

Phase Transformation of Materials

11. 19. 2009

Eun Soo Park

1

Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Contents for previous class **"Alloy solidification**" Solidification of single-phase alloys

Planar S/L interface → unidirectional solidification

- Three limiting cases
- 1) Equilibrium Solidification
 - : perfect mixing in solid and liquid

- Relative amount of solid and liquid : lever rule

2) No Diffusion in Solid, Perfect Mixing in Liquid

- : high cooling rate, efficient stirring
- Separate layers of solid retain their original compositions mean comp. of the solid ($\overline{X_s}$) < X_s

Scheil equation

: non-equilibrium lever rule

$$X_{L} = X_{O} f_{L}^{(k-1)} \quad X_{S} = k X_{O} (1 - f_{S})^{(k-1)}$$

X_{solute} -

Distance along bar

Contents for previous class

"Alloy solidification" Solidification of single-phase alloys

3) No Diffusion on Solid, Diffusional Mixing in the Liquid

Contents for previous class

"Alloy solidification"

Constitutional Supercooling

No Diffusion on Solid, Diffusional Mixing in the Liquid **Steady State**

* Temperature gradient in Liquid

T_L' * equilibrium solidification temp. change T_e

Cellular Solidification $T_{L}'/V < (T_1-T_3)/D$

Fig. 4.24 The breakdown of an initially planar solidification front into cells

Fig. 4.26 Cellular microstructures.

- (a) A decanted interface of a cellularly solidified Pb-Sn alloy (\times 120)
 - (after J.W. Rutter in *Liquid Metals and Solidification*, American Society for Metals, 1958, p. 243).
- (b) Longitudinal view of cells in carbon tetrabromide (× 100) (after K.A. Jackson and J.D. Hunt, *Acta Metallurgica* 13 (1965) 1212).

Fig. 4.27 Cellular dendrites in carbon tetrabromide. (After L.R. Morris and W.C. Winegard, Journal of Crystal Growth 6 (1969) 61.)

1차 가지 성장 방향 변화 열전도 방향 → 결정학적 우선 방향

Fig. 4.28 Columnar dendrites in a transparent organic alloy. (After K.A. Jackson in Solidification, American Society for Metals, 1971, p. 121.)⁰

Contents for today's class

4.3 Alloy solidification

- Solidification of single-phase alloys
- Eutectic solidification
- Off-eutectic alloys
- Peritectic solidification

4.4 Solidification of ingots and castings

- Ingot structure
- Segregation in ingot and castings
- Continuous casting

4.6 Solidification during quenching from the melt

4.3.2 Eutectic Solidification

Normal eutectic

Fig. 4.30 Rod-like eutectic. Al₆Fe rods in Al matrix. Transverse section. Transmission electron micrograph (x 70000).

Anomalous eutectic

The microstructure of the Pb-61.9%Sn (eutectic) alloy presented a coupled growth of the (Pb)/bSn eutectic. There is a remarkable change in morphology increasing the degree of undercooling with transition from regular lamellar to anomalous eutectic.

12

http://www.matter.org.uk/solidification/eutectic/anomalous_eutectics.htm

4.3.2 Eutectic Solidification

Fig. 14 Schematic representation possible in eutectic structures. (a), (b) and (c) are alloys shown in fig. 13; (d) nodular; (e) Chinese script; (f) acicular; (g) lamellar; and (h) divorced.

4.3.2 Eutectic Solidification (Thermodynamics)

Plot the diagram of Gibbs free energy vs. composition at T_3 and T_4 .

What is the driving force for the eutectic reaction (L $\rightarrow \alpha + \beta$) at T₄ at C_{eut}?

What is the driving force for nucleation of α and β ?

Eutectic Solidification (Kinetics)

If α is nucleated from liquid and starts to grow, what would be the composition at the interface of α/L determined?

→ rough interface (diffusion interface) & local equilibrium

How about at β/L ? Nature's choice?

What would be a role of the curvature at the tip?

→ Gibbs-Thomson Effect

Eutectic Solidification

How many α/β interfaces per unit length?

 $\rightarrow 1/\lambda \times 2$

α

ß

α

β

For an interlamellar spacing, λ , there is a total of (2/ λ) m² of α/β interface per m³ of eutectic.

$$\lambda^* = + \frac{2T_E \gamma V_m}{\Delta H \Delta T_0} \rightarrow identical to critical radius$$

Gibbs-Thomson effect in a Δ G-composition diagram?

곡률을 갖기 때문

계면 과냉 변화시킴에 따라 성장속도와 간격 서로 독립적으로 변화시킬 수 있음.

Closer look at the tip of a growing dendrite

different from a planar interface because heat can be conducted away from the tip in three dimensions.

Assume the solid is isothermal $(T'_{S} = 0)$ From $K_{S}T'_{S} = K_{L}T'_{L} + VL_{V}$ If $T'_{S} = 0$, $V = \frac{-K_{L}T'_{L}}{L_{V}}$

A solution to the heat-flow equation for a hemispherical tip:

$$T'_{L}(negative) \cong \frac{\Delta T_{C}}{r} \quad \Delta T_{C} = T_{i} - T_{\infty}$$
$$v = \frac{-K_{L}T'_{L}}{L_{V}} \cong \frac{K_{L}}{L_{V}} \cdot \frac{\Delta T_{C}}{r} \qquad v \propto \frac{1}{r}$$

Thermodynamics at the tip?

Gibbs-Thomson effect: melting point depression

However, ΔT also depends on r. How?

$$\Delta G = \frac{L_V}{T_m} \Delta T_r = \frac{2\gamma}{r} \qquad \Delta T_r = \frac{2\gamma T_m}{L_V r}$$

Corresponding location at phase diagram?

 $\Delta G_r = \frac{2\gamma_{\alpha\gamma}V_m}{2}$ $\Delta T_{o} = \Delta T_{r} + \Delta T_{D}$ curvature composition gradient \rightarrow free energy dissipated $\Delta G_{total} = \Delta G_r + \Delta G_D$ in forming α / β interfaces $\Delta G_{\rm D} \rightarrow$ free energy dissipated in diffusion G $\bigcirc T_{\rm E} - \Delta T_0$ $\lambda = \infty$ GL ΔX TF ΔT_{Γ} ΔT_0 $\Delta T_{\rm D}$ $G^{\alpha}(\lambda)$ $G^{\beta}(\lambda)$ ΔX $2\gamma_{\alpha\beta}V_{m}$ $G^{\alpha}(\infty)$ $X_{B}^{L/\beta}$ *G*^β(∞) ΔX_0 $(\lambda = \infty)$ X_B -B Α

21

Fig. 4.34 Eutectic phase diagram showing the relationship between ΔX and ΔX_0 (exaggerated for clarity)

