

Phase Transformation of Materials

12. 01. 2009

Eun Soo Park

1

Office: 33-316 Telephone: 880-7221 Email: espark@snu.ac.kr Office hours: by an appointment

Contents for previous class

< Phase Transformation in Solids >

Diffusional Transformation
Precipitation

Contents for today's class

- Precipitate growth
 - Growth behind Planar Incoherent Interfaces
 - Diffusion Controlled lengthening of Plates or Needles
 - Thickening of Plate-like Precipitates
- Overall Transformation Kinetics TTT Diagram
 - Johnson-Mehl-Avrami Equation
- Precipitation in Age-Hardening Alloys
 - GP Zones
 - Transition phases

5.3 Precipitate Growth

석출물 성장 → 계면의 이동 : 성장하는 동안 석출물 모양 각 계면의 상대적 이동 속도에 의해 좌우됨.

If the nucleus consists of semi-coherent and incoherent interfaces, what would be the growth shape?

 \rightarrow Origin of the Widmanstätten morphology

Incoherent interface \rightarrow similar to rough interface \rightarrow local equilibrium \rightarrow diffusion-controlled

Diffusion-Controlled Thickening: 석출물 성장 속도

Fig. 5.14 Diffusion-controlled thickening of a precipitate plate.

$$\rightarrow v = f(\Delta \mathbf{T} \text{ or } \Delta \mathbf{X}, \mathbf{t})$$

or interstitial diffusion coeff.

Fig. 5.16 The effect of temperature and position on growth rate, v. $_7$

Nucleation and Growth Rates – Poor Glass Formers

- Strong overlap of growth and nucleation rates
- Nucleation rate is high
- Growth rate is high
- Both are high at the same temperature

Nucleation and Growth Rates – Good Glass Formers

Fig. 5.17 (a) Interference of growing precipitates due to overlapping diffusion fields at later stage of growth. (b) Precipitate has stopped growing.

Fig. 5.18 Grain-boundary diffusion can lead to rapid lengthening and thickening of grain boundary precipitates.

치환형 확산이 필요한 경우 상대적으로 중요

11

2) Diffusion Controlled lengthening of Plates or Needles

Needle \rightarrow Gibbs-Thomson increase in G = $2\gamma V_m/r$ instead of $\gamma V_m/r$ \rightarrow the same equation but the different value of r^{*}

2) Diffusion Controlled lengthening of Plates or Needles

3) Thickening of Plate-like Precipitates

Thickening of Plate-like Precipitates by Ledge Mechanism

Half Thickness Increase

 $V = \frac{uh}{\lambda}$ u) rate of lateral migrationAssuming the diffusion-controlled growth, $v = \frac{D}{C_{\beta} - C_{r}} \cdot \frac{\Delta C}{kr}$ 돌출맥 모서리가 부정합인 경우

$$u = \frac{D\Delta X_0}{k(X_\beta - X_e)h}$$

- For the diffusion-controlled growth, a monatomic-height ledge should be supplied constantly.
- sources of monatomic-height ledge
 → spiral growth, 2-D nucleation,
 nucleation at the precipitate edges,
 or from intersections with other
 precipitates (heterogeneous 2-D)

$$V = \frac{D\Delta X_0}{k(X_{\beta} - X_e)\lambda^{1/2}}$$

3) Thickening of Plate-like Precipitates

Fig. 5.22 The thickening of a g plate in an Al-15 wt% Ag alloy at 400°C. (From C. Laird and H.I. Aaronson, *Acta Metallurgica* 17 (1969) 505.)