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Contents for previous class

< Phase Transformation in Solids >

1) Diffusional Transformation

(a) Precipitation
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Contents for today’s class

 Precipitate growth

- Growth behind Planar Incoherent Interfaces
- Diffusion Controlled lengthening of Plates or Needles

- Thickening of Plate-like Precipitates

e Overall Transformation Kinetics — TTT Diagram
- Johnson-Mehl-Avrami Equation

* Precipitation in Age-Hardening Alloys

- GP Zones

- Transition phases



5.3 Precipitate Growth
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If the nucleus consists of semi-coherent and incoherent interfaces,
what would be the growth shape?

Slow Ledge mechanism

— Origin of the Widmanstatten morphology



1) Growth behind Planar Incoherent Interfaces

Incoherent interface — similar to rough interface
— local equilibrium — diffusion-controlled

Diffusion-Controlled Thickening: M&=E& M%& =
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Fig. 5.14 Diffusion-controlled thickening of a precipitate plate.



1) Growth behind Planar Incoherent Interfaces
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1) Growth behind Planar Incoherent Interfaces
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Fig. 5.16 The effect of temperature and position on growth rate, v. .



Nucleation and Growth Rates — Poor Glass Formers

T, >
Rate Strong overlap of growth
Growth Rate (m/sec) and nucleation rates
* Nucleation rate is high
T

« Growth rate is high

« Both are high at the same
temperature

Nucleation Rate (#/cm3-sec)



Nucleation and Growth Rates — Good Glass Formers

T >
4 Rate
* No overlap of growth
Growth Rate (m/sec) and nucleation rates
e Nucleation rate is small
T

Growth rate is small

At any one temperature

Nucleation Rate (#/cms3-sec)
one of the two is zero




1) Growth behind Planar Incoherent Interfaces

Effect of Overlap of Separate Precipitates
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Fig. 5.17 (a) Interference of growing precipitates due to overlapping
diffusion fields at later stage of growth. (b) Precipitate has stopped growiqg.



1) Growth behind Planar Incoherent Interfaces

Grain boundary precipitation = w2z £z Mz
Solute
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Fig. 5.18 Grain-boundary diffusion can lead to rapid lengthening and

thickening of grain boundary precipitates.
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2) Diffusion Controlled lengthening of Plates or Needles

dx D dC
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— the same equation but the different value of r



2) Diffusion Controlled lengthening of Plates or Needles

The Gobs-Thomson Effect : a/p AlHe| ZE2 QIs|| o{£0| &3 AP=2y/r

(b)

AG=APV ~ 2y /r 1
AT x| 2 QI3 XS E ST}

AX = X, = X, r'azse
AXy=Xo—X, T8

e

*oME e A2, 9 Al HE
ANe| AL facets H B S

Ledge mechanism0j| 2|t %t

13



3) Thickening of Plate-like Precipitates
Thickening of Plate-like Precipitates by Ledge Mechanism
* For the diffusion-controlled growth,

v a monatomic-height ledge
[ should be supplied constantly.

8 i * sources of monatomic-height ledge
— spiral growth, 2-D nucleation,
T e 2

nucleation at the precipitate edges,
— A > or from intersections with other
precipitates (heterogeneous 2-D)
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3) Thickening of Plate-like Precipitates

Thickening of y Plate in the Al-Ag system
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What does this data mean?
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Fig. 5.22 The thickening of a g plate in an Al-15 wt% Ag alloy at 400°C.

(From C. Laird and H.I. Aaronson, Acta Metallurgica 17 (1969} 505.)
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