457.309.02 Hydraulics and Laboratory .10 Turbulent flow in rough pipe(2)

Prepared by Jin Hwan Hwang
(2019.03.28)

Seoul National University

Today's objectives

- Leaning how to determine the friction factors
- Study on some empirical parameters for friction factors.

Seoul National University

6. Pipe friction factors

- Since there is no exact solution for the pipe friction factors, determin ation of friction depends extensively on the experimental works.
- Friction factor, must depends on the shear stress, mean velocity, pip e diameter, mean roughness height, fluid density and viscosity.
- Dimensional analysis

$$
\phi\left(\tau_{0}, V, d, e, \rho, \mu\right)=0
$$

- We have 6 variables which includes density (mass), therefore, 3 rec urring variables. That means we can come up with three non-dimens ional number describe this system.
$\rho:$ Mass, V : Time, d : Length

Seoul National University

6. Pipe friction factors

- Then $\pi_{1} \Rightarrow \phi_{1}\left(\tau_{0}\right)$

$$
\begin{aligned}
& \pi_{2} \Rightarrow \phi_{2}(e) \\
& \pi_{3} \Rightarrow \phi_{3}(\mu) \\
& M^{0} L^{0} T^{0}=\phi_{1}\left(\rho, V, d, \tau_{0}\right)=\left[M L^{-3}\right]^{a}\left[L T^{-1}\right]^{b}[L]^{c}\left[M L^{-1} T^{-2}\right]^{-1} \\
& a-1=0,-3 a+b+c+1=0,-b+2=0 \\
& a=1, b=2, c=0 \\
& \pi_{1}=\phi_{1}\left(\frac{\rho V^{2}}{\tau_{0}}\right)=\phi_{1}\left(\frac{\tau_{0}}{\rho V^{2}}\right)
\end{aligned}
$$

- In the similar way,

$$
\pi_{2}=\phi_{2}\left(\frac{V d \rho}{\mu}\right), \phi_{3}=f_{3}\left(\frac{e}{d}\right)
$$

Seoul National University

6. Pipe friction factors

- Therefore
$\frac{\tau_{0}}{\rho V^{2}}=\phi\left(\frac{V d \rho}{\mu}, \frac{e}{d}\right)=\phi\left(\operatorname{Re}, \frac{e}{d}\right)$
$\tau_{0}=\rho V^{2} \phi\left(\operatorname{Re}, \frac{e}{d}\right) \quad\left(\right.$ remember,$\left.\tau_{0}=\frac{f \rho V^{2}}{8}\right)$
Finally $\quad: \quad f=\phi\left(\operatorname{Re}, \frac{e}{d}\right)$
If dynamically and geometrically two systems are same , then their friction factors are same (similarity).

Seoul National University

6. Pipe friction factors

- Blasius-Stanton diagram

Seoul National University

Example problem

- Water at $100^{\circ} \mathrm{F}$ flows in a 3 inch pipe at a Reynolds number of 80,00 0 . If the pipe is lined with uniform sand grains 0.006 inches in diamet er, how much head loss is to be expected in $1,000 \mathrm{ft}$ of the pipe? Ho w much head loss would be expected if the pipe were smooth?

$$
\begin{gathered}
\frac{e}{d}=\frac{0.006}{3}=0.002 \text { and } \operatorname{Re}=80,000 \\
f \cong 0.021 \quad \text { (Use figure) }
\end{gathered}
$$

- To get velocity,

$$
\begin{aligned}
& V=\frac{\operatorname{Re} \cdot v}{d}=\frac{80,000 \times 0.739 \times 10^{-5}}{3 / 12}=2.36 \mathrm{ft} / \mathrm{sec} \\
& h_{L}=f \frac{l}{d} \frac{V^{2}}{2 g_{n}} \cong 0.021 \frac{1000}{3 / 12} \frac{2.36^{2}}{2 \times 32.2}=7.3 \mathrm{ft}
\end{aligned}
$$

Seoul National University

Example problem

- If flow is in a smooth pipe, then we can apply Blasius power relation ship

$$
f=\frac{0.316}{\operatorname{Re}^{0.25}}=0.0188
$$

- The head loss in the smooth pipe

$$
h_{L}=f \frac{l}{d} \frac{V^{2}}{2 g_{n}}=0.0188 \frac{1000}{3 / 12} \frac{2.36^{2}}{2 \times 32.2}=6.5 \mathrm{ft}
$$

Seoul National University

Moody Diagram

- As we discussed before, the commercial pipe does not follow Nikura dse's. In this case, we'd better use Moody diagram

Seoul National University

Moody Diagram

- The relative roughness s hould be determined by t he following (if you don't know well the roughness (but you know material)

Seoul National University

Example problem

- Water at $100^{\circ} \mathrm{F}$ flows in a 3 inch pipe at a Reynolds number of 80,00 0 . This is a commercial pipe with an equivalent sand grain roughnes s of 0.006 in . What head loss is to be expected in $1,000 \mathrm{ft}$ of this pip e?

$$
\begin{aligned}
\frac{e}{d}= & \frac{0.006}{3}=0.002 \text { and Re }=80,000 \\
& f \cong 0.0255 \text { (Use Moody diagram) } \\
V= & \frac{\mathrm{Re} \cdot v}{d}=\frac{80,000 \times 0.739 \times 10^{-5}}{3 / 12}=2.36 \mathrm{ft} / \mathrm{sec} \\
h_{L}= & f \frac{l}{d} \frac{V^{2}}{2 g_{n}} \cong 0.0255 \frac{1000}{3 / 12} \frac{2.36^{2}}{2 \times 32.2}=8.8 \mathrm{ft}
\end{aligned}
$$

Seoul National University

7. Pipe friction in noncircular pipes

- How determines the friction factor and head loss in rectangular duct s? Or other conduits of noncircular form.
- Hydraulic Radius

$$
R_{h}=\frac{P}{A} \quad(P \text { is wetted parameter, } A \text { is area })
$$

- First calculate the hydraulic radius and determine the equivalent dia meter of the circular pipe (assume it).

$$
d=4 R_{h} \quad\left(R_{h}=\frac{\pi R^{2}}{2 \pi R}=\frac{R}{2}=\frac{d}{4}\right)
$$

- Use this diameter for Moody diagram
- In turbulent flow, it seems work but in laminar flow not applicable.

Seoul National University

Example problem

- Calculate the loss of head and the pressure drop when air at an abs olute pressure of $101 . \mathrm{kPa}$ and $15^{\circ} \mathrm{C}$ flows through 600 m of 450 mm by 300 mm smooth rectangular duct with a mean velocity of $3 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
& R_{h}=\frac{A}{P}=\frac{0.45 \mathrm{~m} \times 0.30 \mathrm{~m}}{2 \times 0.45 \mathrm{~m}+2 \times 0.30}=0.090 \\
& \mathrm{Re}=\frac{V d \rho}{\mu}=\frac{V\left(4 R_{h}\right) \rho}{\mu}=\frac{3 \mathrm{~m} / \mathrm{s} \times(4 \times 0.090 \mathrm{~m}) \times 1.225 \mathrm{~kg} / \mathrm{m}^{3}}{1.789 \times 10^{-5}}=73,950 \\
& f \cong 0.019 \quad \text { (From the Moody diagram for smooth diagram) } \\
& \mathrm{h}_{L}=f \frac{l}{d} \frac{V^{2}}{2 g_{n}}=f \frac{l}{4 R_{h}} \frac{V^{2}}{2 g_{n}}=14.5 \mathrm{~m} \\
& \Delta p=\gamma h_{L}=\rho g h_{L}=174 \mathrm{pa}
\end{aligned}
$$

Seoul National University

8. Empirical Formulas

- Hazen-Williams
- Permitting the capacity of pipes to convey water
- Manning
- Application to open channel, but also used for pipe flow.
- For a given pipe
(U.S. Customary units) $\quad V=\frac{1.49}{n} R_{h}^{2 / 3} S^{1 / 2}$
(SI units)

$$
V=\frac{1}{n} R_{h}^{2 / 3} S^{1 / 2}
$$

$f=\frac{185 n^{2}}{d^{1 / 3}} \quad$ where n is roughness coefficient for manning

Seoul National University

8. Empirical Formulas

- Manning's
- There is no Reynolds number effect so the formula must be used only in the wholly rough flow zone where its horizontal slope c an accurately match Darcy-Weisbach values provided the proper n -value is selected.
- The relative roughness effect is correct in the sense that, for a gi ven roughness, a larger pipe will have a smaller factor.
- In general sense, because the formula is valid only for rough pi pes, the rougher the pipe, the more likely the Manning formula w ill apply.

