics (clock guards)
BSV provides a full set of speed-independent
data synchronizers already tested and verifieddata synchronizers, already tested and verified

The user can define new synchronizers

BSV precludes unsynchronized domain crossings

November 12, 2009 L21-34http://csg.csail.mit.edu/korea

