

Phase Transformation of Materials

09.15.2009

Eun Soo Park

1

Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

- Binary System mixture/ solution / compound

Ideal solution (ΔH_{mix} =0) Random distribution

Regular solution $\Delta H_{mix} = P_{AB} \varepsilon$ where $\varepsilon = \varepsilon_{AB} - \frac{1}{2} (\varepsilon_{AA} + \varepsilon_{BB})$ $\varepsilon \approx 0$

 $\int \Delta H_{mix} > 0 \text{ or } \Delta H_{mix} < 0$

Real solution

Ordered structure

Clustering

P_{AA}, P_{BB}

(c) when the size difference is large strain effect Interstitial solution

 $\epsilon > 0$, $\Delta H_{mix} > 0 / \Delta H_{mix} \sim +26$ kJ/mol

 $\epsilon > 0$, $\Delta H_{mix} > 0 / \Delta H_{mix} \sim +5$ kJ/mol

 $\epsilon >> 0$, $\Delta H_{mix} >> 0 / \Delta H_{mix} \sim +60 \text{ kJ/mol}$

 $\epsilon >> 0$, $\Delta H_{mix} >> 0 / \Delta H_{mix} \sim +58 \text{ kJ/mol}$

 ϵ < 0, ΔH_{mix} < 0 / ΔH_{mix} ~ -21 kJ/mol

 ϵ < 0, ΔH_{mix} < 0 / ΔH_{mix} ~ -38 kJ/mol

ε << 0, ΔH_{mix}<< 0 / ΔH_{mix}~ -142 kJ/mol

Contents for today's class

- Equilibrium in Heterogeneous Systems
- Binary phase diagrams
 - 1) Simple Phase Diagrams
 - 2) Systems with miscibility gap
 - 4) Simple Eutectic Systems
 - 3) Ordered Alloys
 - 5) Phase diagrams containing intermediate phases

Equilibrium in Heterogeneous Systems

We have dealt with the case where the components A and B have the same crystal structure.

 $G = X_A G_A + X_B G_B$ + $\Omega X_A X_B + RT (X_A \ln X_A + X_B \ln X_B)$

What would happen when the components A and B have a different crystal structure? → heterogeneous system

Equilibrium in Heterogeneous Systems

1.4

If $G^{\alpha}(X_{B}^{\alpha})$ and $G^{\beta}(X_{B}^{\beta})$ are given, what would be $G(\alpha + \beta)$ at $X_{B}^{\circ} = ?$

Fig. 1.26 The molar free energy of a two-phase mixture (α + β)

Lever rule

A geometric interpretation:

solving gives Lever Rule

Sum of weight fractions: $W_L + W_\alpha = 1$

Conservation of mass (Ni):
$$C_0 = W_L C_L + W_\alpha C_\alpha$$

Combine above equations:

$$W_{L} = \frac{C_{\alpha} - C_{o}}{C_{\alpha} - C_{L}} = \frac{S}{R + S}$$

$$W_{\alpha} = \frac{C_{o} - C_{L}}{C_{\alpha} - C_{L}} = \frac{R}{R + S}$$

. .

Equilibrium in Heterogeneous Systems

1.4

Variation of activity with composition

The most stable state, with the lowest free energy, is usually defined as the ^(a) state in which the pure component has unit activity of A in pure α .

when
$$X_A = 1 \rightarrow a_A^{\alpha} = 1$$

when $X_B = 1 \rightarrow a_B^{\beta} = 1$

(b)

(c)

when α and β in equil.

$$\mathbf{a}_{\mathsf{A}}^{lpha} = \mathbf{a}_{\mathsf{A}}^{eta}$$
 $\mathbf{a}_{\mathsf{B}}^{lpha} = \mathbf{a}_{\mathsf{B}}^{eta}$

두 성분의 activity 일치

Fig. 1.28 The variation of a_A and a_B with composition for a binary system containing two ideal solutions, α and β

Equilibrium in Heterogeneous Systems

1) Simple Phase Diagrams

1.5 Binary phase diagrams

1) Simple Phase Diagrams 가정: (1) completely miscible in solid and liquid.

(2) Both are ideal soln. (3) $T_{m}(A) > T_{m}(B)$

(3)
$$T_m(A) > T_m(B)$$

(4) $T_1 > T_m(A) > T_2 > T_m(B) > T_3$

1) Simple Phase Diagrams

The simplest type of binary phase diagrams is the isomorphous system, in which the two constituents form a continuous solid solution over the entire composition range. An example is the Ni-Cu system.

Solidification of alloy C_0 starts on cooing at T₁. The first solid formed has a composition of C_{s1} and the liquid C_0 . On further cooling the solid particles grow larger in size and change their composition to C_{s2} and then C_0 , following the solidus whereas the liquid decrease in volume and changes its composition from C_0 to C_{L3} following the liquidus. The solidification completes at T₃.

Cooling Curves determination of Phase diagrams

Ш

Ni

At temperature T₁, alloy C₀ is in the dual phase region, comprising the liquid phase and the α-phase.

(i) Determine the compositions of the two phases;(ii) Determine the weight fractions of the two phases

Read from the tie line: Liquid phase:Cu-30%Ni α-phase: Cu-55%Ni

$$W_L = \frac{C_s - C_o}{C_s - C_L} = \frac{55 - 50}{55 - 30} = 0.2 = 20\%$$

$$W_{\alpha} = \frac{C_o - C_L}{C_s - C_L} = \frac{50 - 30}{55 - 30} = 0.8 = 80\%$$

or

$$W_{\alpha} = 1 - W_L = 1 - 0.2 = 0.8 = 80\%$$

2) Systems with miscibility gab

How to characterize G^s mathematically in the region of miscibility gap between e and f?²³

2) Systems with miscibility gab $\Delta H_{mix}^{L} = 0 \qquad \Delta H_{mix}^{S} > 0$

- When A and B atoms dislike each other, $\Delta H_{mix} > 0$
- In this case, the free energy curve at low temperature has a region of negative curvature, $\frac{d^2G}{dX_2^2} < 0$
- This results in a 'miscibility gap' of α ' and α " in the phase diagram

