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Recall

Risk Determinants & Components

- Risk Determinants: Lack of Time, Information, Control

- Risk Components: Event, Probability, Impact

Project Risk Management Process

① Recognize need for risk management

② Identify types & sources of risks

③ Measure & prioritize risks

④ Adjust & control risks



MODELING UNCERTAINTY
- Theory of Probability

PART I



Approaches to Probability

Frequentist(빈도학파)

• A measure of the likelihood that a particular event will happen

• Based on the assumption the observation of some activity can be repeated

- Roll a die: Frequency of cell “4” is 1/6

Subjectivist(주관주의학파)

• Based on the assumption that observation cannot be duplicated

• Probability is the “degree of personal belief” based on whatever information is 

available

- Predicting the chance of hurricane: 30%

- Predicting the chance that you will earn “A+” in this course: 60%



Terminology

We can model uncertainty in decision problems by using probability.

Terminology for probability theory

• Experiment: process of observation or measurement; e.g., coin flip

• Outcome: result obtained through an experiment; e.g., coin shows tails

• Sample space: set of all possible outcomes of an experiment; e.g., sample 

space for coin flip: S={H, T}

• Sample spaces can be finite or infinite.



Sample Space

Example: Finite Sample Space

• Roll two dice, each with numbers 1~6. Sample space:

ଵ

• Alternative sample space for this experiment – sum of the dice:

ଶ

ଶ

Example: Infinite Sample Space

• Flip a coin until heads appears for the first time:

ଷ



Events

Often we are not interested in individual outcomes, but in events. An event 

is subset of a sample space.

Example

• With respect to S1, describe the event B of rolling a total of 7 with the two dice.



Events

Often we are interested in combinations of two or more events. This can 

be represented using set theoretic operations. Assume a sample space S 

and two events A and B:

• complement (also ): all elements of S that are not in A;

• subset : all elements of A are also elements of B;

• union : all elements of S that are in A or B;

• intersection : all elements of S that are in A and B.

These operations can be represented graphically using Venn diagrams.



Venn Diagrams



Basic Law of Probability

• Probability must lie between 0 and 1.

- Sure occurrence: 1 (chance of rain in Seoul this year)
- Non-occurrence: 0 (chance that the sun will disappear tomorrow)

• Probability must add up.

- If A&B are mutually exclusive (If only one of several event can occur at 
one time): P(A or B) = P(A) + P(B)

- Otherwise, P(A or B) = P(A) + P(B) - P(A and B)

• Total probability must equal 1: P(S)=1.



Basic Law of Probability

Theorem: Probability of an Event

- If is an event in a sample space and ଵ, ଶ, …,  are the individual 
outcomes comprising , then 


ୀଵ

Example

- 연속으로 세 개의 알파벳을 뽑는다고 할 때, 모음이 나올 확률은
얼마인가?

ଷ ଷ

ଷ

ଷ



Exercise #1: Basic Law of Probability

Event “A”: Casting a single die

• A = [1, 2, 3, 4, 5, 6]

• Two outcomes

- A1 = odd outcome = [1, 3, 5]
- A2 = less than 5 = [1, 2, 3, 4]
- Are they mutually exclusive?

• P(A1), P(A2) = ?

• P(A1 and A2) = ?

• P(A1 or A2) = ?

If A2 = [2, 4, 6], What is the differences?



Basic Law of Probability

Here, we have some definitions,

• Marginal probability(주변확률, 한계확률): probability at the initial condition (boundary 

state) → P(A), P(B)

• Union probability(합확률): P(A or B)

• Joint probability(결합확률): P(A and B) → intersection

- a probability that measures the likelihood that two or more events will 

happen at the same time

• Conditional probability (|): “|” means “given that another event has already 

occurred”

- P(B|A) → probability of event “B” after it is known that some other event “A” 

has ALREADY occurred



Basic Law of Probability

• Law of Joint probability

• Conditional probability

• Complementary

- “A” Complement: 

-

• Total probability

-

Marginal probability



Basic Law of Probability

• Probability Tree



Basic Law of Probability

• Probability Tree: We can FLIP it!!!



Exercise #2: Conditional Probability

• A manufacturer knows that the probability of an order being ready on time is 

0.80, and the probability of an order being ready on time and being delivered 

on time is 0.72. What is the probability of an order being delivered on time, 

given that it is ready on time?

R: order is ready on time; D: order is delivered on time.



Exercise #3: Marginal Probability

• In an experiment on human memory, participants have to memorize a set of 

words (B1), numbers (B2), and pictures (B3). These occur in the experiment 

with the probabilities; ଵ ଶ ଷ .

• Then participants have to recall the items (where A is the recall event). The 

results show that ଵ ଶ ଷ . Compute , 

the probability of recalling an item.

- By the theorem of total probability:

 



ୀଵ

ଵ ଵ ଶ ଶ ଷ ଷ



Exercise #4: Joint, Marginal, & Conditional Prob.

• Proportions for a sample of a certain university students (N=592).

Eye Color

Hair Color

Black Brunette Blond Red

Blue 0.03 0.14 0.16 0.03 0.36

Brown 0.12 0.20 0.01 0.04 0.37

Hazel/Green 0.03 0.14 0.04 0.05 0.27

0.18 0.48 0.21 0.12



Exercise #4: Joint, Marginal, & Conditional Prob.

• Proportions for a sample of a certain university students (N=592).

- These are the joint probability: P(Eye Color, Hair Color)

Eye Color

Hair Color

Black Brunette Blond Red

Blue 0.03 0.14 0.16 0.03 0.36

Brown 0.12 0.20 0.01 0.04 0.37

Hazel/Green 0.03 0.14 0.04 0.05 0.27

0.18 0.48 0.21 0.12



Exercise #4: Joint, Marginal, & Conditional Prob.

• Proportions for a sample of a certain university students (N=592).

- Example: P(Eye Color=Brown, Hair Color=Brunette)=0.20

Eye Color

Hair Color

Black Brunette Blond Red

Blue 0.03 0.14 0.16 0.03 0.36

Brown 0.12 0.20 0.01 0.04 0.37

Hazel/Green 0.03 0.14 0.04 0.05 0.27

0.18 0.48 0.21 0.12



Exercise #4: Joint, Marginal, & Conditional Prob.

• Proportions for a sample of a certain university students (N=592).

- These are the marginal probability: P(Eye Color)

Eye Color

Hair Color

Black Brunette Blond Red

Blue 0.03 0.14 0.16 0.03 0.36

Brown 0.12 0.20 0.01 0.04 0.37

Hazel/Green 0.03 0.14 0.04 0.05 0.27

0.18 0.48 0.21 0.12



Exercise #4: Joint, Marginal, & Conditional Prob.

• Proportions for a sample of a certain university students (N=592).

- Example:  
ு 

Eye Color

Hair Color

Black Brunette Blond Red

Blue 0.03 0.14 0.16 0.03 0.36

Brown 0.12 0.20 0.01 0.04 0.37

Hazel/Green 0.03 0.14 0.04 0.05 0.27

0.18 0.48 0.21 0.12



Exercise #4: Joint, Marginal, & Conditional Prob.

• Proportions for a sample of a certain university students (N=592).

- These are the marginal probability: P(Hair Color)

Eye Color

Hair Color

Black Brunette Blond Red

Blue 0.03 0.14 0.16 0.03 0.36

Brown 0.12 0.20 0.01 0.04 0.37

Hazel/Green 0.03 0.14 0.04 0.05 0.27

0.18 0.48 0.21 0.12



Exercise #4: Joint, Marginal, & Conditional Prob.

• Proportions for a sample of a certain university students (N=592).

- Example: 𝑃 𝐻𝑎𝑖𝑟 𝐶𝑜𝑙𝑜𝑟 = 𝐵𝑟𝑢𝑛𝑒𝑡𝑡𝑒 = ∑ 𝑃(𝐻𝑎𝑖𝑟 𝐶𝑜𝑙𝑜𝑟 = 𝐵𝑟𝑢𝑛𝑒𝑡𝑡𝑒, 𝐸𝑦𝑒 𝐶𝑜𝑙𝑜𝑟) 
ா௬ 

Eye Color

Hair Color

Black Brunette Blond Red

Blue 0.03 0.14 0.16 0.03 0.36

Brown 0.12 0.20 0.01 0.04 0.37

Hazel/Green 0.03 0.14 0.04 0.05 0.27

0.18 0.48 0.21 0.12



Exercise #4: Joint, Marginal, & Conditional Prob.

• Proportions for a sample of a certain university students (N=592).

To obtain the conditional probability , we 

do two things:

① Reduction: we consider only the probabilities in the brunette column;

Eye Color

Hair Color

Black Brunette Blond Red

Blue 0.03 0.14 0.16 0.03 0.36

Brown 0.12 0.20 0.01 0.04 0.37

Hazel/Green 0.03 0.14 0.04 0.05 0.27

0.18 0.48 0.21 0.12



Exercise #4: Joint, Marginal, & Conditional Prob.

• Proportions for a sample of a certain university students (N=592).

To obtain the conditional probability , we 

do two things:

① Reduction: we consider only the probabilities in the brunette column;

Eye Color

Hair Color

Black Brunette Blond Red

Blue 0.14

Brown 0.20

Hazel/Green 0.14

0.48



Exercise #4: Joint, Marginal, & Conditional Prob.

• Proportions for a sample of a certain university students (N=592).

To obtain the conditional probability , we 

do two things:

② Normalization: we divide by the marginal P(Brunette), since all the 

probability mass is now concentrated here.

Eye Color

Hair Color

Black Brunette Blond Red

Blue 0.14/0.48

Brown 0.20/0.48

Hazel/Green 0.14/0.48

0.48



Exercise #4: Joint, Marginal, & Conditional Prob.

• Proportions for a sample of a certain university students (N=592).

To obtain the conditional probability , we 

do two things:

Example: 
.ଶ

.ସ଼

Eye Color

Hair Color

Black Brunette Blond Red

Blue 0.14/0.48

Brown 0.20/0.48

Hazel/Green 0.14/0.48

0.48



Exercise #5: Joint, Marginal, & Conditional Prob.

• A geotechnical database gives the following probabilities for certain 

subsurface conditions;

- Mutually exclusive condition: “rock” & “soil”, “wet” & “dry”

- P(rock) = 0.3

- P(common soil) = 0.7

- P(wet and rock) = 0.1

- P(dry and common soil) = 0.2

1) Find the marginal probability of “wet” condition: P(wet)

2) Find the marginal probability of “dry” condition: P(dry)

3) Find the union probability of “wet or rock” conditions: P(wet ∪ rock)



Exercise #5: Joint, Marginal, & Conditional Prob.

•



Exercise #6: Joint, Marginal, & Conditional Prob.

• Suppose that three strength tests are to be performed on the sample of 100 

concrete cylinders. If there are 10 defective cylinders out of 100, what is the 

probability that all three tests will succeed? What is the probability that all 

three tests will fail? What is the probability that two tests will succeed?



Exercise #6: Joint, Marginal, & Conditional Prob.



Exercise #7: Joint, Marginal, & Conditional Prob.

• On the construction project, there is either a good weather or a bad weather 

condition. Depending on which weather condition controls the project, time 

schedule may be either early, on time, and late. We define the following 

events:

- W1: bad weather

- W2: good weather

- A1: ahead of schedule

- A2: on time

- A3: behind of schedule

• The joint probabilities are:

- W1 & A1 = 0.06; W1 & A2 = 0.12; W1 & A3 = 0.22

- W2 & A1 = 0.39; W2 & A2 = 0.18; W2 & A3 = 0.03



Exercise #7: Joint, Marginal, & Conditional Prob.

1. What are the three conditional probabilities given a bad weather 

condition?

2. Given you finish the project ahead of schedule, what is the probability 

you had a good weather condition?



Exercise #7: Joint, Marginal, & Conditional Prob.



Exercise #7: Joint, Marginal, & Conditional Prob.

Flipping!!!



Exercise #8: vs. 

Disease Symptoms (from Lindley 2006)

• Doctors studying a disease “D” noticed that 90% of patients with the disease 

exhibited a symptom “S”.

• Later, another doctor sees a patient and notices that she exhibits symptom “S”.

• As a result, the doctor concludes that there is a 90% chance that the new 

patient has the disease “D”.

While , might be very different!!

Source: Lindley, Dennis V. (2006), Understanding Uncertainty. Wiley, Hoboken, NJ, US.



More Probability Relations…

• Independent Probability

- P(B|A) = P(B)

- P(A and B) = P(A) x P(B|A) = P(A) x P(B)

• Conditional Independence

- P(A|B,C) = P(A|C)

- P(A,B | C) = P(A|C) P(B|C)

A, B are independent

A B

C

A B

C

A, B are conditionally 
independent given C



Independence

• Definition: Independent Events

- Two events A and B are independent if:

- Intuition: two events are independent if knowing whether one event 

occurred does not change the probability of the other

- Note that the following are equivalent:

A, B are independent

A B

C



Exercise #9: Independence

• A coin is flipped three times. Each of the eight outcomes is equally likely.

- A: heads occurs on each of the first two flips

- B: tails occurs on the third flip

- C: exactly two tails occur in the three flips

• Show that A and B are independent, B and C dependent.
ଶ

଼

ଵ

ସ
ସ

଼

ଵ

ଶ
ଷ

଼
ଵ

଼
ଶ

଼

ଵ

ସ

𝟏

𝟒

𝟏

𝟐

𝟏

𝟖
, hence A and B are independent.

𝟏

𝟐

𝟑

𝟖

𝟑

𝟏𝟔
, hence B and C are dependent.



Exercise #10: Independence

• A simple example of two attributes that are independent: the suit and value of cards in a 

standard deck: there are 4 suits {♦, ♠, ♣, ♥} and 13 values of each suit {2, · · · , 10, J, Q, 

K, A}, for a total of 52 cards.

• Consider a randomly dealt card:

- Marginal probability it’s a heart:

♥

- Conditional probability it’s a heart given that it’s a queen:

♥

In general, , hence suit and value are independent



Exercise #11: Independence

• We can verify independence by cross-multiplying marginal probabilities too. For every suit 

s ∈ {♦, ♠, ♣, ♥} and value v ∈ {2, · · · , 10, J, Q, K, A}:

ଵ

ହଶ
(in a well-shuffled deck)

ଵଷ

ହଶ

ଵ

ସ

ସ

ହଶ

ଵ

ଵଷ

ଵ

ସ

ଵ

ଵଷ

ଵ

ହଶ

• Independence comes up when we construct mathematical descriptions of our beliefs 

about more than one attribute: to describe what we believe about combinations of 

attributes, we often assume independence and simply multiply the separate beliefs about 

individual attributes to specify the joint beliefs.



Conditional Independence

• Definition: Conditionally Independent Events

- Two events A and B are conditionally independent given event C iff:

- Intuition: Once we know whether C occurred, knowing about A or B doesn’t 

change the probability of the other.

- Note that the following are equivalent:

A B

C

A, B are conditionally 
independent given C



Exercise #12: Conditional Independence

• In a noisy room, I whisper the same number n ∈ {1, . . . , 10} to two people A and B on 

two separate occasions. A and B imperfectly (and independently) draw a conclusion 

about what number I whispered. Let the numbers A and B think they heard be na and nb, 

respectively.

• Are na and nb independent (a.k.a. marginally independent)?

- No.

- E.g., we’d expect    .

• Are na and nb conditionally independent given n?

- Yes: if you know the number that I actually whispered, the two variables are no longer 

correlated.

- E.g.,   



Assignment #3-1. Conditional Probability

• A: Weather

• B: Labor Skill

• C: Productivity

• D: Resource Delivery

• E: Schedule

아래 P(C1)와 P(E2, C2, D1)를계산하시오

1. P(C=C1): probability of productivity “high”

2. P(C=C2 and D=D1 and E=E2): Joint Prob.

A B

C D

E



Assignment #3-2. Soldier’s Problem

• A soldier is taking an attack in which he is allowed three shots at a target 

airplane. The probability of his first shot hitting the plane is 0.1, that of 

his second shot is 0.3, and that of his third shot is 0.5. The probability of 

the plane crashing after one hit is 0.1; after two hits, the probability of 

crashing is 0.5, and the plane will crash for sure if hit three times. The 

attack is over when the soldier has fired all three shots or when the 

plane crashed.

1) What is the probability of the soldier shooting down the plane?

2) What are the marginal probabilities of 0 hits, 1 hit, 2 hits, and 3 hits?

3) What is the mean number of shots required to shoot down the plane?



MODELING UNCERTAINTY
- Theory of Probability II

PART II



Bayes’ Theorem

• Based on the symmetry of the definition of conditional probability, we can 

predict the posterior probability based on the prior information

By the symmetry, 

Probability of “A”
given the occurrence of 
“B”

where, 



Bayes’ Theorem

• P(A): Prior Probability (Base Rate)

→ This is assigned before any empirical data is obtained.

• P : Posterior Probability

→ This can be estimated based on prior probability and given new data on 

conditional events from historical data.



Bayes’ Theorem

Example #1

• A construction company operates 3 batch plants (A, B, C) for producing 

concrete used in a highway project. Each plant is producing 35%, 20%, and 

45% of the total quantity, respectively. According to the past historical data, 

the percentages of defective concretes from each plant are 1%, 1.3%, and 

2%, respectively. If you test the samples randomly to confirm the quality of 

concrete produced,

- What is the marginal probability that the sample is defective?

- What are the conditional probabilities that any defective concrete was 

supposed to be produced from plant A, B, or C?



Bayes’ Theorem

Example #1

P(“A” plant) = 0.35

P(“B” plant) = 0.20

P(“C” plant) = 0.45

P(S|A) = 0.99

P(F|A) = 0.01

P(S|B) = 0.987

P(F|B) = 0.013

P(S|C) = 0.98

P(F|C) = 0.02

Joint Probability

𝑃 𝐴 ∩ 𝑆 = 0.35 × 0.99 = 0.3465

𝑃 𝐴 ∩ 𝐹 = 0.35 × 0.01 = 0.0035

𝑃 𝐵 ∩ 𝑆 = 0.20 × 0.987 = 0.1974

𝑃 𝐵 ∩ 𝐹 = 0.20 × 0.013 = 0.0026

𝑃 𝐶 ∩ 𝑆 = 0.45 × 0.98 = 0.4410

𝑃 𝐶 ∩ 𝐹 = 0.45 × 0.02 = 0.0090

• P(Fail) = 0.0035 + 0.0026 + 0.0090 = 0.0151 = 1.51%

• P(Success) = 1 – 0.0151 = 0.9849 = 98.49%



Bayes’ Theorem

Example #1

P(S) = 0.9849

P(F) = 0.151
P(A|F) = ?

P(B|F) = ?

P(C|F) = ?

Joint Probability

𝑃 𝐴 ∩ 𝑆 = 0.3465

𝑃 𝐵 ∩ 𝑆 = 0.1974

𝑃 𝐶 ∩ 𝑆 = 0.4410

𝑃 𝐴 ∩ 𝐹 = 0.0035

𝑃 𝐵 ∩ 𝐹 = 0.0026

𝑃 𝐶 ∩ 𝐹 = 0.0090

• P(A | F) = 0.0035 / 0.0151 = 0.23
• P(B | F) = 0.0026 / 0.0151 = 0.17
• P(C | F) = 0.0090 / 0.0151 = 0.60 → High Probability

P(A|S) = ?

P(B|S) = ?

P(C|S) = ?

Flipping



Bayes’ Theorem

Example #1

• P(A | F) = 0.0035 / 0.0151 = 0.23

Prior Probability (ASSIGNED BASE RATE, “A” plant)

Given conditional probability from historical data
(1% defective rate)

Posterior Probability (Estimated/Predicted rate)



Bayes’ Theorem

Example #2

• Mr. Smith was living in an apartment in a certain city.

• One day, the door was open when coming back to his apartment.

• He thought the probability of theft was highly probable.

• Based on the past history in this city, if the probability of “door open” given 

“no-theft” and “door open” given “theft” are supposed to be 5% and 100% 

respectively.

• Also, the base rate of theft probability in this city is 0.1%,

- What is the probability of “theft” when the “door was open” in this case?



Bayes’ Theorem

Example #2

P(T1) = 0.001 (Base rate: theft)

P(T1) = 0.001

P(T2) = 0.999
No theft

P(O1|T1) = 1.0

P(O2|T1) = 0.0

P(O1|T2) = 0.05

P(O2|T2) = 0.95

Joint Probability

𝑃 𝑇1 ∩ 𝑂1 = 0.001 × 1.0 = 0.001

𝑃 𝑇1 ∩ 𝑂2 = 0.001 × 0.0 = 0.0

𝑃 𝑇2 ∩ 𝑂1 = 0.999 × 0.05 = 0.04995

𝑃 𝑇2 ∩ 𝑂2 = 0.999 × 0.95 = 0.94905

By Flipping

P(O1)



Bayes’ Theorem

Example #2

P(O1) = 0.05095
Open

P(O2) = 0.94905
Closed

P(T1|O1) = ?

P(T2|O1) = ?

P(T1|O2) = ?

P(T2|O2) = ?

Joint Probability

𝑃 𝑇1 ∩ 𝑂1 = 0.001

𝑃 𝑇2 ∩ 𝑂1 = 0.04995

𝑃 𝑇1 ∩ 𝑂2 = 0.0

𝑃 𝑇2 ∩ 𝑂2 = 0.94905

• Only 1.96%

• Why? → This city is very safe!!

Posterior probability is highly sensitive to the prior probability.



Bayes’ Theorem

Example #2

• Sensitivity analysis on the prior probability

If this city is unsafe, the posterior probability will be highly anticipated.



Bayes’ Theorem

Example #3

• Past historical data gives (Information from previous data)
- Under Actual rain, weather forecast was correct (rain) = 0.9
- Under Actual sunny, weather forecast was incorrect (rain) = 0.2

• Probability of rainy day = 0.4 (base rate: prior probability)

P(A1) = 0.4
Rain

P(A2) = 0.6
Sunny

P(B1|A1) = 0.9

P(B2|A1) = 0.1

P(B1|A2) = 0.2

P(B2|A2) = 0.8

𝑃 𝐴1 ∩ 𝐵1 = 0.36

𝑃 𝐴1 ∩ 𝐵2 = 0.04

𝑃 𝐴2 ∩ 𝐵1 = 0.12

𝑃 𝐴2 ∩ 𝐵2 = 0.48

P(A1) = 0.4

A B

ACTUAL
WEATHER

WEATHER
FORECAST

DATA

PREDICTION

Probability of rain (A1) given that 
the weather forecast is rainy (B1) 
tomorrow?



Bayes’ Theorem

Example #3

P(B1) = 0.48
Weather Forecast: Rainy

P(B2) = 0.52
Weather Forecast: Sunny

P(A1|B1) = ?

P(A2|B1) = ?

P(A1|B2) = ?

P(A2|B2) = ?

𝑃 𝐴1 ∩ 𝐵1 = 0.36

𝑃 𝐴2 ∩ 𝐵1 = 0.12

𝑃 𝐴1 ∩ 𝐵2 = 0.04

𝑃 𝐴2 ∩ 𝐵2 = 0.48

Flipping

• 0.75 → Bayes’ Theorem

•



Bayes’ Theorem

Example #4

• Frequently, people use tests to infer knowledge about something. The

following example is the use of a blood test to see if a person has a colon

cancer(대장암) or not. The test results reflect current knowledge of the colon

cancer characteristics, and test accuracy may be a matter of concern.

Suppose that a number of people (e.g. 1,000 persons) have taken a blood test

with the following results;

- Colon cancer (5%): positive blood test result (80%); negative blood test result (20%)

- No colon cancer (95%): positive blood test result (30%); negative blood test result (70%)

• If a person has taken this test and the result turns out to be positive, what is

the probability that he or she has a colon cancer? Is it a reliable test?



Bayes’ Theorem

Example #4

P(C1) = 0.05
Colon Cancer (Base rate)

P(C2) = 0.95
No-Colon Cancer

P(T1|C1) = 0.8

P(T2|C1) = 0.2

P(T1|C2) = 0.3

P(T2|C2) = 0.7

𝑃 𝑇1 ∩ 𝐶1 = 0.04

𝑃 𝑇2 ∩ 𝐶1 = 0.01

𝑃 𝑇1 ∩ 𝐶2 = 0.285

𝑃 𝑇2 ∩ 𝐶2 = 0.665

By Bayes’ Theorem

Correct

Correct

P(T1)
= 0.04+0.285
= 0.325

Only 12.3%!!



Bayes’ Theorem

Example #4

• If you can update the likelihood of test results from the improved test quality:

- prior probability of colon cancer: 15%

- positive blood test result given colon cancer: 85%

- negative blood test result given no-colon cancer: 75%

• How do you update the posterior probability ?

Initial posterior Probability
= 12.3%

Updated Posterior Probability
= 24.4%

Still, the reliability of this blood test seems to be very low!!



Bayes’ Theorem

Example #5: Equipment Selection

• A construction company is considering the purchase of a new compactor.
There is also the possibility of rebuilding the existing one or managing the old
compactor without rebuilding.

• The compactors perform differently with two types of common material. When
the material is good, both rebuilt and new compactor work much faster, but
they will not perform adequately when the material is of poor quality.

• The payoffs are (thousands US$);

• It is also possible to make a preliminary test at a cost of $600, but
unfortunately, it is not infallible(결코 틀리지않는).



Bayes’ Theorem

Example #5: Equipment Selection

• The true soil quality can be determined only during the construction process.
In the past, the test has been characterized by the following conditional
probabilities;

• Past record shows that there is a 35% chance of getting good soil – base rate.

- Find the appropriate decision based on Expected value criteria

- Should the company perform a test?



Bayes’ Theorem

Example #5: Equipment Selection

Actual 
Soil

Test Soil

Test 
Result

True Soil 
Quality

From historical data

(quality of test)

P(T|A)

Prediction (Bayes’ Theorem)

P(A|T)=P(T|A) x P(A) / P(T)



Bayes’ Theorem

Example #5: Equipment Selection

P(A1) = 0.35
Good

P(A2) = 0.65
Bad

P(T1|A1) = 0.8

P(T2|A1) = 0.2

P(T1|A2) = 0.3

P(T2|A2) = 0.7

𝑃 𝐴1 ∩ 𝑇1 = 0.28

𝑃 𝐴1 ∩ 𝑇2 = 0.07

𝑃 𝐴2 ∩ 𝑇1 = 0.195

𝑃 𝐴2 ∩ 𝑇2 = 0.455

P(A1) = 0.35

P(T1) = 0.475

By Bayes’ Theorem



Bayes’ Theorem

Example #5: Equipment Selection

• By Flipping:

P(T1) = 0.475
Good Test Result

P(T2) = 0.525
Bad Test Result

P(A1|T1) = 0.589

P(A2|T1) = 0.411

P(A1|T2) = 0.133

P(A2|T2) = 0.867

𝑃 𝐴1 ∩ 𝑇1 = 0.28

𝑃 𝐴2 ∩ 𝑇1 = 0.195

𝑃 𝐴1 ∩ 𝑇2 = 0.07

𝑃 𝐴2 ∩ 𝑇2 = 0.455

By Bayes’ Theorem



Bayes’ Theorem

Example #5: Equipment Selection - Take the test or not?
Good soil

Bad soil

Good soil

Bad soil

Good soil

Bad soil

Good soil

Bad soil

Test?

Yes

No

Good test result
0.475

Bad test result
0.525

New

Rebuilt

Old

New

Rebuilt

Old

New

Rebuilt

Old

0.589

0.411

“
“

“
“

“

“

0.35

0.65

0.133

0.867

11.505 k$

6.266 k$

6.70 k$

8.75 k$

-0.6 k$

8.15 k$



Why? – more updated information

Example #5: Equipment Selection - Take the test or not?
Good soil

Bad soil

Good soil

Bad soil

Good soil

Bad soil

Good soil

Bad soil

Test?

Yes

No

Good test result
0.475

Bad test result
0.525

New

Rebuilt

Old

New

Rebuilt

Old

New

Rebuilt

Old

0.589

0.411

“
“

“
“

“

“

0.35

0.65

0.133

0.867

11.505 k$

6.266 k$

6.70 k$

8.75 k$

-0.6 k$

8.15 k$



Bayes’ Theorem - Bayesian Updating

• Bayes’ Theorem is useful in updating prior probability (i.e., P(A)) given new

data on conditional events.

• So, you can update P(A) when given that has occurred.

where, 



Bayes’ Theorem - Bayesian Updating

• In soil test & equipment selection problem,

- Initial prior probability of good soil P(A1) = 0.35

- Initial prior probability of bad soil P(A2) = 0.65

• If we have data to predict the quality of soil based on the previous soil test, we

can update the P(A1) or P(A2) given the results of soil test,

• That is;

- P(A1|good test) = 0.589: accuracy increased from 0.35 to 0.589

- P(A2|bad test) = 0.867: accuracy increased from 0.65 to 0.867



Bayes’ Theorem - Bayesian Updating

• If we will collect more data to update the prior probabilities and their

conditional states, i.e.;

- Initial prior probability of good soil P(A1) = 0.40, bad soil P(A2) = 0.60

- P(good test/A1) = 0.80 → 0.85

- P(bad test/A2) = 0.70 → 0.75

• So, we can predict the quality of soil more accurately based on the updated

data (soil test results) through Bayes’ theorem.

• That is;

- P(A1|good test) = 0.694: accuracy increased from 0.589 to 0.694

- P(A2|bad test) = 0.882: accuracy increased from 0.867 to 0.882

• We can say it as “Bayesian updating” to update the uncertainties.

• This sequential updating process will continue indefinitely!



MODELING UNCERTAINTY
- Measurement of uncertain variables

PART III



1. Probability vs. Statistics



Types of Statistics

• Descriptive Statistics

- for organizing & summarizing data

• Inferential Statistics / Inductive Reasoning

- for drawing conclusions about a population based on knowledge of a

sample (i.e., regression model)



Important Terms

Measure of central tendency:

• mean, median, mode

- mean is sensitive to outliers

- mean is analogous(유사한) to expected value [E(X)]

Measure of variability & dispersion(확산):

• range, deviation from mean(편차), standard deviation, variance(분산), coefficient of

variance (COV), box plots w/ quartiles

Population vs. Sample



Mean, Median, Mode

• Mean: Average value “E(x)”

• Median: 50% of cumulative curve (Not sensitive to outlier)

• Mode: Most frequently value (PEAK POINT)



Degree of Dispersion

EX. Box plot



Population and Sample

• Suppose that the number of samples from population are “N”;

• The net weight of the concrete samples randomly selected from the

population: 85.4, 85.3, 84.9, and 85.0

https://m.blog.naver.com/sw4r/221021838997



2. How to Measure Uncertain Input Data?

• Uncertain Inputs are essentially a mathematical description of the “frequency”

and “severity” of the variability (e.g. histogram)

• Uncertainty can be often measured by;

• There are two forms in displaying uncertainty

- PDF (Probability Density Function)

- CDF (Cumulative Distribution Function)



PDF and CDF

• PDF(Probability Density Function)

-

• CDF (Cumulative Distribution Function)

-



Discrete and Continuous Distribution

• Discrete: Uncertainty can take only specific value

(1,2,3,4, … → histogram)

- Ex) number of operations computer performs in any given second

• Continuous: Uncertainty can take any value within the some range (15~20)

- Ex) tomorrow temperature, measurements such as height



Discrete and Continuous Distribution

Example

• Discrete casting die

- E(X) = 1(1/6) + 2(1/6) + ……+ 6(1/6) = 3.5

- V(X) = (3.5-1)2 (1/6) + …….+ (3.5-6)2 (1/6) = 2.92

- σ(X) = (2.92)0.5 = 1.71

• Continuous function



3. Concept of Moments



Charactering probability distribution

Skewness



Charactering probability distribution

Flatness



4. Central Limit Theorem (CLT)
– predicting distribution

• For a population with a mean μ and a population standard deviation σ, the

sampling distribution of the mean of all possible sample size generated from

the population will be approximately normally distributed – with the mean of

the sampling distribution equal to μ and the standard deviation equal to  

– assuming the sample size is sufficiently large

- The sum of a large number of independent random variables will tend

toward a normal density function irrespective of their original distributions

- For large n, any reasonable distribution on the “xi”, distribution “y” will tend to

become normal



4. Central Limit Theorem (CLT)
– predicting distribution

• Required conditions for CLT:

- The RV(random variable)s are independent and identically distributed

- The RVs are not identically distributed, but each RV has a small impact on

the total

- The RVs are not independent, but the correlations are small



5. Probability Distribution Models

• To provide reasonable representation of the observed data

• Find a standard distribution that provides close fit to the observed/subjective

probability

• It will be easier for a decision maker to make calculation of probability and its

value when we can model the shape of probability distribution

• Typical types of distributions

- Normal, Lognormal, Binomial, Poisson, Uniform, Exponential, Triangular,

Beta, …



Variables & Distributions

“Random” Variables

• Discrete vs. Continuous

Distributions: how is the total probability distributed among all possible values?

• Probability Mass Function (PMF)

- Discrete distribution for discrete variable (point masses)

• Probability Density Function (PDF)

- Continuous distribution for continuous variable



Variables & Distributions

Types of Distribution I



Variables & Distributions

Types of Distribution II



Variables & Distributions



Variables & Distributions

• Bernoulli: possible values = 1 or 0 (동전의앞/뒤처럼이벤트가 0또는 1밖에일어나지않는분포)

• Binomial: possible outcomes = success or failure (동전을 N번 던졌을 때 P번만큼 앞면이 나올

확률에대한분포.즉,각각이 Bernoulli분포를갖는이벤트에대해 1또는 0이발생할횟수에대한확률분포)

• Poisson: for modeling the # of events that may occur during a given period
(주어진 시간 동안 몇 번 발생. 1시간에 평균 10번의 전화통화가 온다고 할 때 한시간에 12번 전화통화가 올 확률. 시행 횟수가 크고

이벤트가일어날확률이작은 Binomial분포가 Poisson분포에수렴)

- e.g., # of trucks arrived, rate of accidents, etc.



Variables & Distributions

• Uniform: flat (주사위처럼모든결과에대한확률이동일한분포)

• Normal: symmetrical, single model w/ tails (매우많은수의동일확률분포를가진샘플들의산술평균은그

샘플들이어떤분포를따르든결국 Gaussian분포로수렴)

- Widely applicable due to Central Limit Theorem: Sample mean is Normally

distributed for large samples drawn from non-Normal populations

• Geometric: 주사위를 굴렸을 때 한번에 6이 나올 확률, 두 번 만에 6이 나올 확률… 어떤 이벤트가 일어날 때까지의 횟수에 대한

확률,얼마나실패한후에성공할것인가에대한분포가장첫번째에이벤트가발생할확률이가장크다

• Exponential: sloped curve (Binomial의 연속버전이 Poisson, Geometric의 연속버전이 Exponential. 평균 5분만에

전화가 걸려온다고 할 때 다음 전화가 7분 후에 걸려올 확률. 일정시간 동안 발생하는 사건의 횟수가 Poisson 분포를 따른다면 다음

사건이일어날때까지의시간에대한분포는 Exponential분포를따름)

• Lognormal: 변수의 Log값이 Gaussian을나타내는분포. Gaussian을 Exponential한함수

• Beta: distortable, skewable Normal-like, thus very useful (두매개변수알파와베타에따라

[0, 1]구간에서정의되는연속확률분포)



Characteristics of Probability Model

Normal Distribution

• The mean value is most likely

• Symmetrical about the mean

• Bell shape curve resulting from unbiased measurement error

• Lots of applications such as peoples’ height & weight, production rate,

inflation, project’s profitability, quality control

: 68%

: 95%

: 99%

6 sigma: : 99.99966%



Characteristics of Probability Model

Normal Distribution – Example

• A distilled water machine dispenses an amount of water that is Normally

distributed with = 64 oz. and = 0.78 oz. per hour.

• What container size is needed to limit overflow to 0.5% of the time?

Sol.

• c = size of container

•

• “z” value associated with [=0.995]: +2.58 from the statistic table

- This is the number of from associated with 0.995

• Thus, c = 64 + 2.58 (0.78) = 66.01 oz.



Characteristics of Probability Model

Lognormal Distribution

• Natural logarithm of the distribution is a normal distribution

- If X is log-normally distributed with parameters and , then is

normal with same mean and standard deviation

• Upper limit is unlimited, but values cannot fall behind zero

• Distribution is positively skewed, with most values near lower limit

• Applied to the situations where values are positively skewed, but cannot be

negative such as real estate price, stock price, oil reservoir size, labor

productivity



Characteristics of Probability Model

Triangle Distribution

• Lower bound and upper bound are fixed

• Most likely value in this range forms a triangle

• When you have limited data

• Applied when you know the minimum, maximum, and most likely values such

as sales estimate, # of cars sold per week, durations of construction activity

Uniform Distribution

• Only you have Worst Scenario and Best Scenario

• All values in this range is equally likely to occur

• When you know the extreme range and all possible values are equally likely

such as location of a leak on a pipeline, which high wind may approach to the

building



Characteristics of Probability Model

Binomial Distribution

• For each trial, only 2 outcomes are possible, usually success and fail

• The trials are independent

• The probability is the same from trial to trial

• Describe the number of times an event occurs in a fixed number of trials

- such as number of heads in 100 flips of a coin, likelihood of defective sheets

in the production of 500 sheets.

•  ି !

! ି !

where, p is probability of success in each trial, r is number of success, n is

total number of trial



Characteristics of Probability Model

Binomial Distribution – Combinations(조합) / Permutations(순열)

• # of Combinations: # of unordered sets of size r from sample of n objects

- Complication: are you sampling with or without replacement?

• # of Permutations: # of sets with objects in different order with set size r from

a sample of n objects

- Always larger than # of Combinations



Characteristics of Probability Model

Binomial Distribution – Example

• In the project, a defective bolting occurs at random with probability 1/500.

What is probability that the number of defects is 5 in a 500 bolting?

Sol.

 ି ହ ସଽହ



Characteristics of Probability Model

Poisson Distribution

• Describe the number of times an event occur in a given interval (usually time

in Min, hour, day)

• Number of possible occurrences is not limited

• Occurrences are independent

• Applied such as number of telephone calls per minutes, number of trucks

arrived per minutes, number of defects per 100 square yards of concrete slab

•
షഊఒೝ

! 

where, is average arrival rates (defects) per unit



Characteristics of Probability Model

Poisson Distribution – Example

• Past history reveals 3 flaws in producing a 20m steel sheet piles. What is the

probability of 0 flaw in this type of pile?

Sol.

ିఒ  ିଷ 



Characteristics of Probability Model

Exponential Distribution

• When event (such as arrivals, defects, accidents) are purely random, the time

between successive events are described by exponential distribution

• Distribution is not affected by previous events

• Applied such as time between incoming calls, time between truck arrival in

earthwork

•
ଵ

ఓ

ି
ೣ

ഋ

•
ି

ೣ

ഋ

where, is average mean time (
ଵ

ఒ
)



Characteristics of Probability Model

Exponential Distribution – Example

• The historical data indicates that it has been normally recorded 7 days of rains

during May. Estimate the probability of no-rain during any week in May?

Sol.

• Mean time between rain
ଷଵ



• (one week)

• Rain within a week: ି
భలఴ

భబల.మఴ

•



Characteristics of Probability Model

Beta Distribution

• Range is between 0 and a positive value

• Shape can be specified with two positive values, “ ” and “ ”

• Represent variability over a fixed range

• Describe empirical data such as representing the reliability of a company’s

devices



Characteristics of Probability Model

Beta Distribution

• PDF can be shaped with use of parameters and :

- Large : tight distribution; Small : spread-out or flat distribution

ఈ

ଶ
: skewed to left;

ఈ

ଶ
: symmetrical about 0.5;

ఈ

ଶ
: skewed to right

• CDF provided in the figure (with various and )



6. Discrete Approximation

• Most of uncertain quantities are continuous

• Often, we cannot know the exact density function

• We need to transform continuous into discrete trees attempting to apply them

in risk analysis



6. Discrete Approximation

How to apply continuous PDF models to Decision Trees?

• Two alternative approaches:

- Use Monte Carlo simulation instead of decision tree (with its discrete

branches); MC simulation software easily handles continuous functions

- Discretize the PDF in order to ascertain discrete tree branch probabilities

But are you loosing valuable information?



6. Discrete Approximation

How to apply continuous PDF models to Decision Trees?

• How best to convert a continuous distribution into a discrete one? AND How to

control the size of tree?

• Conventional Method

- Middle value is chosen equal to the mean of continuous distribution

- The other point is chosen to minimize the total area

 Usually underestimating

• Discretize the distribution

- Bracket median

- Pearson-Tukey 3 points method



6. Discrete Approximation

Discretizing a PDF – Approach #1

1. Draw the CDF

2. Establish # of intervals for and draw vertical lines so that intervals of are

approximately equal

3. For each interval, draw horizontal line such that areas between CDF and line

(above & below) are equal

4. Determine the estimator of for each interval of from the intersection of

the horizontal line and CDF

5. Cumulative probabilities associated with each estimator of can be read off

the vertical axis at the interval separations

6. Summarize discrete probabilities for each estimator with a histogram



6. Discrete Approximation

Discretizing a PDF – Approach #1



6. Discrete Approximation

Discretizing a PDF – Bracket Median Method



6. Discrete Approximation

Discretizing a PDF – Bracket Median Method

• we can approximate (discretize) the continuous risk profile through a bracket

median method to assign it to the decision tree. The results are as follows:



6. Discrete Approximation

Discretizing a PDF – Bracket Median Method (확률구간을각각 25%씩 4구간으로나눔)



6. Discrete Approximation

Discretizing a PDF – Pearson-Tukey 3 points Method

• Developed by Keefer & Bodily(1983)
• Works best for approximating systematic distributions for easy and simple

measurement
• This method adopts three-point approximation using the median and the 0.05

and 0.95 fractiles
• Based on the approximation, the probability of normal scenario case is 0.63,

and the probability of worst and best scenario is 0.185, respectively



6. Discrete Approximation

Discretizing a PDF – Pearson-Tukey 3 points Method

• 0.05 fractile = 23,825 (p = 0.185)

• 0.50 fractile = 27,500 (p = 0.63)

• 0.95 fractile = 32,326 (p = 0.185)

The resulting approximation is reasonably accurate for a wide variety of

distributions



6. Discrete Approximation

Discretizing a PDF – Pearson-Tukey 3 points Method



Q & A


