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1) Simple Phase Diagrams
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The Gibbs Phase Rule

In chemistry, Gibbs' phase rule describes the_pgssible.number. of .

the number of separate phases (P) and the number of chemical
components (C) in the system. It was deduced from thermodynamic
principles by Josiah Willard Gibbs in the 1870s.

Gibbs phase rule F=C+N-P
F: degree of freedom

C: number of chemical variables

M: number of non-chemical variables

F: number of phases

In general, Gibbs' rule then follows, as:

F=C—P+2 (fromT, P).

From Wikipedia, the free encyclopedia
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For a binary system the equilibria possible are summarised below.

Number of Number of Variance E{;'Hf-’fbrfu.;f

components phases '
c=2 p=1 f=2 bivariant ~ P=c-1
c =23 p=2 =1 monovariant P=c
c=2 [ it R _f=0 invariant P=c+1

Invariant reactions which have been observed in binary diagrams are listed below,
together with the nomenclature given to such reactions.
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eutectic reaction  (e.g. Ag-Cu system)
eutectoid reaction (e.g. C-Fe system)

monotectic reaction (e.g. Cu-Pb system)
metatectic reaction (e.g. Ag-Li system)
peritectic reaction  (e.g. Cu-Zn system)
peritectoid reaction (e.g. Al-Cu system)
syntectic reaction (e.g. K-Zn system)



How to Construct a Phase Diagram
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Temperature (°C)

The Gibbs Phase Rule

For Constant Pressure,
P+F=C+1
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The Gibbs Phase Rule

Application of Gibbs phase rule:

For a binary system at ambient pressure:
C=12 (2 elements)

MN=1 {temperature, no pressure)

For single phase: F=2: % and T

(a region)

For a 2-phase equilibrium:  F=1:

% orT (aline)

For a 3-phase equilibrium: F=0, (invariant
point)
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EUtECtOid reaCtion Temperature

Eutectoid reaction :
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Various Eutectic Structures

Structure depends on factors like minimization of free
energy at a / p interface.

Manner in which two phases nucleate and grow also
affects structures. = [55 . N
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Peritectic reaction

_ _ _ heating
Peritectic reaction : AB L+B
_ melting
Congruent melting : S, > L4
: meltin :
Incongruent melting : S, g9, L. Which one here??
Temperature
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Considerable difference between the melting points

Peritectic reaction |
AH. >AH_. >0
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Fig. 61. Effect of increasingly positive departure from ideality in changing the phase diagram from a continuous
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Fig. 43. Effect of increasingly positive departure from ideality in changing the phase diagram for a continuous
series of solutions to a eutectic-type.



Eutectic: L—a+f Peritectic: L+a — B
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Fig. 63. Relationship between eutectic and peritectic reactions.
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Peritectic reaction
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Fig. 62. Derivation of the peritectic phase diagram from the free energy curves for the liquid and solid phases.



Peritectic reaction

* Surrounding or Encasement: During peritectic
reaction, L+ a—  , the beta phase created surrounds
primary alpha.

» Beta creates diffusion barrier resulting in coring.
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Fig. 65. Freezing of the peritectic alloy P.




Peritectic Alloy System

e Atd42.4 % Ag & 1400°C
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4.3.4. Formation of intermediate phases by peritectic reaction
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Fig. 68. Formation of an intermediate phase, f§, by peritectic reaction.



4.3.4. Formation of intermediate phases by peritectic reaction
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Fig. 69. Derivation of the phase diagram (Fig. 68) from the free energy curves of the liquid, «, f# and y phases.
(After A. H. CotTreLL; courtesy Edward Arnold.)



4.3.4. Formation of intermediate phases by peritectic reaction
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Fig. 70. Decreasing range of stability of an intermediate phase with its increasing stability relative to the termina
solid solutions.



4.3.4. Formation of intermediate phases by peritectic reaction
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Fig. 71. The (_Zu_Zn phase diagram. (After G. V. RAYNOR: courtesy Institute of Metals.)



Peritectic point virtually coincides with the liquid composition.
But, thermodynamically, points P and b is not possible to coincide.

At equilibrium, dG* =dG', 1} = 1!, 1S = 1}

At const P and differentiating with respect toX,

dT dX; dX'
( )dT_(/uA /UB)( XA )
L+y XS =X gs _g! d_T:()
AT f....s'” )dXA

Temp maximum or minimum must be present.
Fig. 72. Limiting case of the peritectic reaction.

Peritectic point and the liquid composition are so close to each other that

the experimental techniquies used were not able to distinguish them.21



Decreasing solubility of Zn in Cu with rise in temperature
in contrast to the normal decrease in solubility with fall in temperature
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Due to an equilibrium with a disordered intermediate phase
(e.g. the B phase above 454 °C, Fig. 71)

This has been explained as being due to a greater relative movement of
the free energy curve of the intermediate phase compared with the ¢
solid solution with rise in temperature.



4.3.5. Non-stoichiometeric compounds
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Fig. 74. A non-stoichiometric f phase based on
the intermediate phase A.B.
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Fig. 75. Use of free energy curves to illustrate the
occurrence of non-stoichiometric phases.
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4.3.5. Non-stoichiometeric compounds
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4.3.5. Non-stoichiometeric compounds

O phase in the Cu-Al system is usually denoted as CuAl, although
the composition X ,=1/3, X, =2/3 is not covered by the 0 field
on the phase diagram.
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4.4. Congruent transformations

Congruent transformation:
a melting point minimum, a melting point maximum, and a critical

temperature associated with a order-disorder transformation
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Fig. 76. Examples of congruent transformations.
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4.4. Congruent transformations
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Fig. 77. Effect of increasingly negative departure from ideality in changing the phase diagram from a continuous
series of solutions to one containing a congruent intermediate phase.
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4.4. Congruent transformations
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Relationship between phase diagrams containing congruent and incongruent intermediate phases
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