

Introduction to

Materials Science and Engineering

Chap. 6. Mechanical Properties

Aircraft, such as the one shown here, makes use of aluminum alloys and carbonfiber-reinforced composites.

The materials used in sports equipment must be lightweight, stiff, tough, and impact resistant.

2

Figure 3.1 Common tests used to determine the monotonic strength of metals. (a) Uniaxial tensile test. (b) Upsetting test. (c) Three-point bending test. (d) Plane-strain tensile test. (e) Plane-strain compression (Ford) test. (f) Torsion test. (g) Biaxial test.

Simple shear: drive shaft

Simple compression

Hydrostatic Tension

Pressurized tank

Hydrostatic Compression

Stress and strain:

What are they and why are they used, instead of load and deformation?

Elastic behavior:

When loads are small, how much deformation occurs? What materials deform least?

Plastic behavior:

At what point do dislocations cause permanent deformation? What materials are most resistant to permanent deformation?

2 Stress and Strain

3 Elastic Deformation

Plastic Deformation

5 Hardness

- Load The force applied to a material during testing
- Stress Force or load per unit area of cross-section overwhich the force or load is acting
- Strain Elongation change in dimension per unit length
- Engineering stress The applied load, or force, divided by the original cross-sectional area of the material
- \succ Engineering strain The amount that a material deforms per unit length in a tensile test
- > True stress The load divided by the actual cross-sectional area of the specimen at that load
- > True strain The strain calculated using actual and not original dimensions, given by $\varepsilon_t \ln(1/1_0)$
- > Young's modulus (E) The slope of the linear part of the stress-strain curve in the elastic region, same as modulus of elasticity
- > Shear modulus (G) The slope of the linear part of the shear stress-shear strain curve

Elastic

- Initially we stretch atomic bonds.
- When we release the applied load, the atomic bonds return to their original state.

Plastic

- When the applied load is large enough, some atomic bonds are broken.

- Atoms move from their original positions, and atomic bonds are re-formed.

5 Hardness

Measures the resistance of a material to a static or slowly applied force.

As the force is applied, the metal deforms (elongated).

FIGURE 6.1 (a) Schematic illustration of how a tensile load produces an elongation and positive linear strain. Dashed lines represent the shape before deformation; solid lines, after deformation. (b) Schematic illustration of how a compressive load produces contraction and a negative linear strain. (c) Schematic representation of shear strain γ , where $\gamma = \tan \theta$. (d) Schematic representation of torsional deformation (i.e., angle of twist ϕ) produced by an applied torque T.

(**Table 6-1**)

Table 6.1Room-Temperature Elastic and Shear Moduli, andPoisson's Ratio for Various Metal Alloys

	Modulus of Elasticity		Shear Modulus		~1/3 Poisson's
Metal Alloy	<u>GPa</u>	10 ⁶ psi	GPa	10 ⁶ psi	Ratio
Aluminum	69	10	25	3.6	0.33
Brass	97	14	37	5.4	0.34
Copper	110	16	46	6.7	0.34
Magnesium	45	6.5	17	2.5	0.29
Nickel	207	30	76	11.0	0.31
Steel	207	30	83	12.0	0.30
Titanium	107	15.5	45	6.5	0.34
Tungsten	407	59	160	23.2	0.28

Elastic Deformation

5 Hardness

(Fig. 6-11)

Table 6.2Typical Mechanical Properties of Several Metals andAlloys in an Annealed State

Metal Alloy	Yield Strength <u>MPa</u> (ksi)	Tensile Strength <u>MPa</u> (ksi)	Ductility, %EL [in 50 mm (2 in.)]
Aluminum	35 (5)	90 (13)	40
Copper	69 (10)	200 (29)	45
Brass (70Cu-30Zn)	75 (11)	300 (44)	68
Iron	130 (19)	262 (38)	45
Nickel	138 (20)	480 (70)	40
Steel (1020)	180 (26)	380 (55)	25
Titanium	450 (65)	520 (75)	25
Molybdenum	565 (82)	655 (95)	35

Elastic Strain Recovery Strain Hardening (= Work Hardening)

FIGURE 6.17 Schematic tensile stress-strain diagram showing the phenomena of elastic strain recovery and strain hardening. The initial yield strength is designated as σ_{y_0} ; σ_{y_i} is the yield strength after releasing the load at point *D*, and then upon reloading.

(Fig. 6-17)

Strain

(Fig. 6-16)

FIGURE 6.16 A comparison of typical tensile engineering stress–strain and true stress–strain behaviors. Necking begins at point M on the engineering curve, which corresponds to M' on the true curve. The "corrected" true stress–strain curve takes into account the complex stress state within the neck region.

http://bp.snu.ac.kr

(Eq. 6-17)

(Eq. 6-18)

Introduction

2 Stress and Strain

3 Elastic Deformation

Plastic Deformation

5 Hardness

 (skip)
 Resistance to Permanently Indenting the Surface
 A Measure of a Material's Resistance to Localized Plastic Deformation

> Test

- ✓ A hard indenter is pressed into the specimen. Standard load is applied.
- Magnitude of indentation is measured:
 Area of Indentation, or Depth of
 Indentation.

Stress and strain:

Size-independent measures of load and displacement, respectively.

- Elastic behavior: Reversible behavior.
- > Plastic behavior: Permanent deformation (at the yield strength).
- > Ductility: The plastic strain at failure.
- Problems from Chap. 6 <u>http://bp.snu.ac.kr</u>
 Prob. 6-3 Prob. 6-5 Prob. 6-9 Prob. 6-16
 Prob. 6-24 Prob. 6-34 Prob. 6-44

