

Advanced Redox Technology (ART) Lab 고도산화환원 환경공학 연구실

Environmental Chemistry-2 - Equilibrium and the Carbonate System

Changha Lee

School of Chemical and Biological Engineering Seoul National University

• Most chemical reactions are reversible, to some extent

$aA + bB \Leftrightarrow cC + dD$

 If forward and reverse reactions are proceeding at the same rate, the system is in equilibrium.

No changes in chemical speciation with time.

• Some examples:

- Acid/base reactions affecting pH
- Solubility products affecting precipitation
- Solubility of gases in water

• At equilibrium, relative abundance of reactants and products given by:

$$\mathcal{K} = \frac{\{C\}^{c}\{D\}^{d}}{\{A\}^{a}\{B\}^{b}} \approx \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

where, K = equilibrium constant, { } = activity, [] = molar concentration

- Concentration for dissolved species must be in moles/liter (not mg/L or ppm)
- If solids or liquid water, assumed to be in excess and are not included Activity = 1
- All concentration units are in mole/L
 Except for gases in atmosphere they use partial pressure

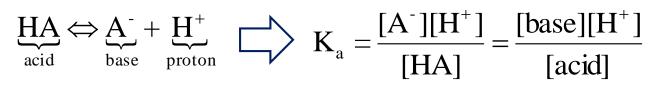
$\sqrt{Various types of Kexist}$

- Ionization constants, K_i
- Acidity and basicity constants, K_a , K_b
- Dissociation constants
- Solubility product constants, K_{sp}
- Water dissociation constant, $K_w = 10^{-14}$
 - · Governs pH of solution
- Note:
 - · Capital K for equilibrium constants
 - · Lowercase k for rate constants

- Molecules may dissolve to form ions
 - · Cations: + charge (e.g., Na⁺)
 - Anions: charge (e.g., Cl⁻)
- Charge must be balanced

$$A_2B \Leftrightarrow 2A^+ + B^{-2}$$

• In this case, K is a dissociation/ionization constant


$$K_{i} = \frac{[A^{+}]^{2}[B^{-2}]}{[A_{2}B]}$$

- K can range over large orders of magnitude
 - Water dissociation constant $K_w = 10^{-14}$
 - Acetic acid $K_a \approx 5.0 \times 10^4$
- Convenient to use logarithmic notation
 - p [] = log []
 - pK = log K
 - $\cdot K = 10^{-pk}$

Acid–Base Equilibrium

Dissociation of acid

TABLE 2

When $pH = pK_a$, get 50% dissociation

• Typical values (higher K_a, lower pK_a = stronger acid)

TABLE 2						
Dissociation Constants and Chemical Formulas for Some Acids of Environmental Importance						
Acid	Formula	pK _{a1}	pK_{a2}	pK _a 3		
Nitric acid	HNO ₃	-1.30	_	_		
Hydrochloric acid	HCl	< 0		_		
Sulfuric acid	H_2SO_4	<0	1.99	_		
Phosphoric acid	H ₃ PO ₄	2.16	7.20	12.3		
Arsenic acid	H_3AsO_4	2.24	6.76	_		
Citric acid	$C_3H_4OH(COOH)_3$	3.13	4.72	6.3		
Acetic acid	CH ₃ COOH	4.76	_	_		
Carbonic acid	H_2CO_3	6.35	10.33	_		
Hydrogen sulfide	H ₂ S	6.99	12.92	_		
Hypochlorous acid	HOCI	7.60		_		
Ammonium ion	NH_4^+	9.26	_	_		
Silicic acid	H ₄ SiO ₄	9.84	13.20	_		

Stronger acid

Acid-Base Equilibrium

• pH 4 5 6 7 8 9 10 11 12 13 0 1 2 3 $pH = -log [H^+]$ battery vinegar tomato "pure human seawater ammonia lye juice acid rain" blood Water dissociation $H_20 \leftrightarrow H^+ + 0H^-$

 $K_w = [H^+][OH^-] = 1x10^{-14} \text{ (at 25 °C)}$ pH + pOH = 14

• Neutral water, $[H^+] = [OH^-]$

 $K_{w} = [H^{+}][OH^{-}] = 10^{-14}$ $\Rightarrow [H^{+}][H^{+}] = [H^{+}]^{2} = 10^{-14}$ $\Rightarrow [H^{+}] = 1x10^{-7}$ $\Rightarrow pH = 7$

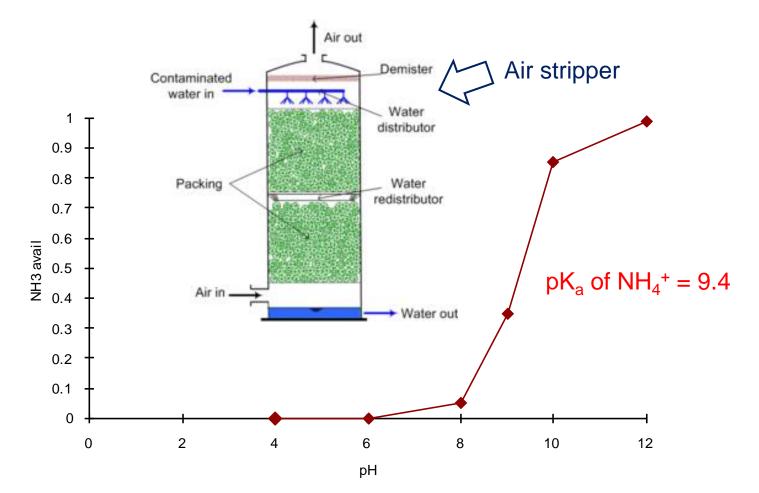
Significance of pH

- Indicates whether solution is:
 - Acidic (pH < 7, H⁺)
 - Basic (pH > 7, 0H⁻)
- Aquatic life is pH-sensitive
 - pH has a dramatic impact on biodiversity
- pH control is important for water & wastewater treatment
 - It affects dissolution/solubility of solids/gases, which can be manipulated to remove some pollutants by precipitation (metals) or by volatilization (NH₃, H₂S)
 - Corrosion vs. clogging problems
- Industrial waste can be at pH extremes
 - May need neutralization

• What is $[H^+]$ and $[OH^-]$ in the solution of pH = 11.9 at $25^{\circ}C$?

Ammonia Removal

• Nitrogen dissolved in industrial or municipal waste waters can be problematic.


N can be often found as ammonia (NH_{3} , strippable) or ammonium ion (NH_{4}^{+} , polar and very soluble)

gas soluble $NH_3 + H_2O \Leftrightarrow NH_4^+ + OH^-$

Exploiting this reaction (law of mass action), adding a base (OH⁻) shifts reaction to the left (strip NH_3)

Ammonia Removal

- Ammonia (NH₃) is not very soluble in water (volatile), whereas ammonium (NH₄⁺) is.
- Increase pH to convert N to volatile ammonia

Solubility Product

• Dissolution of solid or precipitation of soluble compounds

solid \Leftrightarrow aA + bB

• At equilibrium,

$$K = \frac{[A]^{a}[B]^{b}}{[solid]}$$

• Solubility product:

K_{sp} = [A]^a [B]^b = solubility product

TABLE 3

Selected Solubility Product Constants at 25°C					
Equilibrium Equation	$K_{\rm sp}$ at 25°C				
$CaCO_3 \rightleftharpoons Ca^{2+} + CO_3^{2-}$	5×10^{-9}	Hardness removal, scaling			
$CaSO_4 \rightleftharpoons Ca^{2+} + SO_4^{2-}$	$2 imes 10^{-5}$	Flue gas desulfurization			
$Cu(OH)_2 \rightleftharpoons Cu^{2+} + 2OH^-$	2×10^{-19}	Heavy metal removal			
$Al(OH)_3 \rightleftharpoons Al^{3+} + 3OH^{-}$	1×10^{-32}	Coagulation			
$Ca_3(PO_4)_2 \rightleftharpoons 3Ca^{2+} + 2PO_4^{3-}$	1×10^{-27}	Phosphate removal			
$CaF_2 \longleftrightarrow Ca^{2+} + 2F^-$	3×10^{-11}	Fluoridation			

Source: Sawyer et al., 1994.

- CaF₂ (solid) is dissolved in water.
 What will the equilibrium concentration of F⁻ be in mg/L?
 - *Use the solubility product of CaF_2 in the previous table.

Example (solution)

Dissociation of CaF₂

$$CaF_2 \Leftrightarrow Ca^{2+} + 2F^{-}$$

When one mole of Ca^{2+} is released, two moles of F^- will be released.

• Solubility product:

 $K_{sp} = 3 \times 10^{-11}$

Solubility of Gases in Water

✓ Henry's Law

Describes how much gases can dissolve into water (at equilibrium)

Henry's Law:
$$[gas] = K_H P_g$$

[gas] : concentration of dissolved gas in liquid (mol/L)

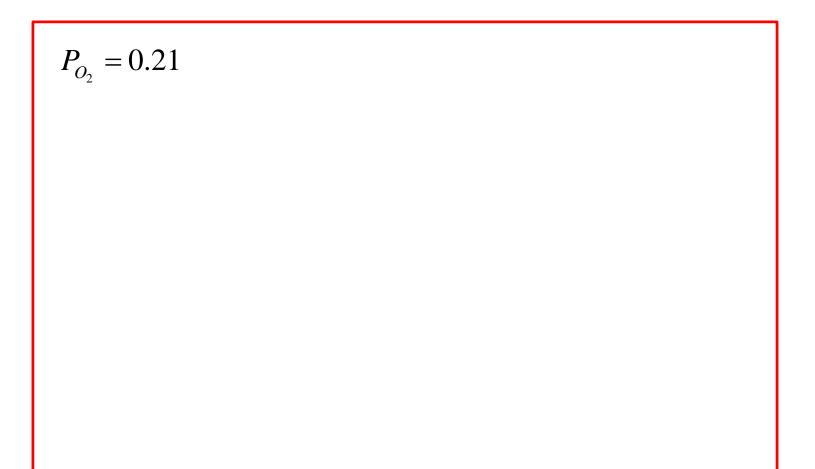
K_h : Henry's Law Constant (mol/L·atm)

P_g: partial pressure of gas in air (atm)

Henry's Law constants are temperature-dependent.

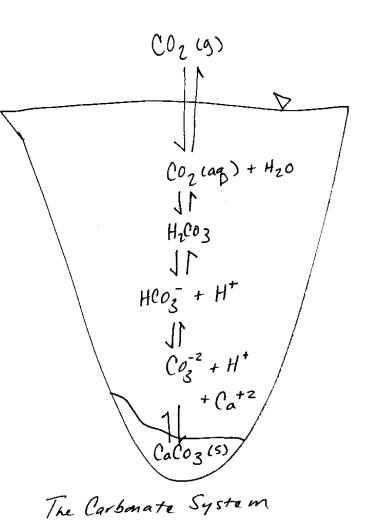
Henry's Law Coefficients, K _H (mol/L·atm)				
T (°C)	CO ₂	O ₂		
0	0.076425	0.0021812		
5	0.063532	0.0019126		
10	0.053270	0.0016963		
15	0.045463	0.0015236		
20	0.039172	0.0013840		
25	0.033363	0.0012630		

TABLE	4


Example

- There's water on the table outside on a cold day (10°C) in Denver (@ 1525 m).
 - How much CO_2 will dissolve in the water (in mg/L) if its concentration in the atmosphere is 350 ppm_v?
 - *Use the following equation to calculate the atmospheric pressure in Denver.

 $P = P_o - 1.15 \times 10^{-4} H$ (meters)


Example (solution)

Atmospheric pressure in Denver, P = 0.825 atm

✓ Carbonates

- Largest reservoir of carbon on earth
- They control (buffer) pH in natural systems
- Four important chemical species:
 - CO_{2(aqueous)}
 - H₂CO₃ (carbonic acid)
 - HCO₃⁻ (bicarbonate ion)
 - CO₃²⁻ (carbonate ion)

- Recall: atmospheric CO₂ dissolves in water
 - By Henry's Law: $[CO_{2(aq)}] = K_H P_{CO2}$
- What happens to CO_{2(aq)}?
 - It forms carbonic acid (weak acid) which dissociates

 $CO_{2(aq)} + H_2O \leftrightarrow H_2CO_3 \leftrightarrow H^+ + HCO_3^-$

Bicarbonate can dissociate further into carbonate

 $HCO_3^- \leftrightarrow H^+ + CO_3^{2-}$

• In natural systems, limestone (solid) is abundant and dissolves $CaCO_{3(s)} \leftrightarrow Ca^{2+} + CO_3^{2-}$

• At equilibrium, governing equations are:

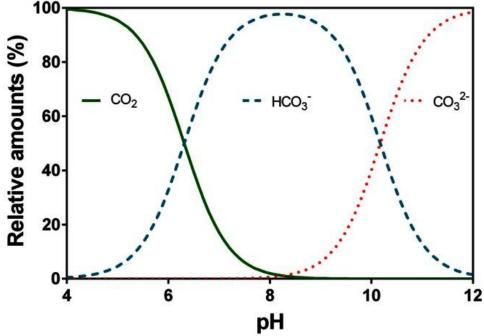
$$\frac{[H^+][HCO_3^-]}{[CO_{2(aq)}]} = K_1 = 4.47 \times 10^{-7}$$

$$\frac{[H^+][CO_3^{2-}]}{[HCO_3^-]} = K_2 = 4.68 \times 10^{-11}$$

$$[Ca^{2+}][CO_3^{2-}] = K_{sp} = 4.57 \times 10^{-9}$$

Presence of solid carbonates

 $- CO_3^{2-}$ source that consumes H⁺ and increases pH


• If system is open to the atmosphere

 $-\operatorname{CO}_2$ source that produces carbonic acid and lowers the pH

Relative carbonate concentration depends on pH

$$\frac{[CO_3^{2^-}]}{[HCO_3^{-}]} = \frac{K_2}{[H^+]} = \frac{K_2}{10^{-pH}} = 4.68 \times 10^{pH-11}$$

- Thus, unless pH is very high, the carbonate concentration is small compared to bicarbonate
 - CO₃²⁻ can be ignored at near neutral pH

Example

- What is the pH of a soda pop in a bottle where pure CO₂ is present in the gas phase at 3 atm?
 - *Assume temperature is 25 °C

 K_{H} (for CO_{2}) = 0.033363 mol/L·atm

$$\frac{[H^+][HCO_3^-]}{[CO_{2(aq)}]} = K_1 = 4.47 \times 10^{-7}$$

Example (solution)

- Assuming:
 - Negligible carbonate concentration (fairly low pH)
 - No solids
- Henry's Law

• Bicarbonate equilibrium governed by:

$$\frac{[H^+][HCO_3^-]}{[CO_{2(aq)}]} = K_1 = 4.47 \times 10^{-7}$$

• Thus,

Example (solution)

• Electroneutrality: sum of + charges = sum of - charges (Ignoring CO_3^{2-}):

