

Design of X

25, 2009

on Ahn (安成勳)

School of Mechanical and Aerospace Engineering Seoul National University http://fab.snu.ac.kr ahnsh@snu.ac.kr

an et

No.

Photo copyright: Sung-Hoon Ahn

Outline

Introduction to DFX Design for Manufacturing Design of Experiment

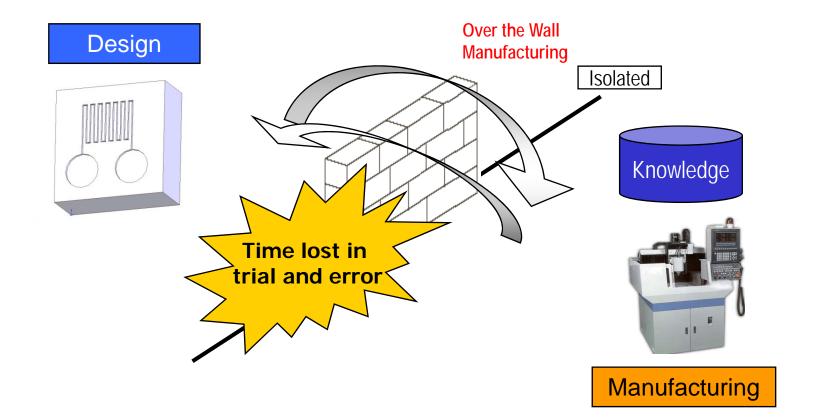
Design for Environment Other DFX

AC

esign for Assembl

Photo copyright: Sung-Hoon Ahn

Introduction of DFX

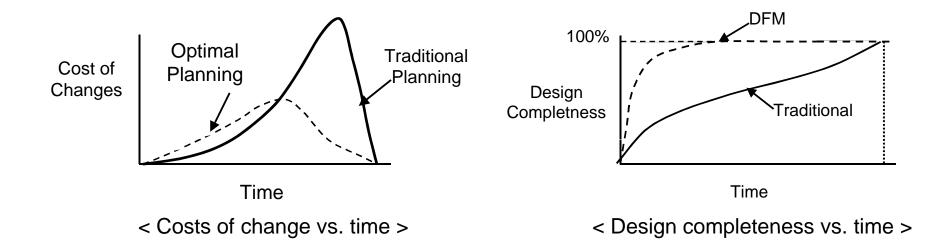

 Success in product manufacturing requires integration between the various phases of the product life cycle.

– Ulrich and Eppinger, 1995

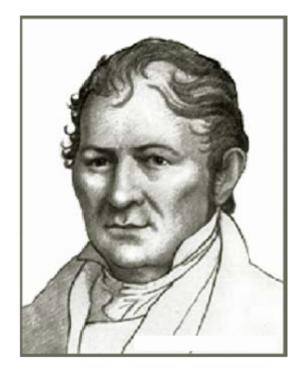
- One of the key aspects of integration during the design process is "Design for X (DFX)"
 - Design for Manufacturing (DFM)
 - Design for Assembly (DFA)
 - Design for Disassembly (DFDA)
 - Design for Environment (DFE)


1. Design for Manufacturing (DFM)

Traditional Design and Manufacturing Process


1. Design for Manufacturing (cont.)

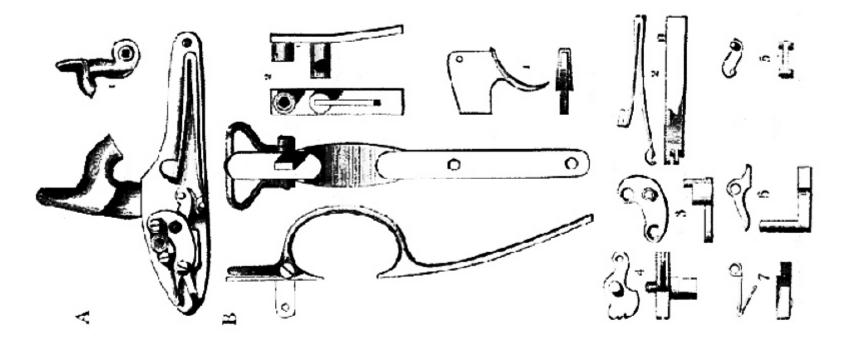
- Paradigms of DFM
 - Design decision affects manufacturing cost and productivity
 - Designers play important role not only in shaping, but also in manufacturability, cost, and life cycle of products

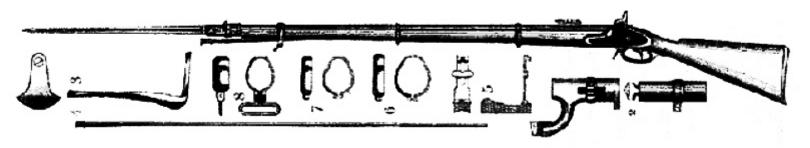

1. Design for Manufacturing (cont.)

- Objectives of DFM
 - Identify product concepts which are inherently easy to manufacture
 - Design components for ease of manufacture.
 - Integrate product and process design to ensure an optimum combination of function and manufacturability.

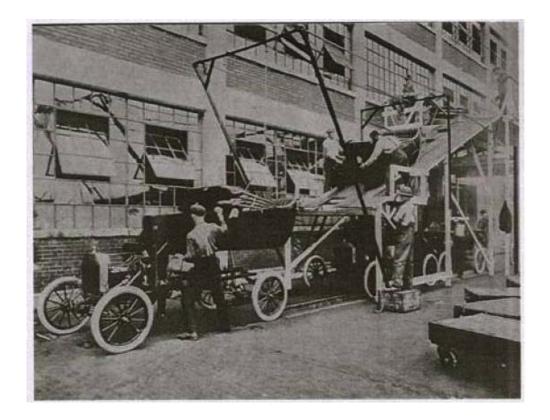
History of DFM I

- Eli Whitney (19C)
 - Musket (gun) manufacturer
 - Redesign each part to a specific *dimension* with a limited *tolerance*
 - Using fixtures, gauges, and specially developed machines, each part could be made by semi-skilled workers (instead of expert artisans) at a faster and less costly rate
 - Changed manufacturing process of parts from sand casting to forging resulted in increased accuracy





History of DFM I (cont.)


Whitney's Musket

History of DFM II

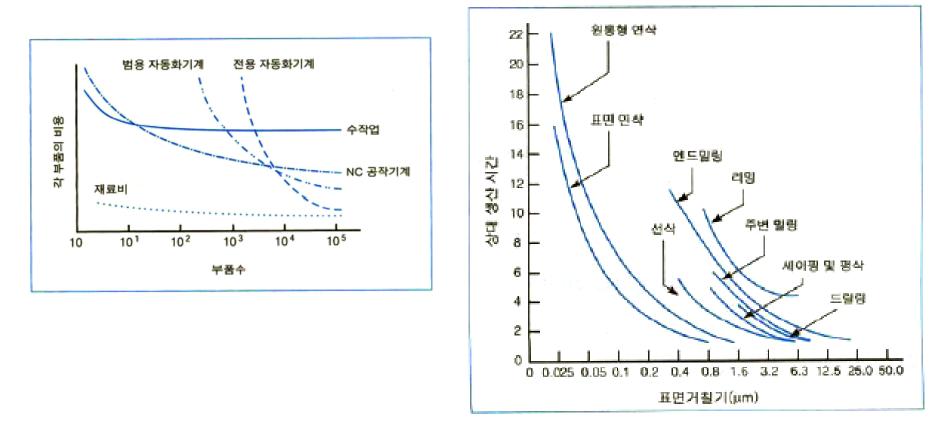
- Henry Ford (1907)
 - Lower cost from standard parts
 - Simple part design
 - Mass production

- Conveyor system
 - Price reduction
 - $\$2000/car \rightarrow \$350/car$
 - 1908~1927: 15 million cars sold

DFM category

- General
- Process specific
- Product specific
- Design for Assembly (DFA)

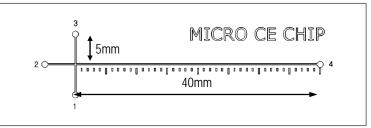
General principles of DFM



- Minimum number of parts
- Standard parts
- Modular design
- Multi-functional parts
- The same parts to various products
- Maximum surface roughness and tolerance
- Avoid secondary process
- Use materials easy to manufacture
- Consider number of parts to be manufactured
- Avoid many components
- Minimize handling of parts

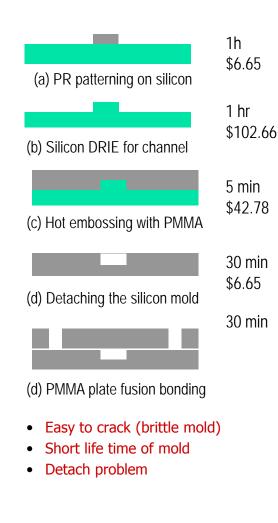
General principles of DFM (cont.)

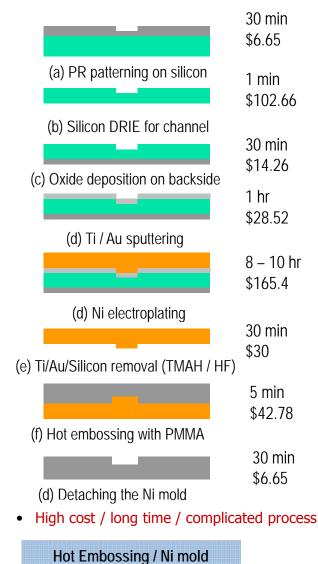
Per part cost

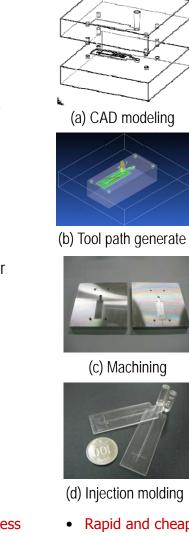


Fabrication of Microchip - I

- Microchip for capillary electrophoresis
 - Typical micro component of µ-TAS (Micro Total Analysis System)
 - Dimensions of micro chip
 - Channel width: 200 μ m
 - Channel height: 300 µm
 - Reservoir diameter: 1 mm
 - Reservoir 2 4 : 45 mm
 - Reservoir 1 3 : 10 mm
- Fabrication via direct machining
 - Machining with φ 200 μ endmill on PMMA
 - Machining conditions
 - Feed rate: 0.1 mm/s
 - Spindle speed: 30,000 rpm
 - Depth of cut: 30 µm
 - Machining time: 51 min
 - Prototype within 2^{µm} dimensional error


The 2-D Drawing of Microchip


- Reservoir 1 -4
 - Reservoir 1: buffer reservoir
 - Reservoir 2: Sample injection
 - Reservoir 3: Sample waste
 - Reservoir 4: Separation channel



Microchip by direct machining

Comparison of processes

15 min 1 hr

15 min

15 min

(d) Injection molding

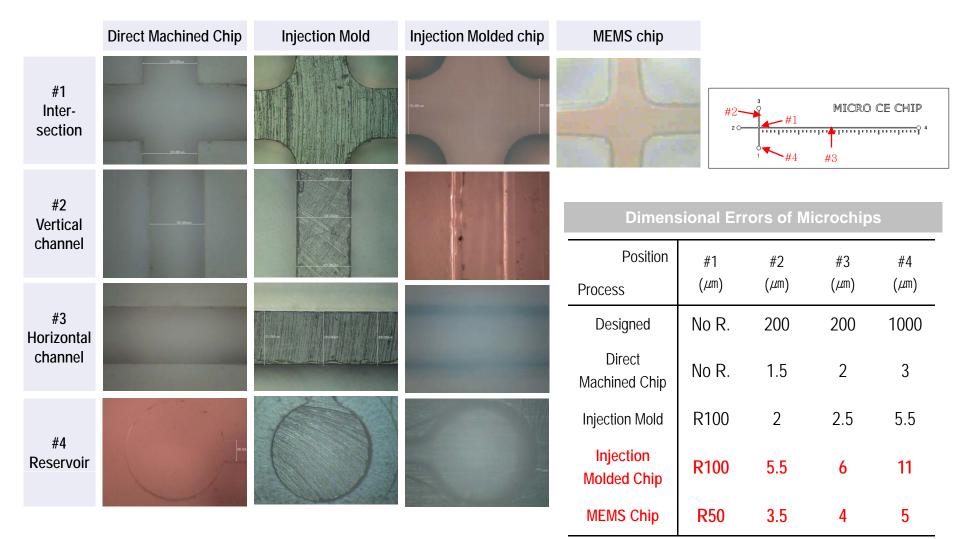
• Rapid and cheap manufacturing

Injection Molding

Hot Embossing / Si mold

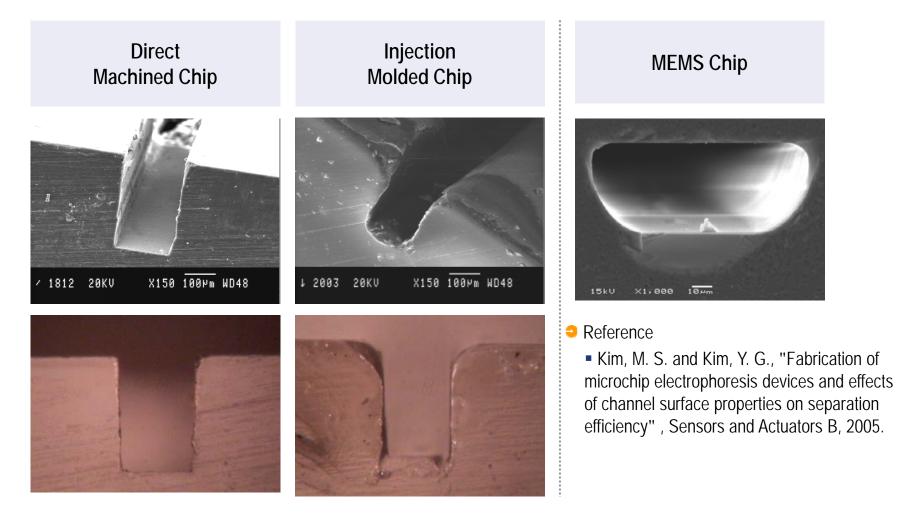
Fabrication of Microchip - II

- Injection molding
 - Mold machining
 - Mold size: 150mm×150mm×20mm
 - Roughing: φ 4 mm, 30,000 rpm, 1 mm/s, 0.1mm DOC (1 hr 7 min)
 - Finishing: φ200 μm, 30,000 rpm, 0.1mm/s, 10μm DOC (32min)

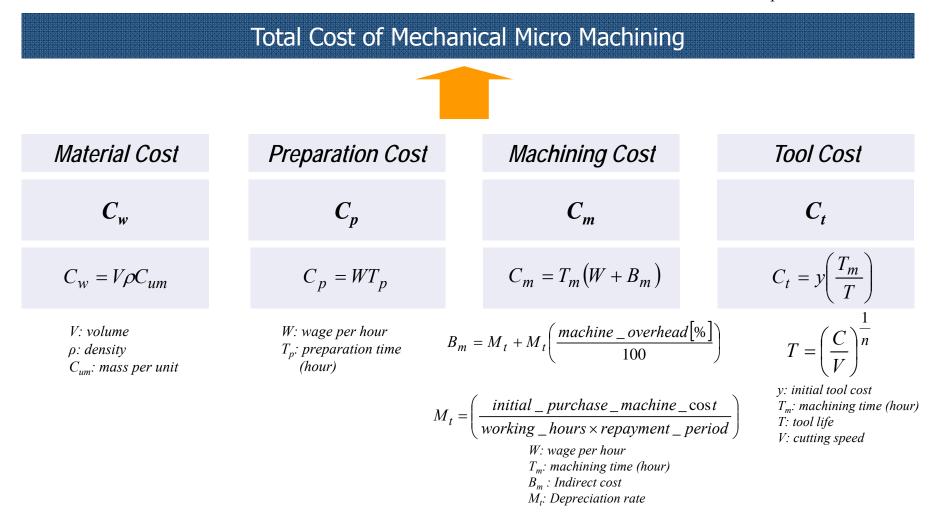

CAD Modeling of Injection Mold and Fabricated Microchip

- Injection molding machine
 - PMMA pellet : IF-850 (LG MMA)
 - Morgan press G-100T (Vertical type)
 - Nozzle and barrel temperature: 210 °C
 - Clamping force: 14,000 lbf
 - Injection pressure: 6,000 psi (41MPa)

Fabrication of Microchip - III


- Dimensional tolerance of each microchips

Fabrication of Microchip - IV


- Cross sections

Evaluation of Cost

- Cost Estimation
 - Total cost of mechanical micro machining: $C_{total} = C_w + C_p + C_m + C_t$

Evaluation of Cost - II

- Cost Evaluation
 - B_m (Indirect cost)

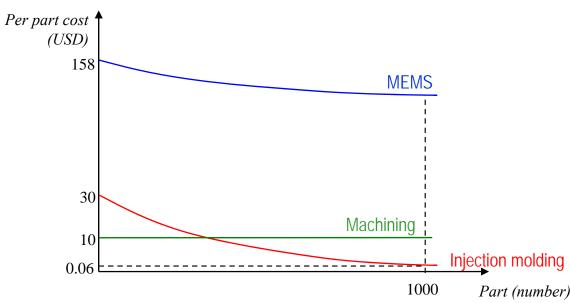
 $B_m = M_t + M_t \left(\frac{machine_overhead[\%]}{100}\right)$

- M_t (Depreciation rate)

 $M_{t} = \left(\frac{initial_purchase_\cos t_of_machine}{working_hours \times repayment_period}\right)$

- Tool life of macro scale

$$T = \left(\frac{C}{V}\right)^{\frac{1}{n}}$$
*C, n: empirical constant V: cutting speed C, n: empirical constant C, n: empirical constant
*C, n: empirical constant C, n: empirical constant**

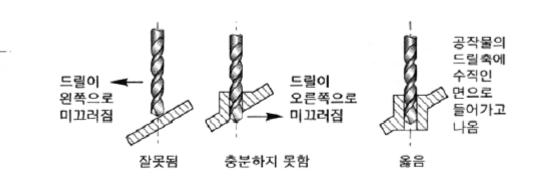

- Reference of rental fee (MEMS)
 - Inter-university Semiconductor Research Center (SNU)

Itom	Diree	t maabining	Inication	molding	MENAS
Item		t machining	Injection	Ū.	MEMS
C _w	PMMA	\$0.02	Al	\$7.78	Wafer
С _р	T_p	10 min	$T_{p,machining.}$	10 min	\$28.52
	I_p	To him	$T_{p,injection.}$	30 min	
	W	\$2.37 /hr	W	\$2.37/hr	PR
Subtotal		\$0.4		\$1.58	patterning
			T _{m,roughing.}	67 min	\$6.65
	T_m	51 min	$T_{m,finishing}$	32 min	Mask
			$T_{m,injection}$	1 min	\$266
-	14	¢1.01	M _{t,machining}	\$1.81	-
C _m	M_t	\$1.81	$M_{t,injection}$	\$0.48	DRIE
-		<i>\$7.40</i>	B _{m,machining}	\$5.42	\$96.05
	B_m	\$5.42	$B_{m,injection}$	0	Oxidation
-	W	\$2.37 /hr	W	\$2.37/hr	\$14.26
Subtotal		\$6.62		\$15.36	•
	<i>y</i> \$43 /ea	¢ 42 /	$\mathcal{Y}_{roughing}$	\$4/ea	Ti/Au
		\$43 /ea	$\mathcal{Y}_{finishng}$	\$43/ea	sputtering \$28.52
-	T_m	51 min	$T_{m,roughing}$	67 min	\$28.32
			$T_{m,finishing}$	32 min	Ni electro-
-	С		$C_{roughing}$	600	plating
		<i>C</i> 600	600	$C_{finishing}$	-
C_t -	V 300m/min		$V_{roughing}$	300m/min	- Si/Au/Ti
		$V_{finishing}$	-	removal	
-			n _{roughing}	0.14	\$28.53
	<i>n</i> 0.14	n _{finishing}	-		
-			Troughing	141min	Total
	Т	9hr: at 0.1mm/s	T _{finishing}	545min	\$632.92
		\$4	Jinisning	\$4.65	/4ea
Total		\$11.04/ea		\$29.37/ea	\$158.23/ea

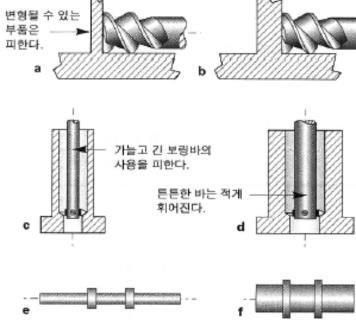
Evaluation of Cost - III

- Per part cost of mass production
- Cost of injection molding
 - Batch size: 1000 unit per 1 mold
 - Mass production cost of 1000 unit
 - Material cost: \$0.02 × 1,000 = \$20
 - Injection molding: $C_{m,injection} = T_{m,injection}(B_m + W) = 2.7 \times (1.43 + 2.37) =$ \$10.26
 - $C_{\text{total},1000ea} = C_{\text{total},1part} + 10.26 = 29.37 + (20 + 10.26) = \frac{\$ 59.63}{\$ 59.63}$
 - Therefore, per part cost = $\frac{$0.06}{}$

MAS

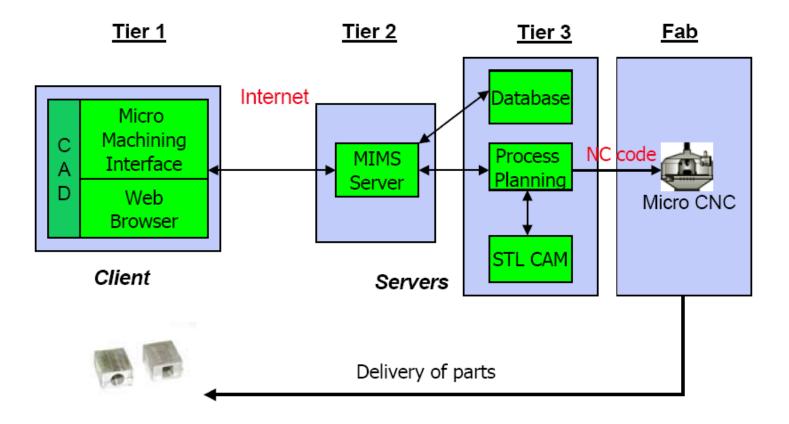

- Manufacturing Advisory Service
- DFM at conceptual design stage
 - Suggestion of manufacturing processes
 - Suggestion of materials

Process Search	R-Rank	Requirement List	R-Value	0-Rank	Option List		
Material Search	lg Ig	Batch Size Shape	Ignore		CyberCutMilling		
Results Survey	lg l	Bounding Box	Ignore 39.0		me3 pseudo die casting		
	lg Ig	Material Dimension Tol	Ignore		Closed Die Forging		
Get Info	lg Ig	Surface Rough Wall Thickness	Ignore Ignore		Sand Casting Sheet Metal Forming		
Run Calcs	lg lg	Prod Rate Setup Time	lgnore lanore		Stereolithography Extrusion		
Preferences	lg la	Setup Cost Per Part Cost	Ignore		TransferLine		
	19	Fer Fait Cost	lgnore Ignore		JobShopMachining PressureDieCasting		
Set Facet Weights			ignore.		ShellMoldCasting		
Sample Parts		1			InvestmentCasting Thermoforming		
Ignore Facet		Bounding Box			SelectiveLaserSintering		
Manufacturing	39,0				SimpleTurning SimpleMilling		
Analysis	,	cubic inches			Slip Casting Pressing / Sintering		
Service			1		ElectroDischargeMachin		
Reset		Advanced			Ceramio-Metal InjectMo		
	<u> </u>		•				
Not all process/ma							
The following links	open a N	EW WINDOW:					
T		Analysis Tuto					
		you a tour of the mai		MAG			
tep by step guide	mai gives	you a tour of the mai	n reatures of the	S IVLM-5.			
Instruction	Man	ual					
		do, and what the M4	AS can <i>not</i> do.				
earn what all of th							
earn what all of th							
earn what all of th Facet Desc	riptio	ns					
Facet Desc			material facets,	including	descriptions of the advanc	d mode, if applicable.	
Facet Desc locuments the me	anings of a	all of the process and	material facets,	including	descriptions of the advanc	d mode, if applicable.	
Facet Desc Documents the me	anings of a escrip	all of the process and otions					
Facet Desc Documents the me	anings of a escrip	all of the process and otions				ed mode, if applicable. eral information regarding the pros/cons, and listing some	typical app
Facet Desc ocuments the me Material D ocuments the ma	anings of a escrip terials sear	all of the process and otions					typical app
Facet Desc Documents the me Material D Documents the ma Driginal M	anings of a escrip terials sear [<u>AS</u>	all of the process and otions	aying the materi	al properti			typical app


Process specific DFM

Machining

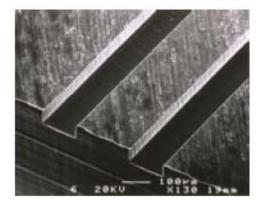
Drilling



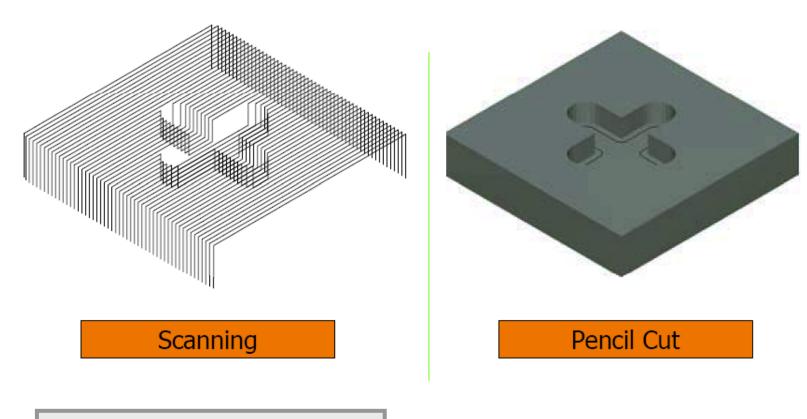
가늘고 긴 부품의 선식을 피한다.

짧고 튼튼한 부품은 심압대의 지지도 필요하지 않을 수 있다.

- Micro Machining System
- To bridge design and manufacturing
 - Guaranteed manufacturability
 - 3 axis micro milling
 - Design for Manufacturing (DFM)
 - Shared information and resources
 - Faster product development
 - Lower prototyping cost

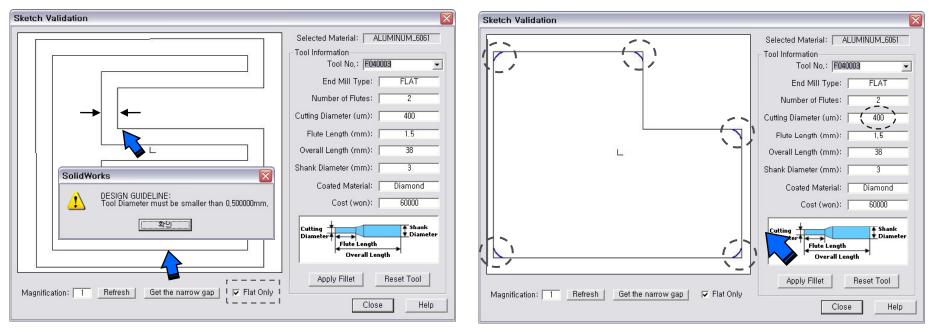

- Architecture
 - Web-based system

- DFM in machining: User Level
 - Expert mode:
 - 16 parameters
 - Max. control
 - Novice mode:
 - 2 parameters
 - Roughing
 - Tool diameter
 - Easy interface


	Novice	Expert
Cut Mode		0
Plane Normal		0
Pattern Type		0
Tool Diameter	0	0
Path Interval		0
Cutting Tolerance		0
Surface Offset		0
Start Point		0
Clearance Height		0
Approach and Exit Type		0
Path Connection		0
Linking Tolerance		0
Feed Rate		0
Spindle Speed		0
Boundary Machining		0
Roughing	0	0

- DFM: Thin Client UI
 - HTML form
 - Tool database
 - Interpolation tolerance 1μ

Introduction design consideration example manufacturing downloads reference contact Control design consideration example manufacturing downloads reference contact Control design consideration Control design consideration Control design consideration Control design consideration Cut Mode Ster 2 nout parameters Pane Mormal Ster 2 nout parameters Pane Mormal Ster 2 nout parameters Cut Mode Ster 2 nout parameters Cut Mode Ster 2 nout parameters Pane Mormal Ster 2 nout parameters Ster 2 nout parameters Ster 2 nout parameters <td colsp<="" th=""><th></th><th>MIMS</th><th></th></td>	<th></th> <th>MIMS</th> <th></th>		MIMS		
ntroduction design consideration example manufacturing downloads references contact MANUFACTURING STEP 1 model upload STEP 2 input parameters STEP 3 result Cut Mode Scanning (Now only SCANNING available) plate_b(17).stl Input Model Check your uploaded model's name. (It can be changed because of the same name) Plane Normal X_0_0_Y_1_0_Z_0_0 Pattern type Zigzag T Tool diameter 0.127mm P Path interval 0.5 Cutting tolerance 0.1 Surface offset 0.05 Start point (x, y, z) X_0_0_Y_0_0_Z_15.0 Clearance height Type [Abs_Z] Value 15.0 Approach height E.0 Approach height Cut fype [Input Plane] Approach exit type Approach Length 0.0 Exit Length 0.0 First [00.0 Spindle speed 10000.0 (rev/min)	MACHINING	MIGR			
MANUFACTURING STEP 1 model upload STEP 2 input parameters STEP 3 result Cut Mode Scanning (Now only SCANNING available) plate_b(17).stl Input Model Check your uploaded model's name. Clt can be changed because of the same name) Plane Normal x 0 y 1 0 z 0.0 Platem type Pattern type Zigzag 2 Tool diameter 0.127mm 2 Path interval 0.5 Cutting tolerance 0.1 Surface offset 0.05 Clearance height Type Abs_Z value 15.0 Approach height 2.0 (Incremental) 2.0 Approach height 0.5 Linking tolerance 0.5 Start point (X, Y, 2) X 0 Y 0 Z 15.0 Clearance height Type Abs_Z Value 15.0 Approach height 2.0 Inking tolerance 0.5 Ext tength 0.0 Ext tength 0.0 Path connection [D/R/J] 2 Linking tolerance 0.7 Linking tolerance 0.7 Linking tolerance 0.7 Linking tolerance 0.7	SERVICE				
STEP 1 model upload STEP 2 nput parameters STEP 3 result STEP 1 model upload STEP 2 nput parameters Cut Mode Scanning ()(Now only SCANNING available) parameters parameters Date build on bodel's name. Pate mode and on bodel's name. Date build on bodel's name. Pate mode and on bodel's name. Date build on bodel's name. Pate no type Zigza model Tool diameter 0.127mm model Date for the strutters Date for the strutters Start point (x, y, z) X 0.0 Y 0.0 Z 15.0 Clearance height Type Abs_Z value 15.0 Date build on the strutters Maproach exit type Approach Length 0.0 Exit Length 0.0 Approach exit type <th colspan="2" firs<="" th=""><th>ple manufacturing downloads references contact</th><th>design consideration</th><th>introduction</th></th>	<th>ple manufacturing downloads references contact</th> <th>design consideration</th> <th>introduction</th>		ple manufacturing downloads references contact	design consideration	introduction
STEP 1 model upload STEP 2 nput parameters STEP 3 result STEP 1 model upload STEP 2 nput parameters Cut Mode Scanning ()(Now only SCANNING available) parameters parameters Date build on bodel's name. Pate mode and on bodel's name. Date build on bodel's name. Pate mode and on bodel's name. Date build on bodel's name. Pate no type Zigza model Tool diameter 0.127mm model Date for the strutters Date for the strutters Start point (x, y, z) X 0.0 Y 0.0 Z 15.0 Clearance height Type Abs_Z value 15.0 Date build on the strutters Maproach exit type Approach Length 0.0 Exit Length 0.0 Approach exit type <th colspan="2" firs<="" th=""><th></th><th></th><th></th></th>	<th></th> <th></th> <th></th>				
Cut ModeScanning (Now only SCANNING available) $Dire_D(T).El$ Input ModelCheck your uploaded model's name. (It can be changed because of the same name)Plane Normal $x 0 f (0 f 0) Z 0)$ Pattern typeZigzag a Tool diameter0.127mm a Path interval0.5Cutting tolerance0.1Surface offset0.05Start point (x, y, z) $x 0 f (0 g 2) a$ Approach height 2.0 Approach height 2.0 Approach exit type 2.0 Path connection [D/RJ] a Check neut the same name the same name name the same name name the same name th	NUFACTURING				
Input Model plate_b(17).stl Input Model Check your uploaded model's name. (It can be changed because of the same name) Plane Normal x 0.0 Y 1.0 Z 0.0 Pattern type Zigzag * Tool diameter 0.127mm * Path interval 0.5 Cutting tolerance 0.1 Surface offset 0.05 Start point (x, y, z) X 0.0 Y 0.0 Z 15.0 Clearance height Type Abs_Z Y value 15.0 Approach height 2.0 (Incremental) Vyplane * Approach skit type Xyplane * Approach skit type 0.7 (between path and path) Feed rate Surface 800.0 Approach 100.0 First 100.0 Spindle speed 10000.0 (rev/min)	STEP 2 input parameters STEP 3 result	TEP 1 model upload	- E		
Input Model plate_b(17).stl Input Model Check your uploaded model's name. (It can be changed because of the same name) Plane Normal x 0.0 Y 1.0 Z 0.0 Pattern type Zigzag * Tool diameter 0.127mm * Path interval 0.5 Cutting tolerance 0.1 Surface offset 0.05 Start point (x, y, z) X 0.0 Y 0.0 Z 15.0 Clearance height Type Abs_Z Y value 15.0 Approach height 2.0 (Incremental) Vyplane * Approach skit type Xyplane * Approach skit type 0.7 (between path and path) Feed rate Surface 800.0 Approach 100.0 First 100.0 Spindle speed 10000.0 (rev/min)			_		
Input ModelCheck your uploaded model's name. (It can be changed because of the same name)Plane NormalX 0.0 Y 1.0 Z 0.0Pattern typeZigzag 2Tool diameter0.127mm 2Path interval0.5Cutting tolerance0.1Surface offset0.05Start point (x, y, z)X 0.0 Y 0.0 Z 15.0Clearance heightType Abs Z Value 15.0Approach height (Incremental)Z.0Path connection [D/R/J]DLinking tolerance0.7 (between path and path)Feed rateSurface 800.0 Approach 800.0 First 800.0Spindle speed10000.0 (rev/min)	canning 🛒 (Now only SCANNING available)	Cut Mode			
Plane Normal x 0.0 Y 1.0 z 0.0 Pattern type Zigzag I Tool diameter 0.127mm I Path interval 0.5 Cutting tolerance 0.1 Surface offset 0.05 Start point (x, y, z) x 0.0 Y 0.0 z 15.0 Clearance height Type Abs_Z Value 15.0 Approach height (Incremental) Zio Path connection [D/R/J] V Path connection [D/R/J] V Feed rate Surface 800.0 Approach 800.0 First 800.0 Spindle speed 10000.0 (rev/min)	neck your uploaded model's name.	Input Model			
Tool diameter 0.127mm Path interval 0.5 Path interval 0.1 Cutting tolerance 0.1 Surface offset 0.05 Start point (x, y, z) x 0.0 Y 0.0 Z 15.0 Clearance height Type Abs_Z Value 15.0 Clearance height 2.0 (Incremental) Zuproach Length 0.0 Exit Length 0.0 Path connection [D/R/J] Image: Surface 600.0 Approach 600.0 First 800.0 Feed rate Surface 600.0 Approach 600.0 First 800.0 Spindle speed 10000.0 (rev/min)		Plane Normal			
Path interval 0.5 Cutting tolerance 0.1 Surface offset 0.05 Start point (x, y, z) x 0.0 Y 0.0 Z 15.0 Clearance height Type Abs_Z Value 15.0 Approach height (Incremental) 2.0 Approach exit type Xyplane Approach Length 0.0 Exit Length 0.0 Path connection [D/R/J] Image: Surface 800.0 Approach 800.0 First 800.0 Feed rate Surface 800.0 Connection 800.0 First 800.0 Spindle speed 10000.0 (rev/min)	igzag 🗴	Pattern type			
Cutting tolerance 0.1 Surface offset 0.05 Start point (x, y, z) x 0.0 Y 0.0 Z 15.0 Clearance height Type Abs_Z Value 15.0 Clearance height 2.0 Approach height (Incremental) 2.0 Path connection [D/R/J] V Linking tolerance 0.7 (between path and path) Feed rate Surface 800.0 Approach 800.0 First 800.0 Spindle speed 10000.0 (rev/min)	.127mm	Tool diameter			
Surface offset 0.05 Start point (x, y, z) x 0.0 Y 0.0 Z 15.0 Clearance height Type Abs_Z Value 15.0 Approach height 2.0 (Incremental) Xyplane Approach Length 0.0 Exit Length 0.0 Path connection [D/R/J] Image: Connection 10/R/J Linking tolerance 0.7 (between path and path) Feed rate Surface 800.0 Approach800.0 First 800.0 Spindle speed 10000.0 (rev/min)	5	Path interval			
Start point (x, y, z) x 0.0 Y 0.0 Z 15.0 Clearance height Type Abs_Z Value 15.0 Approach height 2.0 (Incremental) Xyplane Approach Length 0.0 Exit Length 0.0 Path connection [D/R/J] Image: Connection 10/R/J Linking tolerance 0.7 (between path and path) Feed rate Surface 800.0 Approach800.0 First 800.0 Spindle speed 10000.0 (rev/min)	1	Cutting tolerance			
Clearance height Type Abs_Z Value 15.0 Approach height 2.0 (Incremental) Xyplane Approach Length 0.0 Approach exit type Xyplane Approach Length 0.0 Path connection [D/R/J] D Linking tolerance 0.7 Feed rate Surface 800.0 Spindle speed 10000.0	05	Surface offset			
Approach height (Incremental) 2.0 Approach exit type Xyplane × Approach Length 0.0 Exit Length 0.0 Path connection [D/R/J] Image: Connection (D/R/J) Linking tolerance 0.7 (between path and path) Feed rate Surface (00.0 Approach (00.0 First (00.	0.0 Y 0.0 Z 15.0	Start point (x, y, z)			
(Incremental) Z.0 Approach exit type Xyplane × Approach Length 0.0 Exit Length 0.0 Path connection [D/R/J] D × Linking tolerance 0.7 Feed rate Surface 800.0 Approach800.0 First 800.0 Spindle speed 10000.0	/pe Abs_Z 🔽 Value 15.0	Clearance height			
Approach exit type Approach Length 0.0 Exit Length 0.0 Path connection [D/R/J] D Linking tolerance 0.7 (between path and path) Feed rate Surface 800.0 Approach800.0 First 800.0 Spindle speed 10000.0 (rev/min)	0				
Linking tolerance 0.7 (between path and path) Feed rate Surface 800.0 Approach800.0 First 800.0 Last 800.0 Connection 800.0 Spindle speed 10000.0 (rev/min)		Approach exit type			
Feed rate Surface 800.0 Approach First 800.0 First 800.0 Surface Surfa		Path connection [D/R/J]			
Feed rate Last 800.0 Connection 800.0 Spindle speed 10000.0 (rev/min)	7 (between path and path)	Linking tolerance			
		Feed rate			
Boundary machining 💿 Yes O No	0000.0 (rev/min)	Spindle speed			
	Yes O No	Boundary machining			
Roughing O Yes O No	Yes 💿 No	Roughing			
Input for roughing Stock Height 5.0 Axial Cutting Depth 3.0	ock Height 5.0 Axial Cutting Depth 3.0	Input for roughing			
Submit	Submit				


DFM: NC Code Simulation

Issues in micro regime ✓ Run-out

✓ Tolerance of software

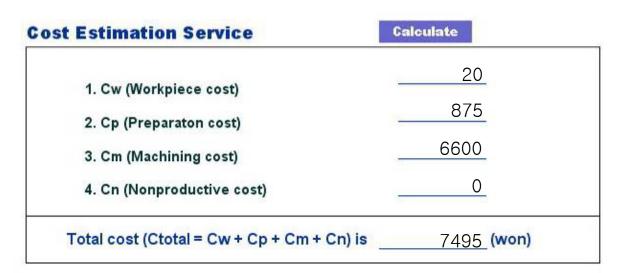
- Works in SolidWorks during channel or pocket modeling
- Sketch Validation
 - Improve machinability
 - Based on the tool information and DFM philosophy

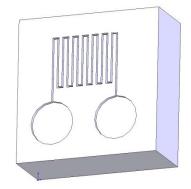
Check for minimum Gap

Check for fillet

Pocket Validation

Pocket Validation	
Initial Depth of Pocketing: 0 um Base Stock Height: 2000 um Selected Tool I D: MS001 Flute Length (mm): 1000 Cost (won): 100000 Limit of Depth (mm): 1000 Insert the Depth for Pocketing: 500 um Pocketing Cancel Help	For Multiple Pocketing: Limit of depth < stock height – initial depth
SolidWorks X Warning!!! Selected pocket depth: 1100,0000000 Please check this rule: Pocket depth should be less than limit of depth,	SolidWorks Warning!!! Selected pocket depth: 800,000000 Please check this rule: Pocket depth should be less than (limit of depth - initial depth),
Case I. Depth limit	Case II. Depth limit and initial depth


Examples of DFM in pocketing


Convenience setting for NC code generation

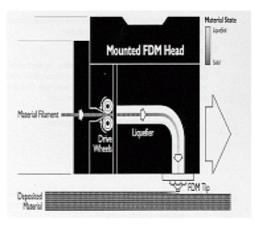
NC Code Generation Image: Control of the system of the	(a) STL model Results	BUC BALL SBUL Plan Sheet for NE Process [filenam -epu.pln] (1) Gut Model Scanning - 1, Contouring - 2, Procil-Gut - 3, Fillet-Gut - 8] (1) Gut Model (foll Path) (1) Folk Model Model and Path (1) Folk Model Model and Path (1) Folk Model (foll Path) (1) Folk Model Model and Path (2) Folk Model and Path (3) Folk Model and Path (4) Gut Model and Path (5) Macchine Setting (5) Machine Setting (5) Model Model (6) Model Model (7) Model Model (7) Model Model (8) Model Model (8) Model
Pattern Tvpe: Zigzag v Spindle Speed (rev/min): 20000 Feed Rate (mm/min): 12 Generate Cancel Help	Upl File for Manufacturing (STL form) File for Manufacturing (PLN form)	oad STL file and PLN file 찾마보기 찾마보기
Setting for NC generation		

Upload form: model and setting

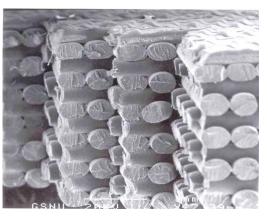
For micro machining

$Cp = Tp^*W$	Tp: Preparation time (0.35 hr)		
	W : Operator's wage (2500/hr)		
$Cm = Com + Ct = Tm^*W + C$	t		
	Tm: Machining time (0.24 hr)		
	W: Operator's wage (2500/hr)		
$Ct = y^{*}(Tm/T)$ (75)	995 won, 88% of total cost)		
	Ct: Tool usage cost		
	T: Tool life (4 hr)		
	y: tool cost (100,000)		

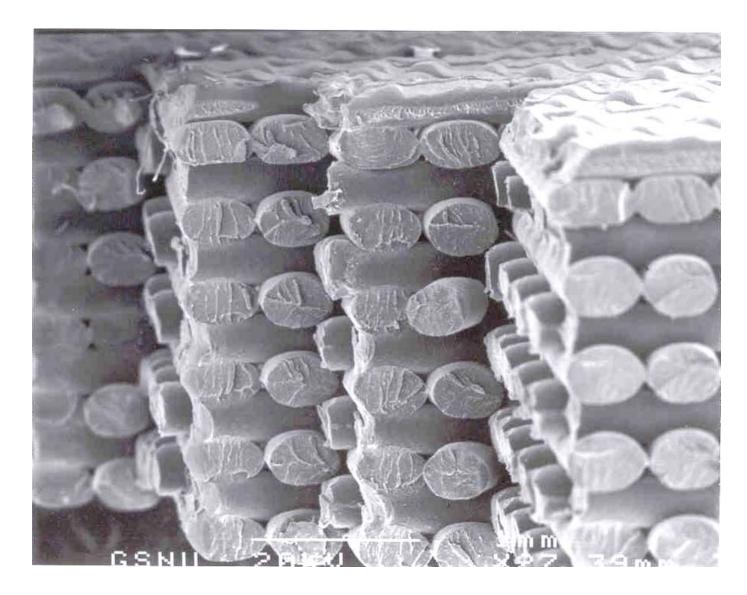
DFM for RP



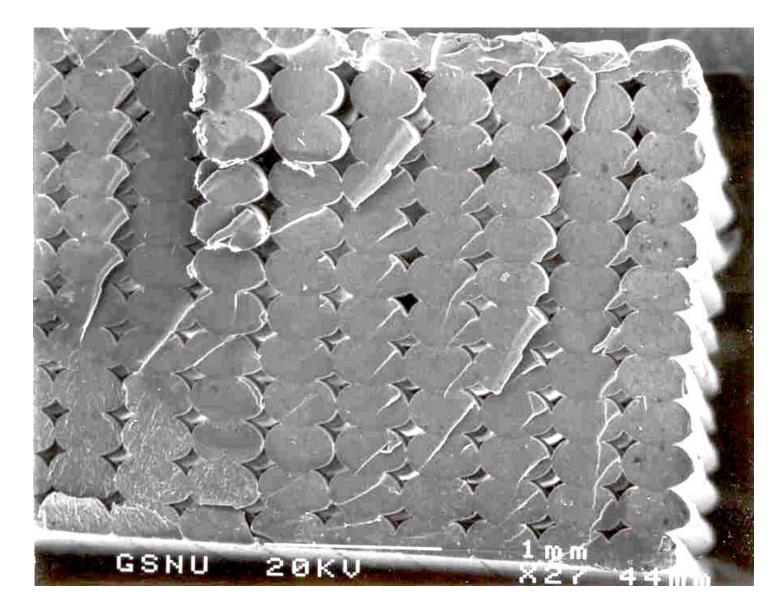
- Issues in FDM material (ABS)
- Porous & directional
- Build rule
- ...

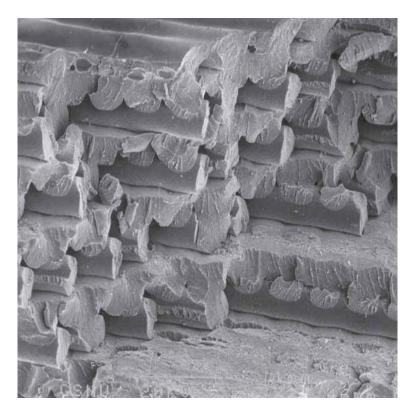

Issues in FDM Material (ABS)

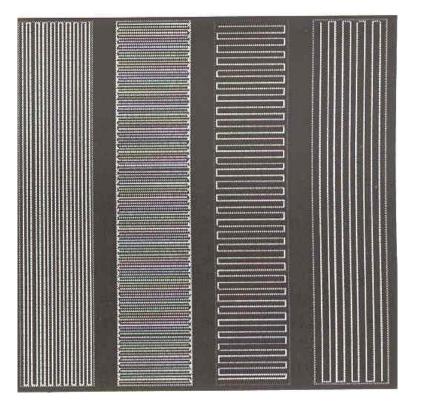
- Functional Properties
 - Strength
 - Nude style package
- Approach
 - Resin infiltration
 - Increase strength & transmissivity of light


FDM process

Porous micro structure

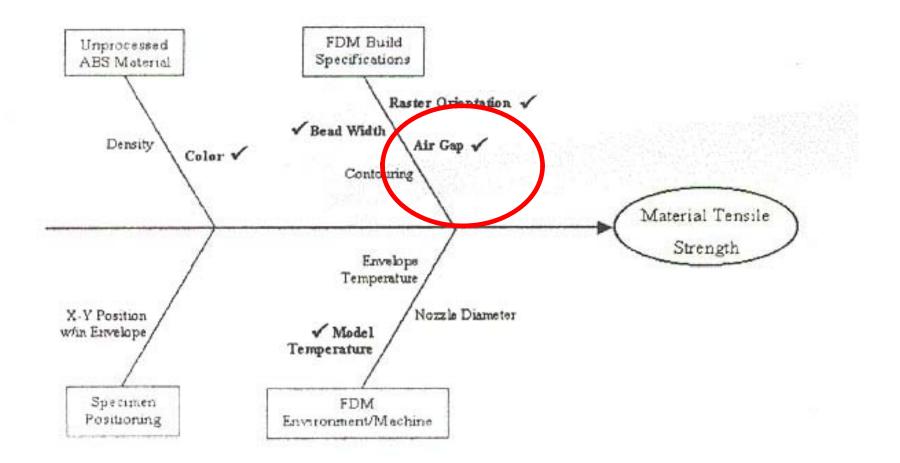

Micro Structure of FDM Part


Porous & Directional



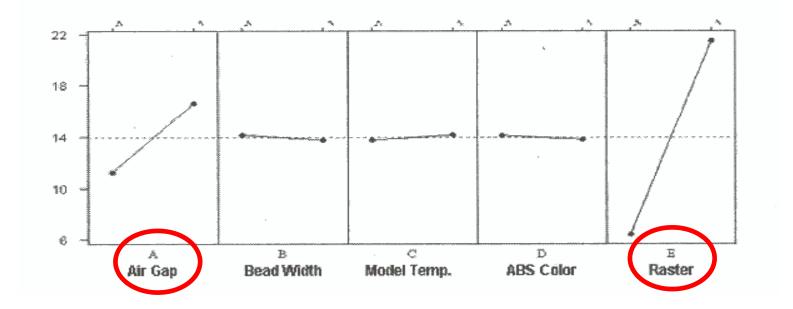
Anisotropy in FDM Parts

"Raster Orientation" is the direction of deposition

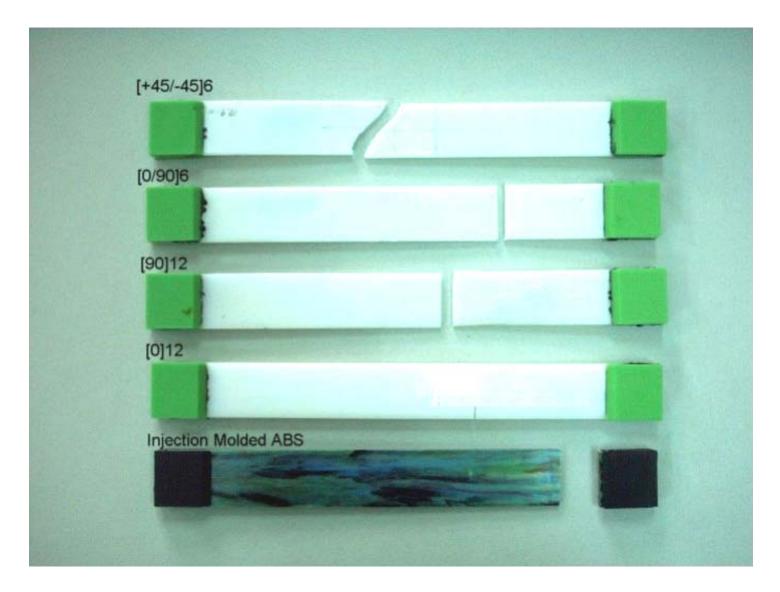


SEM picture of FDM specimen.

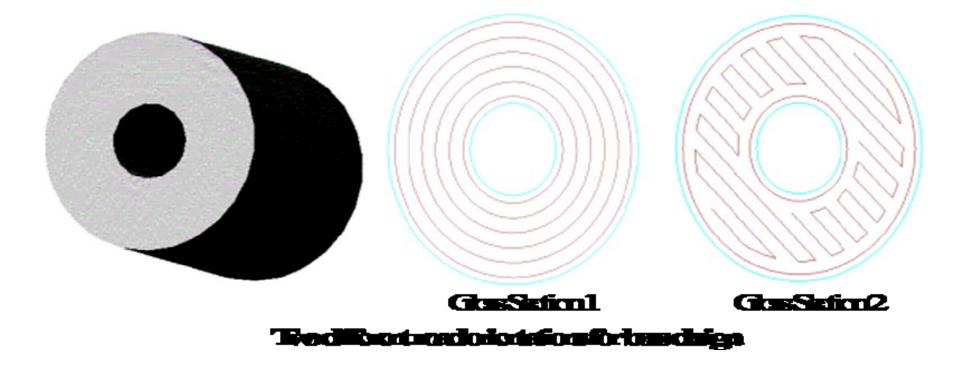
Quickslice SML file.


Design of Experiment (DOE)

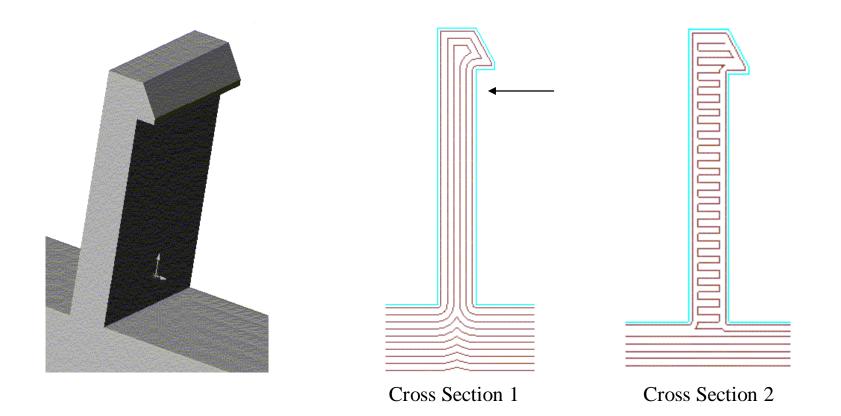
Results



Variable	Symbol	Low(-)	High(+)
Air Gap (in.)	А	0.0000	-0.0020
Bead Width (in.)	В	0.0200	0.0396
Model Temperature(°C)	С	270	280
ABS Color	D	Blue	White
Orientation of Raster	E	Transverse	Axial

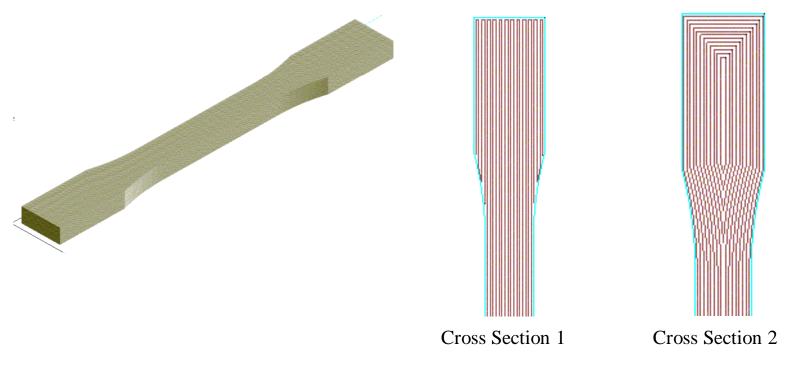


Build Rule #1



 Build parts such that tensile loads will be carried axially along the fibers.

Build Rule #1 cont'd

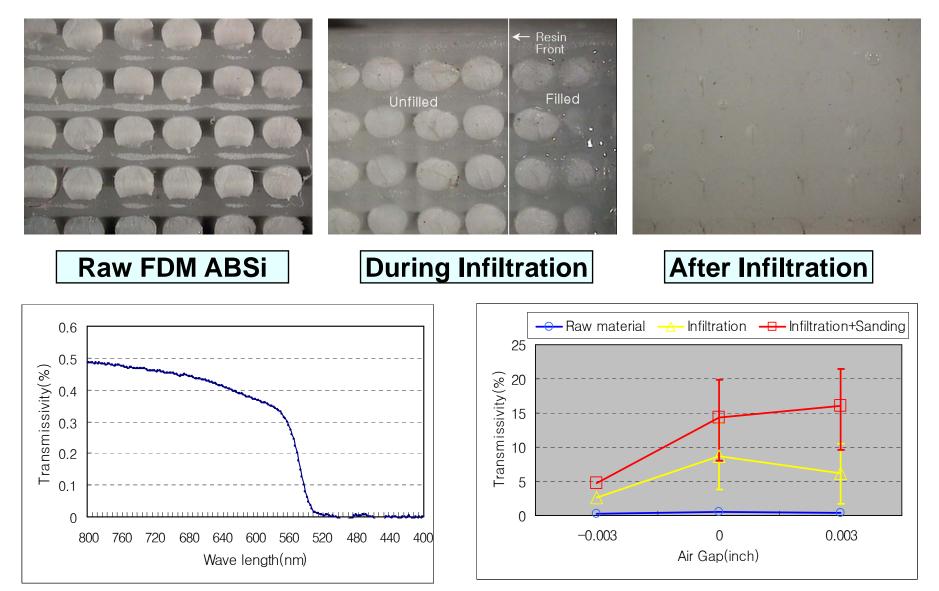


Two different road orientations for cantilever snap-fit design.

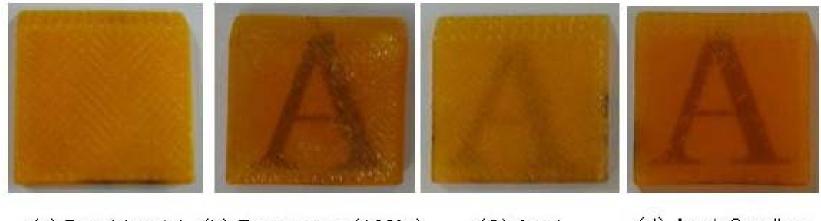
Build Rule #2

 The stress concentrations associated with a radius can be misleading. If a radius area will carry a load, building the radius with contours is probably best.

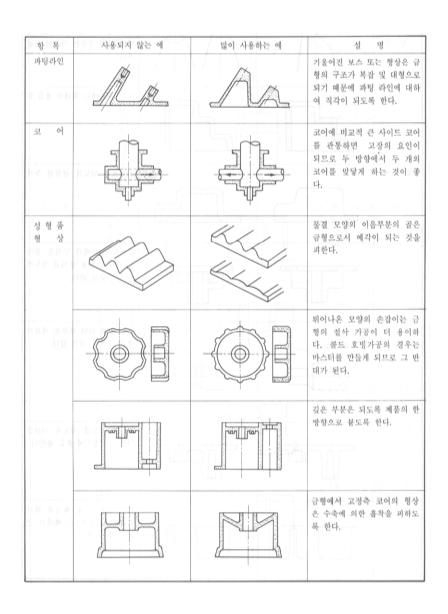
Two different road orientations for dog-bone design.

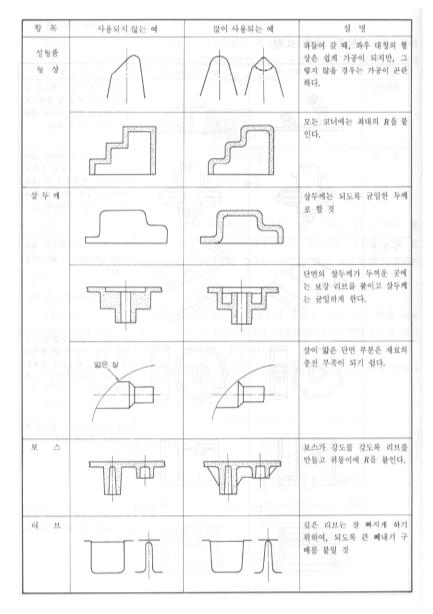

Build Rule #3~5

- Rule 3. A negative air gap increases both strength and stiffness
- Rule 4. Shear strength between layers is greater than shear strength between roads.
- Rule 5. Bead width and temperature do not affect strength, but the following considerations are important.
 - Small bead width increases build time.
 - Small bead width increases surface quality.
 - Wall thickness of the part should be an integer multiple of the bead width

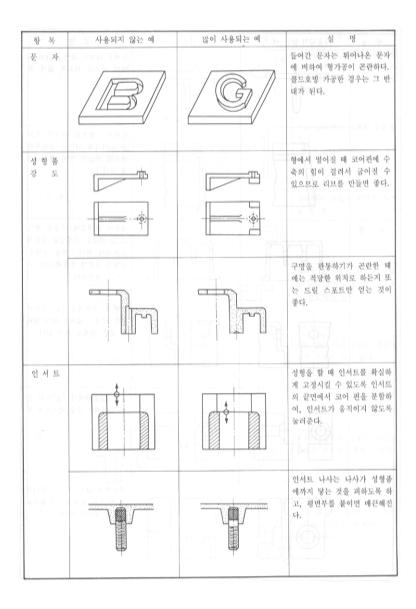

Resin Infiltration

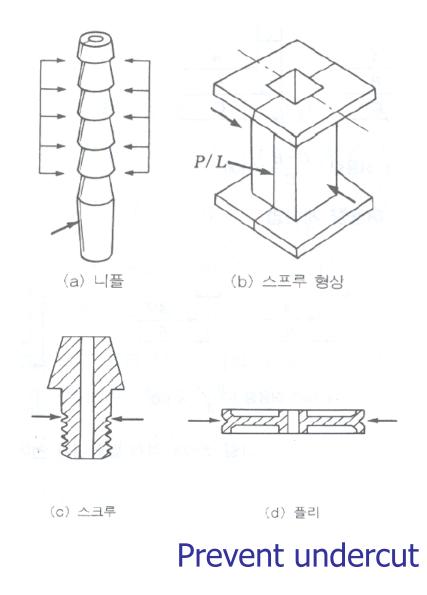
Relative Transmissivity

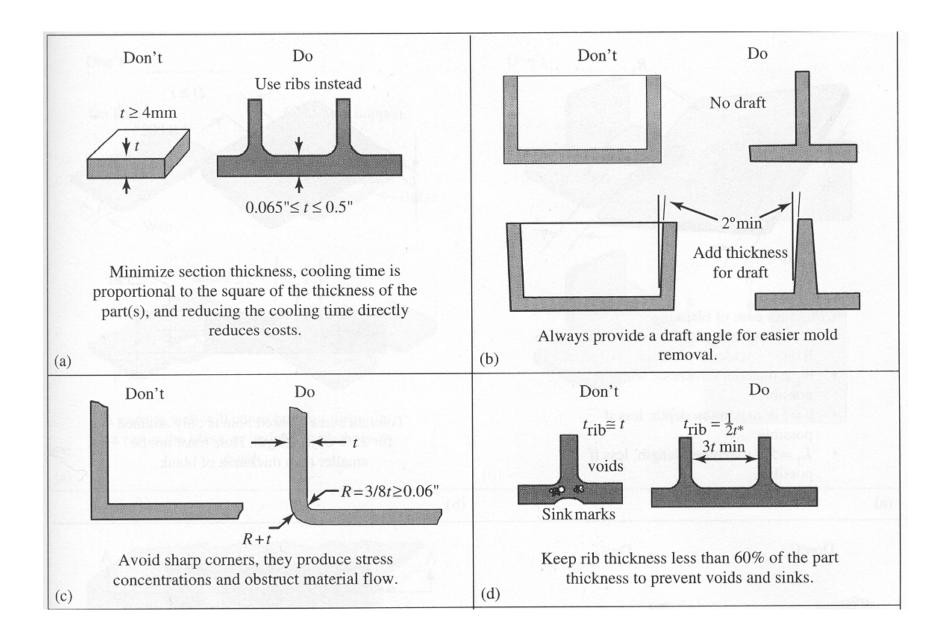

 (a) Raw Material
 (b) Temperature(180°c)
 (C) Acryl
 (d) Acryl+Sanding


 T=0,2%
 T=8,4%
 T=1,8%
 T=22.4%

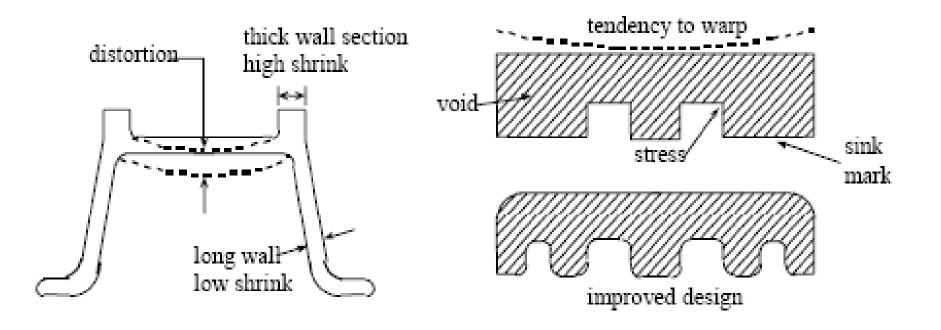
	ABSi	Acryl	Cyano Acrylate
Index of Refraction	1.57	1.69	1.51



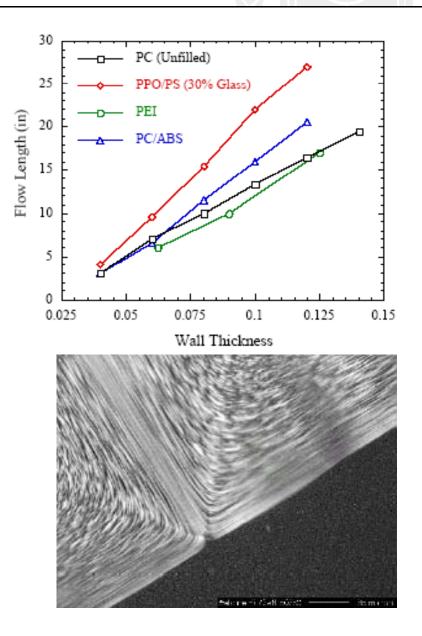

DFM in Injection Molding



DFM in Injection Molding (cont.)

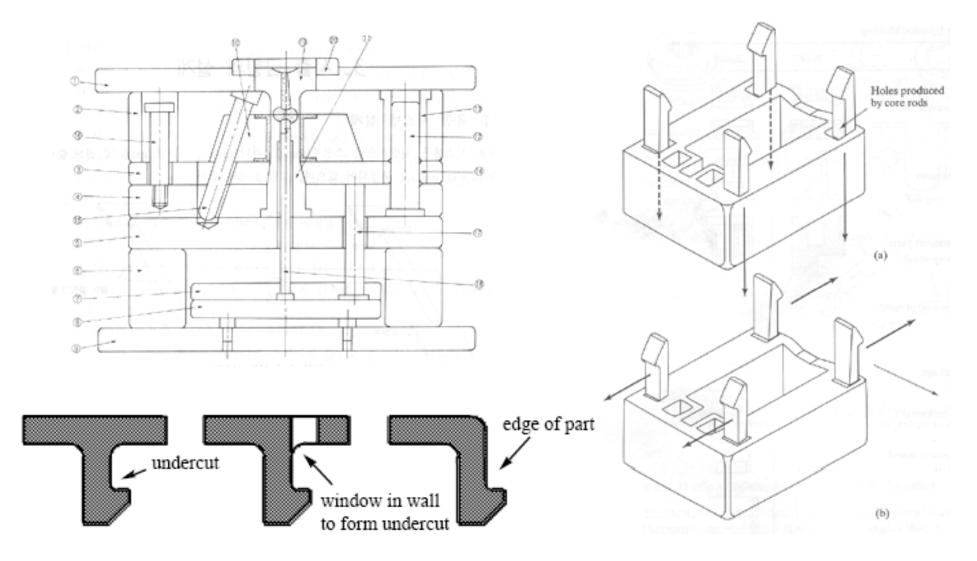

DFM in Injection Molding (cont.)

Warpage and sinkmarks



Avoid thick "hot spots"

Injection and flow

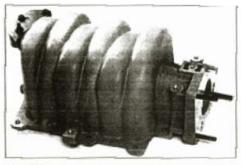

- Max length of flow
 - Part Thickness
 - Material
- Influences decision on
 - Part Geometry
 - Number of gates
 - Location of gates
 - Weldline

Avoid undercut

Undercut requires cam pin, slider, or lifter

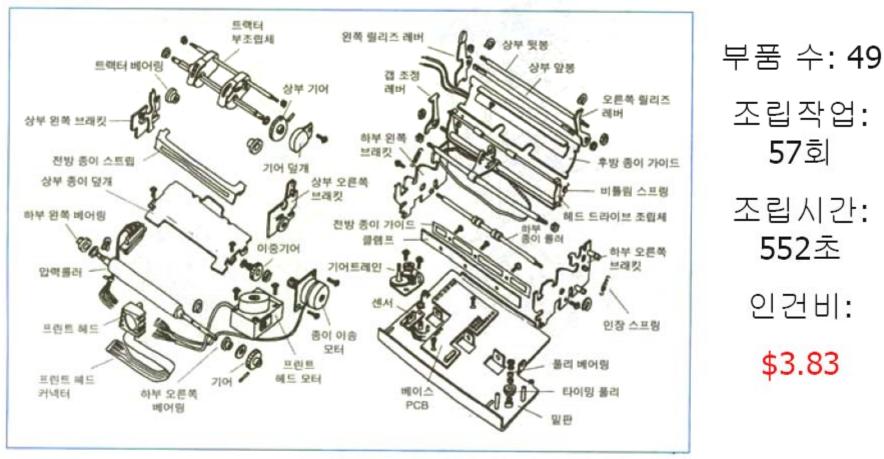
Key issues for each sub-process

- Injection
 - Flow Length Limit, Weldlines, and Density Dist.
 - Gating Scheme (number and location)
 - Thickness
- Packing and Cooling
 - Differential Cooling, Warpage, and Sinkmarks
 - Geometry Design
- Ejection (Tooling)
 - Parting Plane (Undercut)
 - Ejector Pins
- Assembly
 - Integral hinges and fasteners, Welding


Product specific DFM

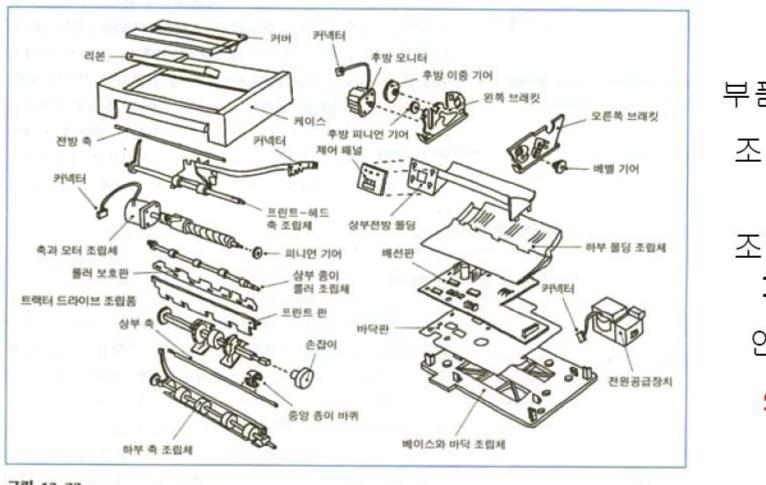
• Example: GM 3.8 liter V6 engine

- Airintake manifolds
 - Original : Cast Al
 - Redesigned : molded thermoplastic composite



Design for Assembly (DFA)

- Benefit of DFA
 - Fewer Parts
 - Easier Assembly
 - Shorter Assembly Time
 - Major Concurrent Engineering Driver
 - Major Cost Savings (Parts and Labor)
 - Reduced Defects
 - Improved Quality
 - Increased Reliability

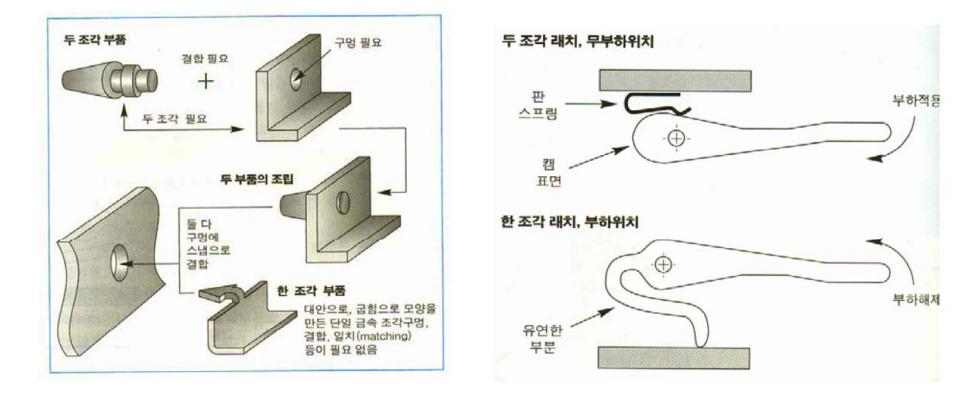

조립작업: 57회 조립시간: 552초 인건비:

\$3.83

그림 13.21

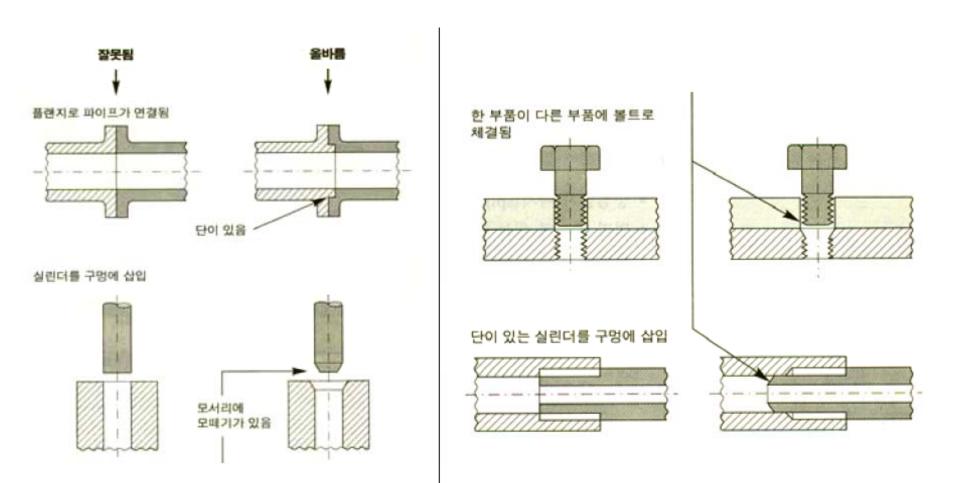
Epson MX80 도트프린터의 주요 부조립품의 분해도(제공: Assembly Engineering, January 1987).

부품 수: 32 조립작업: 32회 조립시간: 170초 인건비: **\$1.18**

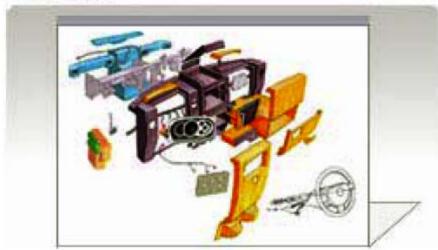

그림 13.22

32개의 부품 혹은 부조립품을 포함하고 있고 32개의 조립작업이 필요한 IBM Proprinter의 분해도 (제공: Assembly Engineering, January 1987).

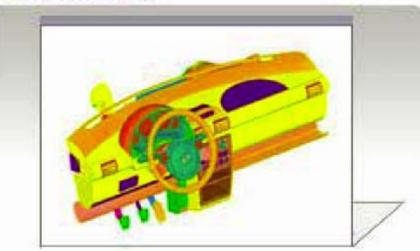
Minimum number

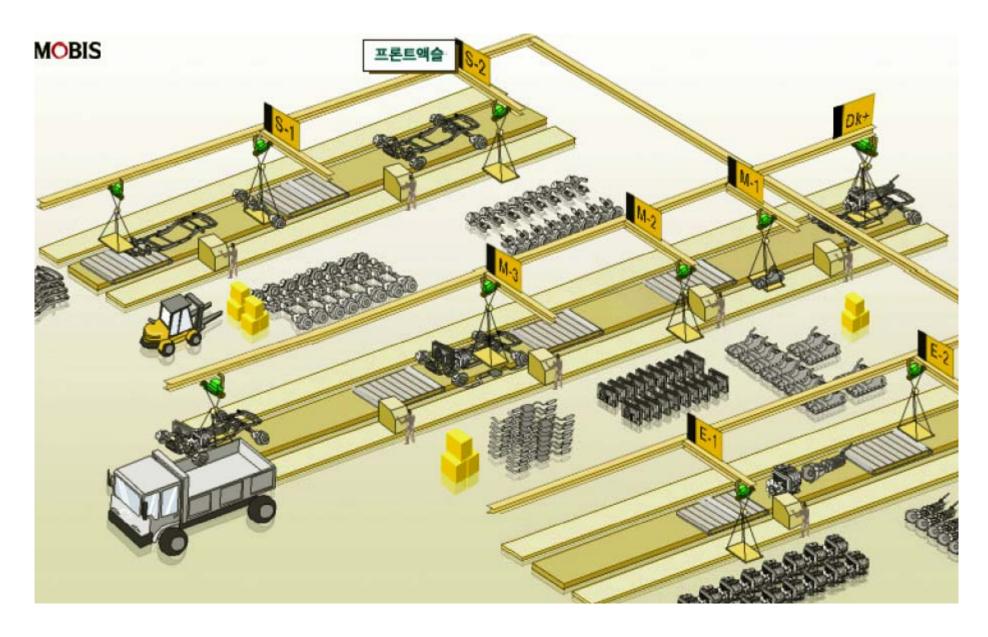


- Compliant (flexible) part



Self Location




·> 기존방식

Cockpit module

Guidelines for joints I

TABLE 15.16. MECHANICAL JOINTS SUITABLE FOR DISASSEMBLY

Guideline	Not Suitable	Suitable	Guideline	Not Suitable	Suitable
Use attaching or locking elements that are easy to dismantle	Peen Crimp		Use simple standard tools		
or destroy, even after long service	Gimp		Avoid long dismantling paths		
Reducer the number of fasteners			Strive for damage free dismantling		
			Use the same disassembly operations and tools		.
Use the same fasteners	M6 M10	M10	Use one disassembly direction only		
			Synchronize the timing of disassembly operations		
Ensure easy access for dismantling tools					

Guidelines for joints II

TABLE 15.17.	PLASTIC-TO-PLASTIC JOINT DESIGN GUIDELINE	à
(GE, 1995).		

Туре		Disassembly Method	Rating
	Mechani	cal Joints	
Hook		Slipped Loose	0
Snap fit		Snapped Out	0
Press fit	JC	Ripped Out Pressed Out	©
Screw		Unscrewed	۲
Screw Insert		Unscrewed Boss Chiseled Off	0

Welded Joints			
Welded – compatible materials		No separation needed	•
Solvent Bonded – compatible materials		No separation needed	
Welded (with separate welding material)	- CAT	Cut off welded area	۵
Stud welded		Chiseled off Milled away	۲
Molded in (insert)		Ripped out Pressed out Drilled out	۵
Glue Bonded		Economically not feasible	0

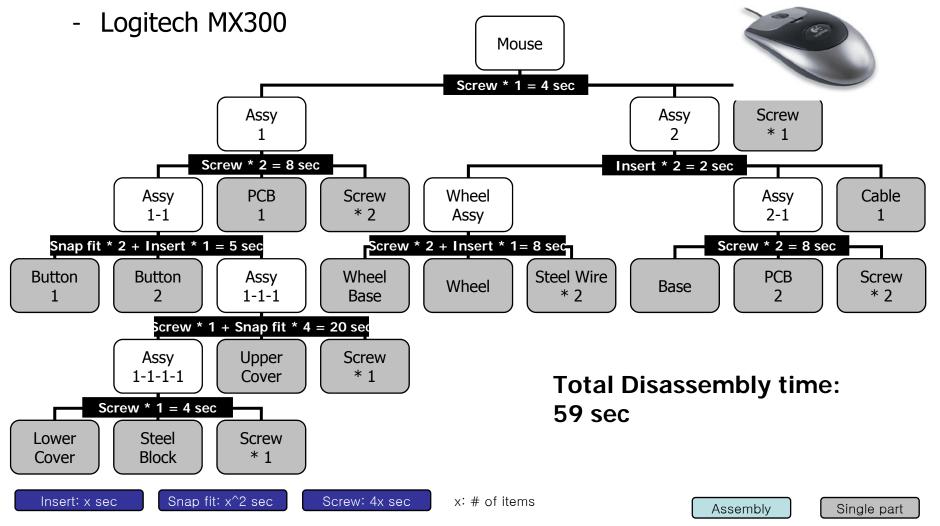
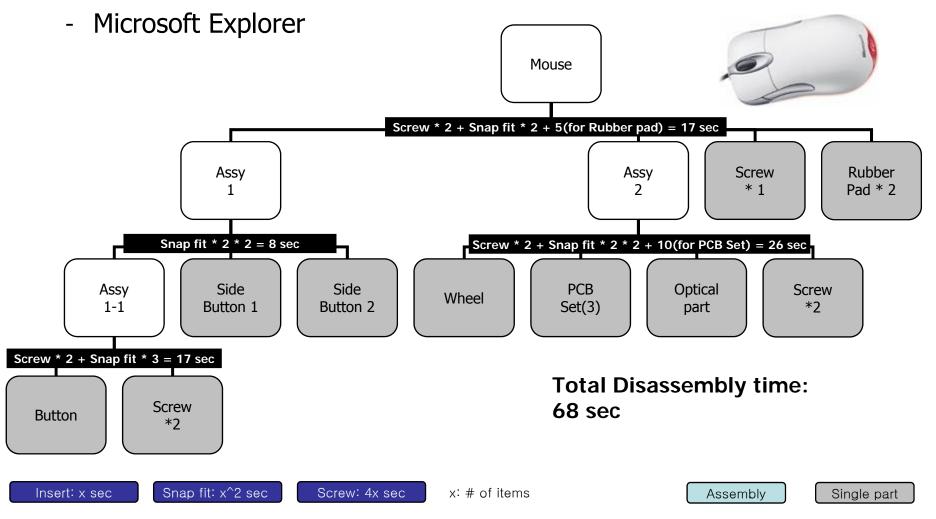

Guidelines for joints III

TABLE 15.18. PLASTIC-TO-METAL JOINT DESIGN GUIDELINE (GE, 1995)


Туре		Disassembly Method	Rating
Side Hook		Slipped loose	0
Snap fit	P	Snapped out	0
Hook press fit		Ripped out Pressed out	۲
Screw 2	The second	Unscrewed	۲
Screw insert	<u>M</u>	Unscrewed Chiseled off	۲
Rolled in	S	Cut off at arrow area	٢

Press fit	Ripped out Pressed out Drilled out	0
Stud weld	Chiseled off Milled away	0
Mold in (outsert)	Economically not feasible	0
Glue bond	Economically not feasible	0
Tape weld	Apply electric control	۲

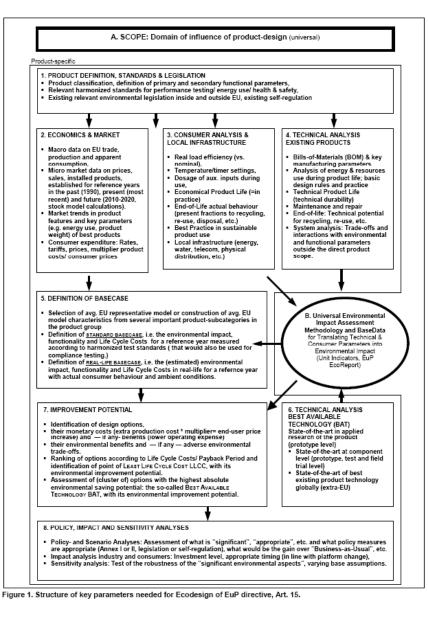
Time issue

Time issue

Design for Environment (DFE)

- Benefit of DFE
 - Reduced health, safety, and ecological risks
 - Increased efficiency and customer acceptance
 - Improved worker morale and productivity
 - Reduced regulatory burden
 - Improved channels of communication, cooperation, and collaboration among stakeholder organizations
 - Expanded business and market opportunities

- from U.S. Envrionmental Protection Agency (EPA), http://www.epa.gov/oppt/dfe


- DFE includes
 - Design for Recycling
 - Design for remanufacturing
 - Design for energy efficiency

- Eco Design(DFE) of EuP Directive 2005/32/EC
 - EuP : Energy using Products which use any forms of energy
 - All EU countries must legislate for this EuP Directive until 11th August, 2007.

ARTICL	JE 15		
Impleme	nting measures		
4.In prep	aring a draft implementing measure the Commission shall:		
C	d. consider the life cycle of the EuP and all its significant environmental aspects, inter alia energy efficiency. The depth of analysis of the environmental aspects and of the feasibility of their improvement shall be proportionate to their significance. The adoption of eco- design requirements on the significant environmental aspects of a EuP shall not be unduly delayed by uncertainties regarding the other aspects.;		
e	e. carry out an assessment, which will consider the impact on environment, consumers and manufacturers, including SMEs, in terms of competitiveness <i>including on markets outside the Community</i> , innovation, market access and costs and benefits;		
f	take into account existing national environmental legislation that Member States consider relevant;		
5. Impler	nenting measures shall meet all the following criteria:		
	a. there shall be no significant negative impact on the <u>functionality of the product</u> , from the perspective of the user;		
j	health, safety and the environment shall not be adversely affected;		
ŀ	there shall be no <u>significant negative impact</u> on consumers in particular as regards the <u>affordability and the life cycle cost</u> of the product;		
1	there shall be no significant negative impact on <i>industry's</i> competitiveness;		
1	 in principle, the setting of an ecodesign requirement shall not have the consequence of imposing <u>proprietary technology</u> on manufacturers; 		
1	n. no excessive administrative burden shall be imposed on manufacturers		

DFE affects the decisions listed hereafter

At company policy level:

The product developer assumes shared responsibility — with production and market developers — for the product policy and the definition of new product/market combinations

At tactical level: The product developer is responsible for

Selection of materials Design of the geometry Selection of the type of production processes to realize the geometry Prescription of the way that the product should be used.

Integrated Product Policy

 At the strategic level of generating ideas for new products, the notion of eco-analysis of current products, the environmental goals one is trying to reach and the notion of how new products would be an improvement can be qualitative and abstract.

- Integrated Product Policy
 - At such level, a company may decide for instance that all-in-one imaging center is more environmentally friendly than a single product. The DFE dimension, as one of the many factors that are taken into consideration, can be an inspiration and guidance.

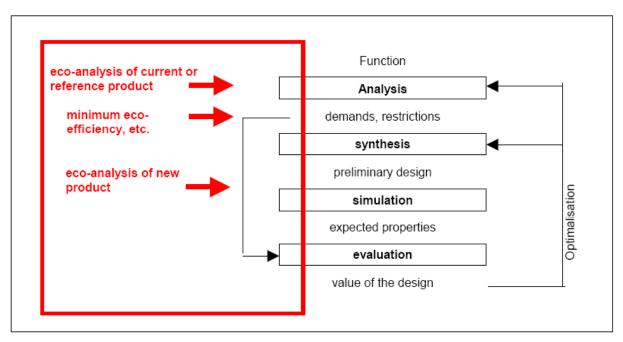


Figure 5 . Domain of Eco-design (in red) within the basis product design loop [after Archer, Technological Innovation, 1973]

Design for recycling

TABLE 15.23. COMMONLY RECYCLED PLASTICS (BILATOS AND BASALY, 1997)

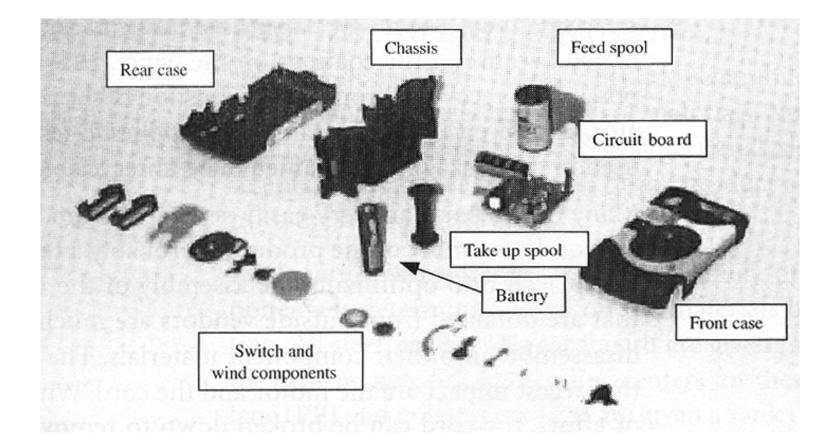
	1993			
Plastic	Sales (million lbs)	Recycled (million lbs)	Recycling rate	
High-density polyethylene (HDPE)	4243	450.2	10.6%	
Polyethylene terephthalate (PET)	1598	447.8	28%	
Low-density polyethylene (LDPE)	4593	88.3	1.9%	
Polystyrene (PS)		35.6		
Polypropylene (PP)	1639	13.6	1.5%	
Polyvinyl chloride (PVC)	717	5.5	0.8%	

Design for recycling (cont.)

TABLE 15.24RECYCLABILITY RATINGS (BRAS, 1996).

Rating	Description	Examples
1	Part is remanufacturable	Starter motor, alternator
2	Material in a part is recyclable with a clearly defined technology and infrastructure	Most metals, PETE, HDPE
3	Material is technically feasible to recycle— infrastructure to support recycling is not available	Most thermoplastics, glass, thermosets
4	Material is technically feasible to recycle with further process or material development required	Armrest, airbag modules, single metal with single thermoset
5	Material is organic—can be used for energy recovery but cannot be recycled	Multithermoplastics, wood products
6	Material is inorganic with no known technology for recycling	Heated glass, fiberglass

Design for recycling (cont.)



Rating	Description	Examples
1	May be disassembled easily manually, less than 1 minute	Pull-apart plastics
2	May be disassembled with effort manually, less than 3 minutes	Instrument cluster, radio
3	May be disassembled with effort and some mechanical separation or shredding to separate. The process has been fully proven.	Engines, sheet metal, uncorroded screws
4	May be disassembled with effort and some mechanical separation or shredding to separate. The process is under development.	Instrument panels, corroded screws, adhesives
5	Cannot be disassembled. There is no known effective process for separation.	Heated backlights

TABLE 15.25. SEPARABILITY RATINGS

Design for remanufacture

Parts of the Kodak Funsaver Single-use camera area remanufactured. Parts must be removed, cleaned, inspected, and returned to the factory for reuse.

Design for high-impact material reduction

TABLE 15.28. LIST OF CHEMICALS TO AVOID

Benzene	Cadmium
Carbon tetrachloride	Chloroform
Chromium	Cyanides
Dichloromethane	Lead
Mercury	Methyl ethyl ketone
Methy isobutyl ketone	Nickel
Tetrachloroethylene	Toluene
Trichloroethane	Trichloroethylene
Xylenes	

TABLE 15.29. MATERIAL IMPACT COMPARISON (MICROPOINTS) ADAPTED FROM GOEDKOOP (1995)

Other Plastics Metals High-density polyethylene (HDPE) Aluminum (100% recycled) Ceramics 0.5 2.9 1.8 Wood 0.7 Polypropylene (PP) 3.3 Steel 4.1Cardboard 1.4 Low-density polyethylene (LDPE) 3.8 Sheet steel 4.3 Paper (100% recycled) Polyvinyl chloride (PVC) 17 1.5 4.2 Stainless steel Polyethylene Terephthalate (PET) Aluminum (0% recycled) 18 Glass 2.1 7.1 Copper (100% recycled) Paper (0% recycled) 3.3 Polystyrene (PS) 8.3 23 Copper (60% recycled) 60 Cellulose 3.4 Acrylonitrile butadiene styrene (ABS) 9.3 Copper (0% recycled) 85 15 Nylon (PA) 13 Rubber (NR) Other nonferrous 50-200 0

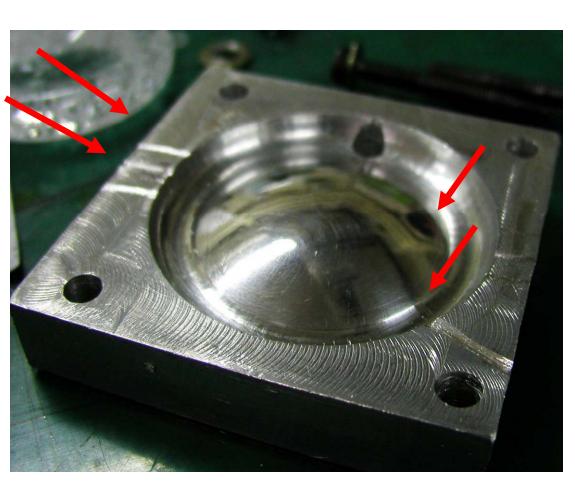
Design for energy efficiency

TABLE 15.30. ENERGY EFFICIENCY GUIDELINES

Specify best-in-class energy efficiency component. Have subsystems power down when not in use. Permit users to turn off systems in part or whole. Make parts whose movement is powered as light as possible. Insulate heated systems. Solar-powered electronics are better. Choose the least harmful source of energy. Avoid nonrechargable batteries. Encourage use of clean energy sources.

Source: Bras lecture notes, 1998.

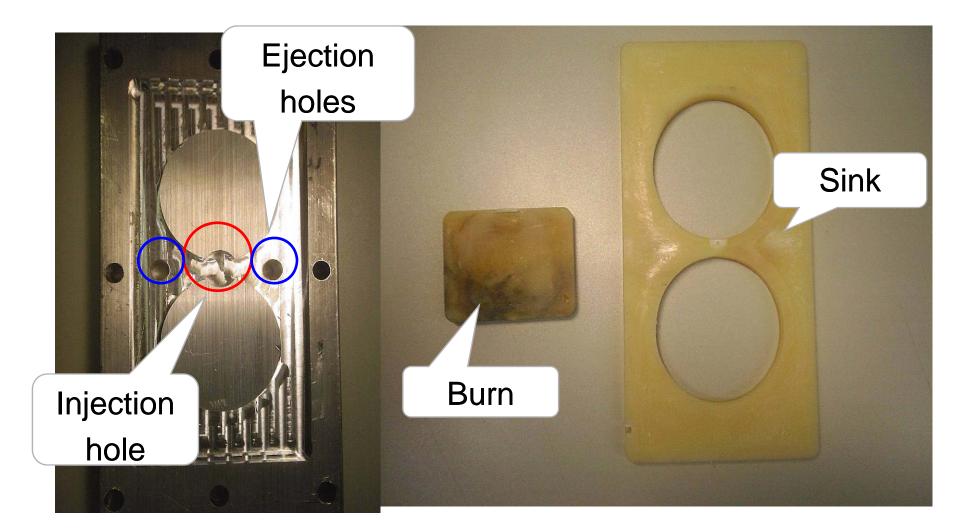
Reduces energy usage and societal fossil fuel consumption Reduces energy usage and societal fossil fuel consumption Reduces energy usage and societal fossil fuel consumption Less mass to move requires less energy Less heat loss requires less energy Does not create harmful by-products Reduce harmful by-products Reduce waste in streams Reduce harmful by-products


Design for class project

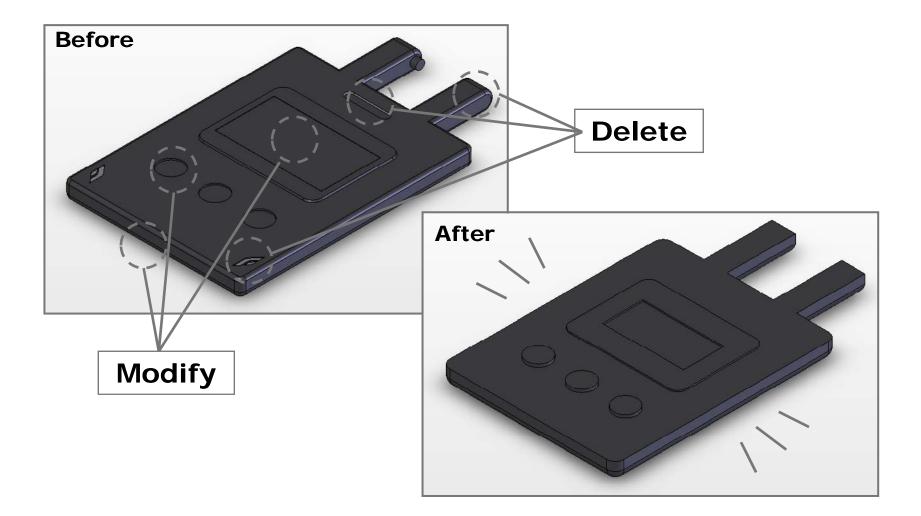
- Minimum part size
- Minimum thickness
- Maximum part size
- Manufacturing cost
- Machining
 - No undercut for 3 axis milling and turning
 - Fixturing-vise, vacuum chuck
- RP
 - Surface roughness and post process
 - Strength
- Injection molding
 - Draft angle
 - No undercut, or undercut with slider mechanism

Case study #1

- Mold making
 - CNC, milling, turning
 - sanding
 - Channels for air escape



Case study #2


Injection molding

Case study #3

Re-design for injection molding

