

Advanced Physical Metallurgy "Phase Equilibria in Materials"

10. 27. 2009 Eun Soo Park

1

Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Contents for previous class

"Alloy solidification"

- Solidification of single-phase alloys
- Three limiting cases

1) Equilibrium Solidification: perfect mixing in solid and liquid

2) No Diffusion in Solid, Perfect Mixing in Liquid

3) No Diffusion on Solid, Diffusional Mixing in the Liquid

1) Equilibrium Solidification Low cooling rate

k: partition coefficient X: mole fraction of solute

In this phase diagram of straight solidus and liquidus, k is independent of T.

- Relative amount of solid and liquid : lever rule

- Solidification starts at $T_1 (X_s = kX_0)$ and

ends at $T_3(X_1 = X_0/k)$.

2) No Diffusion in Solid, Perfect Mixing in Liquid

- : high cooling rate, efficient stirring
- Separate layers of solid retain their original compositions mean comp. of the solid $(\overline{X_s}) < X_s$
- Liquid become richer than $X_0/K \rightarrow X_E$
- Variation of X_s: solute rejected to the liquid Т solid $\rightarrow \overline{X}_{s} < X_{s}$ liquid $> X_{0}/k \rightarrow X_{E}$ T_1 XL Xs T_2 T_3 \overline{x}_{s} $T_{\rm E}$ *X*₀ Xmax X_{F} (a) X_{solute} ----•

3) No Diffusion on Solid, Diffusional Mixing in the Liquid

- Fig. 4.22 Planar front solidification of alloy X₀ in Fig.
 4.19 assuming no diffusion in solid and no stirring in the liquid.
- (a) Composition profile when S/L temperature is between T_2 and T_3 in Fig. 4.19.
- (b) Steady-state at T_3 . The composition solidifying equals the composition of liquid far ahead of the solid (X_0).
- (c) Composition profile at T_E and below, showing the final transient.

Constitutional Supercooling

Condition for a stable planar interface

 $T_{L}' > (T_1 - T_3)/(D/v)$

 $T_{L}' / v > (T_{1} - T_{3}) / D$

Fig. 4.23 The origin of constitutional supercooling ahead of a planar solidification front. (a) Composition profile across the solid/liquid interface during steady-state solidification. The dashed line shows dX_L/dx at the S/L interface. (b) The temperature of the liquid ahead of the solidification front follows line T_L . The equilibrium liquidus temperature for the liquid adjacent to the interface varies as T_e . Constitutional supercooling arises when T_L lies under the critical gradient.

Contents for today's class

4.3 Alloy solidification

- Solidification of single-phase alloys
- Eutectic solidification
- Off-eutectic alloys
- Peritectic solidification

4.4 Solidification of ingots and castings

- Ingot structure
- Segregation in ingot and castings
- Continuous casting

4.6 Solidification during quenching from the melt

4.3.2 Eutectic Solidification

Normal eutectic

Fig. 4.30 Rod-like eutectic. Al₆Fe rods in Al matrix. Transverse section. Transmission electron micrograph (x 70000).

Anomalous eutectic

The microstructure of the Pb-61.9%Sn (eutectic) alloy presented a coupled growth of the (Pb)/bSn eutectic. There is a remarkable change in morphology increasing the degree of undercooling with transition from regular lamellar to anomalous eutectic.

http://www.matter.org.uk/solidification/eutectic/anomalous_eutectics.htm

4.3.2 Eutectic Solidification

Fig. 14 Schematic representation possible in eutectic structures. (a), (b) and (c) are alloys shown in fig. 13; (d) nodular; (e) Chinese script; (f) acicular;
 (g) lamellar; and (h) divorced.

4.3.2 Eutectic Solidification (Thermodynamics)

Plot the diagram of Gibbs free energy vs. composition at T_3 and T_4 .

What is the driving force for the eutectic reaction (L $\rightarrow \alpha$ + β) at T₄ at C_{eut}?

What is the driving force for nucleation of α and β ?

Eutectic Solidification (Kinetics)

If α is nucleated from liquid and starts to grow, what would be the composition at the interface of α/L determined?

 \rightarrow rough interface & local equilibrium

How about at β/L ? Nature's choice?

What would be a role of the curvature at the tip?

→ Gibbs-Thomson Effect

Eutectic Solidification

How many α/β interfaces per unit length?

 $\rightarrow 1/\lambda \times 2$

For an interlamellar spacing, λ , there is a total of (2/ λ) m² of α/β interface per m³ of eutectic.

$\lambda^* = -\frac{2T_E \gamma V_m}{\Delta H \Delta T_0} \rightarrow identical to critical radius$

Gibbs-Thomson effect in a Δ G-composition diagram?

Fig. 4.33 (a) Molar free energy diagram at $(T_E - \Delta T_0)$ for the case $\lambda * < \lambda < \infty$, showing the composition difference available to drive diffusion through the liquid (ΔX). (b) Model used to calculate the growth rate.

Corresponding location at phase diagram?

Fig. 4.34 Eutectic phase diagram showing the relationship between ΔX and ΔX_0 (exaggerated for clarity)

4.3.3 Off-eutectic Solidification

FIGURE 10-13 (a) A hypoeutectic lead-tin alloy. (b) A hypereutectic lead-tin alloy. The dark constituent is the lead-rich solid α , the light constituent is the tin-rich solid β , and the fine plate structure is the eutectic (× 400).

4.3.4 Peritectic Solidification

-

Solidification and microstructure that develop as a result of the peritectic reaction

4.4 Solidification of Ingots and Castings

주조 후 압연, 압출 또 주조된 제품이 최종 모양 는 단조 등에 의해 가공 을 유지하거나 혹은 기계 할 것 >> blank (작은 것) 가공에 의해 최종 모양으

로된것

Ingot Structure

- Chill zone
- Columnar zone
- Equiaxed zone

Chill zone

- Solid nuclei form on the mould wall and begin to grow into the liquid.

- As the mould wall warms up it is possible for many of these solidified crystals to break away from the wall under the influence of the turbulent melt.

Columnar zone

After pouring the temperature gradient at the mould walls decreases and the crystals in the chill zone grow dendritically in certain crystallographic directions, e.g. <100> in the case of cubic metals.

Fig. 4.41 Competitive growth soon after pouring. Dendrites with primary arms normal to the mould wall, i.e. parallel to the maximum temperature gradient, outgrow less favorably oriented neighbors.

Fig. 4.42 Favorably oriented dendrites develop into columnar grains. Each columnar grain originates from the same heterogeneous nucleation site, but can contain many primary dendrite arms.

Fig. 4.28 Columnar dendrites in a transparent organic alloy (After K.A. Jackson in Solidification, American Society for Metals, 1971, p. 121.)⁵

Equiaxed zone

The equiaxed zone consists of equiaxed grains randomly oriented in the centre of the ingot. An important origin of these grains is thought to be melted-off dendrite side-arms. + convection current

Fig. 4.40 Schematic cast grain structure. (After M.C. Flemings, Solidification Processing, McGraw-Hill, New York, 1974.) ²⁶

Shrinkage effect

4.4.2 Segregation in Ingots and Castings

- Macrosegregation :

Composition changes over distances comparable to the size of the specimen.

- Microsegregation :

Occur on the scale of the secondary dendrite arm spacing.

Four important factors that can lead to macrosegregation

- Shrinkage due to solidification and thermal contraction.
- Density differences in the interdendritic liquid.
- Density differences between the solid and liquid
- Convection currents driven by temperature-induced density differences in the liquid.

Fig. 4.43 Segregation pattern in a large killed steel ingot. + positive, - negative segregation. (After M.C. Flemings, Scandinavian Journal of Metallurgy 5 (1976) 1.)

Schematic illustration of a continuous casting process.

4.6 Solidification during quenching from the melt

Time Temperature Transformation diagram

36

* T_g depends on thermal history.

Kinetic Nature of the Glass Transition

Glass formation

Glass formation: stabilizing the liquid phase

First metallic glass (Au₈₀Si₂₀) produced by splat quenching at Caltech by Pol Duwez in 1960.

Bulk formation of metallic glass

• First bulk metallic glass

Pd_{77.5}Cu₆Si_{16.5} (7_{rg}=0.64)

By droplet quenching (CR~800 K/s)

H.S. Chen and D. Turnbull, Acta Metall. 1969; 17: 1021.

Alloy Selection: consideration of T_{rq}

 $Pd_{40}Ni_{40}P_{20}$ ($T_{rg}=0.67$)

Suppression of heterogeneous nucleation

Drehman, Greer, and Turnbull, 1982.

Bulk glass formation in the Pd-Ni-P system

P 80 20M1(BR 8) 60 60 4020 80 Pd Ni 20 60 80 40 Pd (at.%)

FIG. 1. 300-g ingot of bulk amorphous $Pd_{40}Ni_{40}P_{20}$ rod with 25 mm in diamter prepared by fluxing in B_2O_3 and water quenching.

Experimental Difference

- 1. Arc melting for the ingot : process temperature > 3000 K
- 2. Water quenching : Improvement of cooling rate

*Y.He, R.B. Schwarz, J.I. Archuleta, Appl. Phys. Lett. 1996; 69: 1861. 42

Bulk glass formation in the Pd₄₀Ni₁₀Cu₃₀P₂₀ system

Largest ingot

maximum diameter for glass formation : 72 mm

Critical cooling rate: ~ 0.1K/sec.

How to make bulk metallic glasses

How to make bulk metallic glasses

< Powder Metallurgy>

Recent BMGs with critical size ≥ 10 mm

A.L. Greer, E. Ma, MRS Bulletin, 2007; 32: 612. 46