Geothermal Energy (Week 8, 19 Oct) - Reservoir Geomechanics

민기복

Ki-Bok Min, PhD 서울대학교 에너지자원공학과 조교수 Assistant Professor, Energy Resources Engineering

Mid-term exam

SEOUL NATIONAL UNIVERSITY

- Average: 85
- Maximum: 98

(1) Typical range of thermal conductivity of rock is around 1.5 \sim 4.0 W/m·K. (T, F)

(2) Specific heat capacity of water is larger than average rock, e.g., unweathered granite. (T, F)

(3) Linear thermal expansion coefficient of rock (for example, sandstone) is in the order of 10^{-5} /°C. (T, F)

(4) Hydraulic conductivity of shale is typically a few orders larger than that of sandstone (T,F)

(5) Peclet number expresses the transport of energy by bulk fluid motion to the energy transport by conduction.(T, F)

Introduction 1st half of the course

SEOUL NATIONAL UNIVERSITY

- Week 1: Introduction to the course
- Week 2: Overview of Geothermal Energy
- Week 3: Heat Transfer (1) conduction, convection, radiation
- Week 4: Heat Transfer (2) Heat diffusion equation
- Week 5: Fluid flow in porous media
- Week 6: Fluid flow in fractured media Exploration techniques (invited lecture)
- Week 7: Fluid flow in porous media (conduction-convection problem)

Mid-term exam

Introduction 2nd half of the course

SEOUL NATIONAL UNIVERSITY

- Week 8: Reservoir Geomechanics
- Week 9: Reservoir Geomechanics

Progress report (24:00 30 Oct)

- Week 10: Environmental Impact/Enhanced Geothermal System (EGS) Geothermal Power Generation
- Week 11: Video (direct and indirect use of geothermal energy)
- Week 12: Field Visit (석모도, Friday, 20 Nov)
- Week 13: Geothermal Energy in Korea (invited lecture) Heat Pump applications in Korea (invited lecture) Final Exam - take-home exam (?)
- Week 14: Report writing guide

Final report (24:00 4 Dec)

- Week 15: Student conference (7 & 9 Dec)

SEOUL NATIONAL UNIVERSITY

 What if I didn't take 3rd year 'rock mechanics', 'petroleum engineering' or 'hydrogeology'?

- Method of evaluation?
 - absolute evaluation (절대평가)

Reservoir Geomechanics outline

SEOUL NATIONAL UNIVERSITY

- Fundamentals of rock mechanics
- Borehole stability stability of geothermal wellbore
- Mechanics of Hydraulic fracturing
- Reservoir Geomechanics

http://www.swri.edu/3PUBS/BROCHURE/D20/geotech/geotech.HTM

http://www.helix-

rds.com/EnergyServices/HelixRDS/Capabilities/Geomechanics/tabid/178/Defaul t.aspx

Reservoir Geomechanics

- Fundamentals of rock mechanics
 - Concept of stress & Mohr Circle
 - Mechanical properties (Elastic modulus and Poisson's ratio)
 - Strength (compressive, tensile)
 - In situ stress
 - Equilibrium Equation

Reservoir Geomechanics What is it?

Reservoir Geomechanics What is it?

SEOUL NATIONAL UNIVERSITY

- <u>Rock mechanics</u>: discipline concerned with the stressing, deformation and failure of rock
- <u>Rock Engineering</u>: Rock mechanics + application to engineering
- <u>Geomechanics</u>: Rock mechanics + Soil Mechanics ← used more by petroleum industry
- <u>Geotechnical Engineering</u>: (Rock mechanics + soil Mechanics) + application to engineering ← used more by civil engineering industry
- <u>Reservoir Geomechanics</u>: application of rock mechanics or geomechanics to (petroleum/geothermal/???) reservoirs

ন্ধ Borehole stability, hydraulic fracturing, subsidence, ...

Stress (응력) Definition

SEOUL NATIONAL UNIVERSITY

- Stress

ন্ধ: a force acting over a given area, F/A \leftarrow simple definition

ঝthe internal distribution of force per unit area that balances and reacts to external loads applied to a body ← exact definition

– Normal stress: Normal force/Area

$$\sigma = \frac{F_n}{A}$$

- Shear stress: Shear force/Area $\tau = \frac{F_s}{A}$

- Unit: N/m²=Pa, 10⁶Pa=MPa, 10⁹Pa=GPa 145 psi = 1 MPa = 10 bar = 10 kg중/cm²

Stress 2D

SEOUL NATIONAL UNIVERSITY

Stress in 2D

- Normal stress: acting perpendicular to the plane
- Shear stress: acting tangent to the plane
- Stress is a 2nd order tensor

ন্ধ Force is 1st order tensor (=vector)

 \Im Can be defined according to the reference axis

 \approx Principal stresses are defined

Stress 3D

Stress Transformation

- Transformation of stress
 - When we choose axis rotated by θ , normal and shear stress becomes

$$\sigma_{x}' = \frac{\sigma_{x} + \sigma_{y}}{2} + \frac{\sigma_{x} - \sigma_{y}}{2}\cos 2\theta + \tau_{xy}\sin 2\theta \qquad \tau_{xy}' = -\frac{\sigma_{x} - \sigma_{y}}{2}\sin 2\theta + \tau_{xy}\cos 2\theta$$

Stress Mohr's Circle

SEOUL NATIONAL UNIVERSITY

 $\blacktriangleright \sigma$

 σ_1

- One can always find an axis where shear stress goes zero \rightarrow principal axsi & principal stress – Using principal stresses (σ_1 and σ_2), $\sigma_{x}' = \frac{\sigma_1 + \sigma_2}{2} + \frac{\sigma_1 - \sigma_2}{2} \cos 2\theta + \tau_{xy} \sin 2\theta \qquad \tau_{xy}' = -\frac{\sigma_1 - \sigma_2}{2} \sin 2\theta + \tau_{xy} \cos 2\theta$ $A=(\tau_{xx},\,\tau_{xy})$ - Radius: $\frac{\sigma_1 - \sigma_2}{2}$ $B = (\tau_{yy}, -\tau_{xy})$ В - Center: $\frac{\sigma_1 + \sigma_2}{2}$ Ρ Q – Maximum shear stress: $\frac{\sigma_1 - \sigma_2}{2}$ **2***θ* σ_2 Α

Strain – 1D & 2D

SEOUL NATIONAL UNIVERSITY

Geometric expression of deformation caused by stress
 (dimensionless)
 L

Strain – 3D

SEOUL NATIONAL UNIVERSITY

Strain is also a 2nd order tensor and symmetric by definition.

Mechanical Properties elastic properties

- Elastic
 - Loaded deformation recovers when unloaded
- Plastic
 - Not recoverable

Mechanical Properties - Rate equation/Constitute Equation

- Concrete σ_c = 20-50 MPa E ~ 25 GPa
- Granite σ_c = 100-200 MPa E ~ 60 GPa
- Alloy steel σ_c = >500 MPa E ~ 200 GPa

Mechanical Properties Hooke's law in 3D

• Hooke's Law

1D $\sigma = E\varepsilon$

• Shear modulus G

$$\tau_{xy} = G\gamma_{xy}$$

• Generalized Hooke's law (isotropy)

2 independent parameters (E, v) for isotropic material

$$G = \frac{E}{2(1+\nu)}$$

$$\begin{pmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \varepsilon_{z} \\ \gamma_{yz} \\ \gamma_{xy} \end{pmatrix} = \begin{pmatrix} \frac{1}{E} & -\frac{\nu}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & -\frac{\nu}{E} & \frac{1}{E} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G} \end{pmatrix} \begin{pmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{yz} \\ \tau_{xz} \\ \tau_{xy} \end{pmatrix}$$

Mechanical Properties Uniaxial compressive strength (단축압축강도)

SEOUL NATIONAL UNIVERSITY

- Uniaxial Compressive Strength: maximum stress that the specimen can sustain under uniaxial stress condition
- Same unit as stress (Pa), usually in MPa.

Deformation

Properties Uniaxial compressive strength (단축압축강도)

- Force (F) = mg = 186 kg x 9.8 m/s² = 1860 N
- Are of two palms (A) = 0.1 (m) x 0.1 (m) x 2 = 0.02 m²
- σ_{c} (maximum stress = Strength) = F/A = 1860 / 0.02 = 93000 N/m² = 93 kPa

Properties Tensile strength

SEOUL NATIONAL UNIVERSITY

• Tensile strength: Maximum tensile stress that the specimen can sustain

Tensile strength of rock is usually 1/10 ~ 1/20 of UCS

State of Stress

SEOUL NATIONAL UNIVERSITY

Close to the reality in deep underground

In situ Stress (초기응력 혹은 현지응력)

SEOUL NATIONAL UNIVERSITY

• Water pressure with respect to depth (z)

 $p = \rho gz = density \times acceleration(due to gravity) \times depth$

 $p = \rho gz = 0.01 \times z(MPa)$

In situ Stress (초기응력 혹은 현지응력)

SEOUL NATIONAL UNIVERSITY

 $p = \rho gz = 0.01 \times z(MPa)$ $p = \rho gz = 0.027 \times z(MPa)$ 전석원, 2008

In situ stress Magnitude of Vertical stress

In situ stress Magnitude of Horizontal stress

- Horizontal components of insitu stress
- Average horizontal stress is usually 0.3 ~ 4.0 times of vertical stress
- High horizontal stress: tectonic stress, erosion, topography

In situ stress World stress map

SEOUL NATIONAL UNIVERSITY

140

60

40

20

0

140° Projection: Mercator

120

80'

60'

100

<u>http://dc-app3-14.gfz-potsdam.de/</u>

Heidbach, O., Tingay, M., Barth, A., Reinecker, J., Kurfeß, D. and Müller, B., The World Stress Map database release 2008 doi:10.1594/GFZ.WSM.Rel2008, 2008.

Civil structural problem: Mechanics of "Addition"

Petroleum/ Mining Geomechanics problem: Mechanics of "Removal"

Equilibrium equation

SEOUL NATIONAL UNIVERSITY

- Sum of traction, body forces (and moment) are zero (static case)

 $- b_x, b_y, b_z$ are components of acceleration due to gravity.

$$\sum M_i = 0 \longrightarrow \tau_{xy} = \tau_{yx}$$

Equilibrium equation

- Strain-displacement relationship
- Stress-strain relationship
- Static Equillibrium Equation
- Final equation for elasticity

$$E\frac{\partial^2 u_x}{\partial x^2} + \rho b_x = 0$$

Equation of motion (Equilibrium equation) – A 1D example

SEOUL NATIONAL UNIVERSITY

- With no body force, and static case

$$E\frac{\partial^2 u_x}{\partial x^2} + \rho b_x = \rho \frac{\partial^2 u_x}{\partial t^2} \qquad E\frac{\partial^2 u_x}{\partial x^2} = 0$$

Formulation for elasticity (2) – 3D

SEOUL NATIONAL UNIVERSITY

• In 3D, it is slightly more complicated - Navier's equation

$$G\left(\frac{\partial^{2} u_{x}}{\partial x^{2}} + \frac{\partial^{2} u_{x}}{\partial y^{2}} + \frac{\partial^{2} u_{x}}{\partial z^{2}}\right) + (\lambda + G)\left(\frac{\partial^{2} u_{x}}{\partial x^{2}} + \frac{\partial^{2} u_{y}}{\partial x \partial y} + \frac{\partial^{2} u_{z}}{\partial x \partial z}\right) + \rho b_{x} = 0$$

$$G\left(\frac{\partial^{2} u_{y}}{\partial x^{2}} + \frac{\partial^{2} u_{y}}{\partial y^{2}} + \frac{\partial^{2} u_{y}}{\partial z^{2}}\right) + (\lambda + G)\left(\frac{\partial^{2} u_{x}}{\partial x \partial y} + \frac{\partial^{2} u_{y}}{\partial y^{2}} + \frac{\partial^{2} u_{z}}{\partial y \partial z}\right) + \rho b_{y} = 0$$

$$G\left(\frac{\partial^{2} u_{x}}{\partial x^{2}} + \frac{\partial^{2} u_{x}}{\partial y^{2}} + \frac{\partial^{2} u_{x}}{\partial z^{2}}\right) + (\lambda + G)\left(\frac{\partial^{2} u_{x}}{\partial x \partial z} + \frac{\partial^{2} u_{y}}{\partial y \partial z} + \frac{\partial^{2} u_{z}}{\partial z^{2}}\right) + \rho b_{z} = 0$$

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}$$

Physical variables for various physical problems

SEOUL NATIONAL UNIVERSITY

Physical problem	Conservation Principle $\nabla \cdot q = 0$	State Variable <i>u</i>	Flux σ	Material properties k	Source f	Constitutive equation $\sigma = ku'$
Elasticity	Conservation of linear momentum (equilibrium)	Displacement u	Stress σ	Young's modulus & Poisson's ratio	Body forces	Hooke's law
Heat conduction	Conservation of energy	Temperature T	Heat flux Q	Thermal conductivity k	Heat sources	Fourier's law
Porous media flow	Conservation of mass	Hydraulic head h	Flow rate Q	Permeability k	Fluid source	Darcy's law
Mass transport	Conservation of mass	Concentration C	Diffusive flux q	Diffusion coefficient D	Chemical source	Fick's law

Structure of state variables and fluxes are mathematically similar – *a convenient truth!*

- Fundamentals of rock mechanics
 - Concept of stress & Mohr Circle
 - Mechanical properties (Elastic modulus and Poisson's ratio)
 - Strength (compressive, tensile)
 - In situ stress
 - Equilibrium Equation

- Stability of geothermal wellbore
 - Failure criteria
 - Basic solutions for stress distribution around wellbore