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Recall

Risk Determinants & Components
- Risk Determinants: Lack of Time, Information, Control

- Risk Components: Event, Probability, Impact

Project Risk Management Process
(1 Recognize need for risk management
(2 ldentify types & sources of risks
(3 Measure & prioritize risks
(@) Adjust & control risks



PART |

MODELING UNCERTAINTY
- Theory of Probability



Approaches to Probability

Frequentistyiz=sm
* A measure of the likelihood that a particular event will happen

« Based on the assumption the observation of some activity can be repeated

- Roll a die: Frequency of cell “4” is 1/6

Subjectivist=zzo=m)

« Based on the assumption that observation cannot be duplicated

« Probability is the “degree of personal belief” based on whatever information is

available
- Predicting the chance of hurricane: 30%

- Predicting the chance that you will earn “A+” in this course: 60%



Terminology

We can model uncertainty in decision problems by using probability.

Terminology for probability theory

« Experiment: process of observation or measurement; e.g., coin flip

« Outcome: result obtained through an experiment; e.g., coin shows tails

« Sample space: set of all possible outcomes of an experiment; e.g., sample
space for coin flip: S={H, T}

« Sample spaces can be finite or infinite.



Sample Space

Example: Finite Sample Space
» Roll two dice, each with numbers 1~6. Sample space:
S:={(x,y):x€{1,2,..,6} Ay €{1,2,..,6}}
 Alternative sample space for this experiment — sum of the dice:
S, ={x+y:x€{l,2,..,6}Ay€{l2,..,6}}
S, ={z:z€{2,3,..,12}}
Example: Infinite Sample Space
 Flip a coin until heads appears for the first time:

Sy ={H,TH,TTH,TTTH,TTTTH, ...}



Events

Often we are not interested in individual outcomes, but in events. An event

is subset of a sample space.

Example

 With respect to S,, describe the event B of rolling a total of 7 with the two dice.

B ={(1,6),(2,5),(3,4),(4,3),(52),(6,1)}
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Events

Often we are interested in combinations of two or more events. This can
be represented using set theoretic operations. Assume a sample space S
and two events A and B:

- complement A (also A'): all elements of S that are not in A;

» subset A € B: all elements of A are also elements of B;

* union A U B : all elements of S that are in A or B;

* intersection A N B : all elements of S that are in A and B.

These operations can be represented graphically using Venn diagrams.



Venn Diagrams

m\

]

)

AUB



Basic Law of Probability

» Probability must lie between 0 and 1.
- Sure occurrence: 1 (chance of rain in Seoul this year)
- Non-occurrence: 0 (chance that the sun will disappear tomorrow)
* Probability must add up.
- If A&B are mutually exclusive (If only one of several event can occur at
one time): P(A or B) = P(A) + P(B)
- Otherwise, P(A or B) = P(A) + P(B) - P(A and B)

ORO

 Total probability must equal 1: P(S)=1.




Basic Law of Probability

Theorem: Probability of an Event

- If A is an event in a sample space S and 04, 0,, ..., 0,, are the individual
outcomes comprising A4, then P(4) = Y>I*, P(0;)

Example
- 5o = M Vel Yol E B0l g I, 20| LiE 2HE2
A0}oI 7}7

S={(x,y,z):x €{a,b,..,z} Ay € {a,b,..,z} Nz €{a,b, ..., 2}
N =263,n =753
3

~ 0.00711



Exercise #1: Basic Law of Probability

Event “A”: Casting a single die
«A=[1,2,3,4,5,06]

 Two outcomes

- A, = odd outcome =[1, 3, 5]
- A, =lessthan 5 =[1, 2, 3, 4]

- Are they mutually exclusive?

* P(A), P(Ay) =7
* P(A;and A,) =7
* P(AjorA,) =7

If A, =[2, 4, 6], What is the differences?



Basic Law of Probability

Here, we have some definitions,

« Marginal probability=w=z, sx=s). probability at the initial condition (boundary
state) — P(A), P(B)

* Union probabilityz==). P(A or B)

rol
J

 Joint probabilityzs==). P(A and B) — intersection
- a probability that measures the likelihood that two or more events will
happen at the same time
« Conditional probability (|): “|” means “given that another event has already
occurred”
- P(BJA) — probability of event “B” after it is known that some other event “A”

has ALREADY occurred



Basic Law of Probability

« Law of Joint probability

- P(Aand B) = P(A) x|P(B|A)

Marginal probability ¥
« Conditional probability

- P(B|A) = P(A and B)/P(A)

« Complementary
- “A” Complement: A
- P(A) =1-P(A)

» Total probability
- P(A) =P(ANnB) +P(AXB)

= P(Band A) =

= P(B) x P(A|B) + P(B) x P(A|B)

P(B) x P(A|B)




Basic Law of Probability

* Probability Tree

Uncertain Event

P(A)

Uncertain Event

P(A)

Marginal, Conditional, and Joint Probability Configuration




Basic Law of Probability

* Probability Tree: We can FLIP it!!!

Uncertain Event

P(B)

Uncertain Event

P(B)

Marginal, Conditional, and Joint Probability Configuration




Exercise #2: Conditional Probability

« A manufacturer knows that the probability of an order being ready on time is
0.80, and the probability of an order being ready on time and being delivered
on time is 0.72. What is the probability of an order being delivered on time,
given that it is ready on time?

R: order is ready on time; D: order is delivered on time.
P(R) = 0.80
P(RND) =0.72

P(RND) 0.72
P(R)  0.80

P(D|R) = = 0.90



Exercise #3: Marginal Probability

 In an experiment on human memory, participants have to memorize a set of
words (B1), numbers (B2), and pictures (B3). These occur in the experiment
with the probabilities; P(B,;) = 0.5,P(B,) = 0.4,P(B;) = 0.1.

* Then participants have to recall the items (where A is the recall event). The
results show that P(A4|B,) = 0.4, P(A|B;) = 0.2, P(A|Bs) = 0.1. Compute P(A),
the probability of recalling an item.

- By the theorem of total probability:



Exercise #4: Joint, Marginal, & Conditional Prob.

* Proportions for a sample of a certain university students (N=592).

Hair Color

Black Brunette Blond

Eye Color
Blue 0.03 0.14 0.16
Brown 0.12 0.20 0.01
Hazel/Green 0.03 0.14 0.04

0.18 0.48 0.21

Red

0.03

0.04

0.05

0.12

0.36

0.37

0.27



Exercise #4: Joint, Marginal, & Conditional Prob.

* Proportions for a sample of a certain university students (N=592).

- These are the joint probability: P(Eye Color, Hair Color)

Hair Color
Black Brunette Blond Red
Eye Color
Blue 0.36
Brown 0.37
Hazel/Green 0.27

0.18 0.48 0.21 0.12



Exercise #4: Joint, Marginal, & Conditional Prob.

* Proportions for a sample of a certain university students (N=592).

- Example: P(Eye Color=Brown, Hair Color=Brunette)=0.20

Hair Color
Black Brunette Blond Red
Eye Color
Blue 0.03 0.14 0.16 0.03 0.36
Brown 0.12 - 0.01 0.04 0.37
Hazel/Green 0.03 0.14 0.04 0.05 0.27

0.18 0.48 0.21 0.12



Exercise #4: Joint, Marginal, & Conditional Prob.

* Proportions for a sample of a certain university students (N=592).

- These are the marginal probability: P(Eye Color)

Hair Color
Black Brunette Blond Red
Eye Color
Blue 0.03 0.14 0.16 0.03
Brown 0.12 0.20 0.01 0.04
Hazel/Green 0.03 0.14 0.04 0.05

0.18 0.48 0.21 0.12



Exercise #4: Joint, Marginal, & Conditional Prob.

* Proportions for a sample of a certain university students (N=592).

- Example: P(Eye Color = Brown) = Y y4ir color P(Eye Color = Brown, Hair Color)
=0.12 + 0.20 + 0.01 + 0.04 = 0.37

Hair Color
Black Brunette Blond Red
Eye Color
Blue 0.03 0.14 0.16 0.03 0.36
Brown 0.12 0.20 0.01 0.04 -
Hazel/Green 0.03 0.14 0.04 0.05 0.27

0.18 0.48 0.21 0.12



Exercise #4: Joint, Marginal, & Conditional Prob.

* Proportions for a sample of a certain university students (N=592).

- These are the marginal probability: P(Hair Color)

Hair Color
Black Brunette Blond Red
Eye Color
Blue 0.03 0.14 0.16 0.03 0.36
Brown 0.12 0.20 0.01 0.04 0.37
Hazel/Green 0.03 0.14 0.04 0.05 0.27



Exercise #4: Joint, Marginal, & Conditional Prob.

* Proportions for a sample of a certain university students (N=592).

- Example: P(Hair Color = Brunette) = YEye color P(Hair Color = Brunette, Eye Color)

= 0.14 + 0.20 + 0.14 = 0.48

Hair Color
Black Brunette Blond Red
Eye Color
Blue 0.03 0.14 0.16 0.03 0.36
Brown 0.12 0.20 0.01 0.04 0.37
Hazel/Green 0.03 0.14 0.04 0.05 0.27

0.18 - 0.21 0.12



Exercise #4: Joint, Marginal, & Conditional Prob.

* Proportions for a sample of a certain university students (N=592).
To obtain the conditional probability P(Eye Color|Hair Color = Brunette), we
do two things:

(1 Reduction: we consider only the probabilities in the brunette column;

Hair Color
Black Brunette Blond Red
Eye Color
Blue 0.03 0.16 0.03 0.36
Brown 0.12 0.01 0.04 0.37
Hazel/Green 0.03 0.04 0.05 0.27

0.18 0.48 0.21 0.12



Exercise #4: Joint, Marginal, & Conditional Prob.

* Proportions for a sample of a certain university students (N=592).
To obtain the conditional probability P(Eye Color|Hair Color = Brunette), we
do two things:

(1 Reduction: we consider only the probabilities in the brunette column;

Hair Color
Black Brunette Blond Red
Eye Color
Blue 0.14
Brown 0.20
Hazel/Green 0.14

0.48



Exercise #4: Joint, Marginal, & Conditional Prob.

* Proportions for a sample of a certain university students (N=592).

To obtain the conditional probability P(Eye Color|Hair Color = Brunette), we

do two things:

(2 Normalization: we divide by the marginal P(Brunette), since all the

probability mass is now concentrated here.

Hair Color
Black Brunette Blond Red
Eye Color
Blue 0.14/0.48
Brown 0.20/0.48
Hazel/Green 0.14/0.48

0.48



Exercise #4: Joint, Marginal, & Conditional Prob.

* Proportions for a sample of a certain university students (N=592).

To obtain the conditional probability P(Eye Color|Hair Color = Brunette), we

do two things:

Example: P(Eye Color = Brown|Hair Color = Brunette) = % = 0.417

Hair Color
Black Brunette Blond Red
Eye Color
Blue 0.14/0.48
Brown 0.20/0.48
Hazel/Green 0.14/0.48

0.48



Exercise #5: Joint, Marginal, & Conditional Prob.

* A geotechnical database gives the following probabilities for certain

subsurface conditions;

7 (11

Mutually exclusive condition: “rock” & “soil”, “wet” & “dry”
P(rock) = 0.3

P(common soil) = 0.7
P(wet and rock) = 0.1

P(dry and common soil) = 0.2
1) Find the marginal probability of “wet” condition: P(wet)
2) Find the marginal probability of “dry” condition: P(dry)

3) Find the union probability of “wet or rock” conditions: P(wet U rock)



Exercise #5: Joint, Marginal, & Conditional Prob.

Conditions e :
* P(rock) = 0.3, P(common soil) = 0.7 g P(dry/rock) ?
» P(wet n rock) = 0.1 P(wet/soil) ?
* P(dry n common soil) = 0.2 P(soil)=0.7
P(dry/soil) 02
Sum=1.0

Answers




Exercise #6: Joint, Marginal, & Conditional Prob.

« Suppose that three strength tests are to be performed on the sample of 100
concrete cylinders. If there are 10 defective cylinders out of 100, what is the
probability that all three tests will succeed? What is the probability that all

three tests will fail? What is the probability that two tests will succeed?



Exercise #6: Joint, Marginal, & Conditional Prob.

P(A3=5)=88/98

P(A2=S)=89/99

P(A3=F)=10/98
P(A1=5)=90/10
P(A3=5)=89/98
P(A2=F)=10/99

P(A3=5)=89/98
P(A1=F)=10100

P(A2=5)=90/99

P(A2=F)=9/99 .<
P(A3=F)=8/98



Exercise #7: Joint, Marginal, & Conditional Prob.

« On the construction project, there is either a good weather or a bad weather
condition. Depending on which weather condition controls the project, time
schedule may be either early, on time, and late. We define the following
events:

- W1: bad weather

- W2: good weather

- A1: ahead of schedule
- A2: on time

- A3: behind of schedule

* The joint probabilities are:

- W1 & A1=0.06; W1 &A2=0.12; W1 & A3 =0.22
- W2 & A1=0.39; W2 & A2 =0.18; W2 & A3 = 0.03



Exercise #7: Joint, Marginal, & Conditional Prob.

1. What are the three conditional probabilities given a bad weather

condition?

2. Given you finish the project ahead of schedule, what is the probability

you had a good weather condition?



Exercise #7: Joint, Marginal, & Conditional Prob.

Joint probability

A1(EARLY 0.06
. A ON TN 0.12

W1 (BAD)
A3(BEHIND) 0.22
A1(EARLY) 0.39
W2 (GOOD) ._M_‘ : 018
A3(BEHIND) 0.03

*P(W1)=0.06+0.12+0.22=040
* P(A1/W1) =0.06/0.40 = 0.15



Exercise #7: Joint, Marginal, & Conditional Prob.

Joint probability

Flipping!!!

W1 (BAD) o
W2 (GOOD) 0:39
0.12
0.18

0.03
*P(A1)=0.06 + 0.39 =045
* P(W2/A1) =0.39/0.45 = 0.87...by the same way!



Exercise #8: P(A|B) vs. P(B|A)

Disease Symptoms (from Lindley 2006)

 Doctors studying a disease “D” noticed that 90% of patients with the disease

exhibited a symptom “S”.

7

 Later, another doctor sees a patient and notices that she exhibits symptom “S”.
 As a result, the doctor concludes that there is a 90% chance that the new

patient has the disease “D”.

While P(S|D) = 0.9, P(D|S) might be very different!!

Source: Lindley, Dennis V. (2006), Understanding Uncertainty. Wiley, Hoboken, NJ, US.



More Probability Relations...

* Independent Probability
- P(BIA) = P(B)
- P(A and B) = P(A) x P(B|A) = P(A) x P(B)

« Conditional Independence
- P(A[B,C) = P(A|C)
- P(A,B| C) = P(A|C) P(B|C)

A, B are independent

A, B are conditionally
independent given C



Independence

* Definition: Independent Events
- Two events A and B are independent if:
P(ANB) = P(4) x P(B)
- Intuition: two events are independent if knowing whether one event
occurred does not change the probability of the other
- Note that the following are equivalent:

P(ANB) = P(4) x P(B)
AN ONO
P(B|A) = P(B)

A, B are independent



Exercise #9: Independence

« A coin is flipped three times. Each of the eight outcomes is equally likely.
- A: heads occurs on each of the first two flips
- B: tails occurs on the third flip
- C: exactly two tails occur in the three flips

« Show that A and B are independent, B and C dependent.

A = {HHH,HHT} P(A) = g — %

B = {HHT,HTT,THT,TTT} P(B) = g — %

C = {HTT,THT, TTH} P(C) ==

AN B = {HHT) P(AnB)—%

BN C = {HTT, THT} P(Bnc)zgz_
P(A)P(B) = i % = % = P(A N B), hence A and B are independent.
P(B)P(C) = % % = 116 + P(B N C), hence B and C are dependent.



Exercise #10: Independence

+ A simple example of two attributes that are independent: the suit and value of cards in a
standard deck: there are 4 suits {¢, &, & ¥} and 13 values of each suit {2, - - - , 10, J, Q,
K, A}, for a total of 52 cards.

« Consider a randomly dealt card:

- Marginal probability it's a heart:

_ 13 1
P(suit =) =53 =12

- Conditional probability it's a heart given that it's a queen:

1
P(suit = ®|value = Q) = T

In general, P(suit|value) = P(suit), hence suit and value are independent



Exercise #11: Independence

« We can verify independence by cross-multiplying marginal probabilities too. For every suit
sc{®, S & ¥ andvalueve {2, ---,10,J, Q, K, A}

- P(suit = s, value = v) = — (in a well-shuffled deck)

- P(suitzs)zgzi

- P(value = v) =512=1—3

1 1
X — ==

- P(suit = s) X P(value = v) = - X = = —

A=

* Independence comes up when we construct mathematical descriptions of our beliefs
about more than one attribute: to describe what we believe about combinations of
attributes, we often assume independence and simply multiply the separate beliefs about

individual attributes to specify the joint beliefs.



Conditional Independence

 Definition: Conditionally Independent Events
- Two events A and B are conditionally independent given event C iff:
P(A,B|C) = P(A|C) x P(B|C)
- Intuition: Once we know whether C occurred, knowing about A or B doesn't
change the probability of the other.

- Note that the following are equivalent:
P(A,B|C) = P(A|C) x P(B|C) e
P(A|B,C) = P(A|C)

P(B|A,C) = P(B|C) ° e

A, B are conditionally
independent given C



Exercise #12: Conditional Independence

* In a noisy room, | whisper the same numbern € {1, ..., 10} to two people A and B on
two separate occasions. A and B imperfectly (and independently) draw a conclusion
about what number | whispered. Let the numbers A and B think they heard be n, and n,,
respectively.

« Are n, and n, independent (a.k.a. marginally independent)?

- No.
- E.g.,, we'dexpect P(n, =1|n, =1) > P(n, = 1).

« Are n, and n, conditionally independent given n?

- Yes: if you know the number that | actually whispered, the two variables are no longer
correlated.
- Eg,.Png=1np, =1,n=2) =P(ng,=1|n=2)



Assignment #3-1. Conditional Probability

A: Weather ° e

B: Labor Skill

C: Productivity

D: Resource Delivery e e
E: Schedule e

OtcH P(C1)2t P(E2, C2, D1)E Hl&tolAI L
1. P(C=C1): probability of productivity “high”
2. P(C=C2 and D=D1 and E=E2): Joint Prob.

EVENT PROBABILITY
Al 0.7
A2 0.3
Bl 0.4
B2 0.6
D1 0.4
p2 0.6
C1/A1, B1 (conditional probability 0.9
of G1 given Al & B1)

C1/AT1, B2 0.8
C1/A2, Bl 0.6
C1/A2, B2 0.5
C2/A1, Bl 0.1
C2/A1, B2 0.2
C2/A2, B 0.4
C2/A2Z, B2 0.5
E1/C1, DI 0.5
E1/C1, D2 0.4
E1/C2, DI 0.3
E1/C2, D2 0.2
E2/C1, DI 0.5
E2/C1, D2 0.6
E2/C2, D1 0.7
E2/C2, D2 0.8




Assignment #3-2. Soldier’s Problem

* A soldier is taking an attack in which he is allowed three shots at a target
airplane. The probability of his first shot hitting the plane is 0.1, that of
his second shot is 0.3, and that of his third shot is 0.5. The probability of
the plane crashing after one hit is 0.1; after two hits, the probability of
crashing is 0.5, and the plane will crash for sure if hit three times. The
attack is over when the soldier has fired all three shots or when the
plane crashed.

1) What is the probability of the soldier shooting down the plane?
2) What are the marginal probabilities of O hits, 1 hit, 2 hits, and 3 hits?

3) What is the mean number of shots required to shoot down the plane?



PART Il

MODELING UNCERTAINTY
- Theory of Probability Il



Bayes’ Theorem

« Based on the symmetry of the definition of conditional probability, we can

predict the posterior probability based on the prior information

P(ANB) = P(A) x P(B|A) = P(Bn A) = P(B) x P(A|B)
By the symmetry, P(4) X P(B|A) = P(B) X P(A|B)

Probability of “A”

P(A) X P(B|A

.~ P(A|B) = ( )P(B)( 4) E> given the occurrence of
“BJ!

where, P(B) = P(B N A) + P(B n A) = P(A) x P(B|A) + P(A) x P(B|4)



Bayes’ Theorem

* P(A): Prior Probability (Base Rate)

— This is assigned before any empirical data is obtained.

* P(A|B): Posterior Probability

— This can be estimated based on prior probability and given new data on

conditional events from historical data.



Bayes’ Theorem

Example #1

A construction company operates 3 batch plants (A, B, C) for producing
concrete used in a highway project. Each plant is producing 35%, 20%, and
45% of the total quantity, respectively. According to the past historical data,
the percentages of defective concretes from each plant are 1%, 1.3%, and
2%, respectively. If you test the samples randomly to confirm the quality of
concrete produced,
- What is the marginal probability that the sample is defective?
- What are the conditional probabilities that any defective concrete was

supposed to be produced from plant A, B, or C?



Bayes’ Theorem

Joint Probability

Example #1

P(S|A) = 0.99 P(ANS) = 0.35 x 0.99 = 0.3465

P(ANF) =035 x 0.01 = 0.0035
P(“A” plant) = 0.35

P(S|B) = 0.987 P(BNS)=0.20 x 0.987 = 0.1974
P(“‘B” plant) = 0.20

P(F|B)=0.013 P(BNF)=0.20 X 0.013 = 0.0026
P(“C” plant) = 0.45

P(S|C) =0.98 P(CNS)=0.45x%x0.98 =0.4410

P(F|C) = 0.02
« P(Fail) =0.0035 + 0.0026 + 0.0090 = 0.0151 =1.51%
 P(Success)=1-0.0151 =0.9849 = 98.49%

P(CNF)=0.45x0.02=0.0090



Bayes’ Theorem

Joint Probability

Example #1 P(ANS) = 0.3465
) Flipping
P(BNS) =0.1974
P(S) = 0.9849

P(CNS) = 0.4410

P(ANF) = 0.0035
P(F) = 0.151

P(BJF) =7

o P(BNF)=0.0026

=7
P(CIF) =" P(C N F) = 0.0090

- P(A|F)=0.0035/0.0151=0.23
+ P(B | F)=0.0026/0.0151=0.17
» P(C | F)=0.0090/0.0151 = 0.60 — High Probability



Bayes’ Theorem

Example #1

- P(A| F)=0.0035/0.0151 =0.23

o
/ ~
\

(P(AlF)
\~r,

'

(P(FlA),xIP(A), 0.01 x 0.35 0.0035

.

P(F)

00151 00151

Prior Probability (ASSIGNED BASE RATE, “A” plant)

Given conditional probability from historical data
(1% defective rate)

Posterior Probability (Estimated/Predicted rate)



Bayes’ Theorem

Example #2

« Mr. Smith was living in an apartment in a certain city.

One day, the door was open when coming back to his apartment.

He thought the probability of theft was highly probabile.

Based on the past history in this city, if the probability of “door open” given
“no-theft” and “door open” given “theft” are supposed to be 5% and 100%

respectively.

Also, the base rate of theft probability in this city is 0.1%,

- What is the probability of “theft” when the “door was open” in this case?



Bayes’ Theorem

Example #2
P(T1) = 0.001 (Base rate: theft)

P(O1|T1)=1.0

P(T1) = 0.001 P(02[T1)= 0.0

P(T2) = 0.999 P(O1|T2) = 0.05

No theft

> By Flipping

P(O2|T2) = 0.95

Joint Probability

P(T1nO01) =0.001 x 1.0 = 0.001 \

P(T1n02) =0.001 x0.0=0.0 P(O1)

P(T2Nn 01) = 0.999 x 0.05 = 0.04995/

P(T2Nn 02) = 0.999 x 0.95 = 0.94905



Bayes’ Theorem

Example #2 . .
Joint Probability

P(T1|01) = ? P(T1n 01) = 0.001

P(O1) = 0.05095

Open P(T2n 01) = 0.04995

P(02) = 0.94905 P(T1n02) = 0.0

Closed

P(T2|02) = ? P(T2 N 02) = 0.94905

« P(T1|01) =[P(01|T1) x P(T1)]/P(01) =1 X% 0.001/0.05095 = Only 1.96%
« Why? — This city is very safe!!
Posterior probability is highly sensitive to the prior probability.



Bayes’ Theorem

Example #2
- Sensitivity analysis on the prior probability

PRIOR POSTERIA

0.001 1.96%

0.01 16.81%

0.05 51.28% | sxime

0.1 68.97% | soo0x //

0.2 83.33% | P07

0.4 93.02% | . o |l

0.6 96.77% | 0.0 M

08 9877% 0 0.2 0.4 0.6 0.8 1
1 100.00%

If this city is unsafe, the posterior probability will be highly anticipated.



Bayes’ Theorem

Example #3

 Past historical data gives (Information from previous data)
- Under Actual rain, weather forecast was correct (rain) = 0.9
- Under Actual sunny, weather forecast was incorrect (rain) = 0.2
* Probability of rainy day = 0.4 (base rate: prior probability)
P(A1) = 0.4 P(B1|A1)=0.9 P(A1nB1) =0.36

ACTUAL WEATHER
WEATHER FORECAST

P(A1 N B2) = 0.04 Q;’ATA
REDICTlON

P(A1) =04
Rain

P(B2|A1) = 0.1

P(A2 N B1) = 0.12

P(A2) = 0.6 P(B1/A2)=0.2
Sunny
P(B2|A2) = 0.8 P(A2 N B2) = 0.48
P(B1|A1) x P(A1) Probability of rain (A1) given that
P(A1|B1) = P(B]) > the weather forecast is rainy (B1)

tomorrow?



Bayes’ Theorem

Example #3

j‘> Flipping P(A1|B1) P(A1NnB1) =0.36

=0.48
Weather Forecast;

P(A2 N B1) = 0.12

P(B2) = 0.52 P(A1 N B2) = 0.04

Weather Forecast: Sunny

P(A2|B2) = P(A2 N B2) = 0.48

« P(A1|B1) = [P(B1|A1) x P(A1)]/P(B1) = 0.36/0.48 = 0.75 — Bayes’ Theorem
e P(A2|B1) =1-10.75 = 0.25



Bayes’ Theorem

Example #4

* Frequently, people use tests to infer knowledge about something. The
following example is the use of a blood test to see if a person has a colon
cancerm=g) or not. The test results reflect current knowledge of the colon
cancer characteristics, and test accuracy may be a matter of concern.
Suppose that a number of people (e.g. 1,000 persons) have taken a blood test

with the following results;
- Colon cancer (5%): positive blood test result (80%); negative blood test result (20%)

- No colon cancer (95%): positive blood test result (30%); negative blood test result (70%)

 If a person has taken this test and the result turns out to be positive, what is

the probability that he or she has a colon cancer? Is it a reliable test?



Bayes’ Theorem

Example #4
Correct
P(T1|C1)=0.8 P(T1nC1) =0.04
P(C1) = 0.05 \ P(T1)
Colon Cancer (Bas P(T2|C1)=0.2 P(T2nC1) =0.01 = 0.04+0.285
=0.325

P(C2) = 0.95 P(T1]C2) = 0.3 P(T1NC2) = 0.285

No-Colon Cancer

P(T2|C2) = 0.7
Correct

P(T2 N C2) = 0.665

By Bayes’ Theorem

P(T1|C1) x P(C1) 0.8 x 0.05
P(T1) ~0.325

P(C1|T1) = =0.123 Only 12.3%!!



Bayes’ Theorem

Example #4

* If you can update the likelihood of test results from the improved test quality:
- prior probability of colon cancer: 15%
- positive blood test result given colon cancer: 85%
- negative blood test result given no-colon cancer: 75%

 How do you update the posterior probability ?

Initial posterior Probability ‘ Updated Posterior Probability
=12.3% =24.4%

Still, the reliability of this blood test seems to be very low!!



Bayes’ Theorem

Example #5: Equipment Selection

« A construction company is considering the purchase of a new compactor.
There is also the possibility of rebuilding the existing one or managing the old
compactor without rebuilding.

« The compactors perform differently with two types of common material. When
the material is good, both rebuilt and new compactor work much faster, but
they will not perform adequately when the material is of poor quality.

« The payoffs are (thousands US$);

Material Type | New compactor Rebuild Old
Good 30 12 8
Bad -15 3 6

* It is also possible to make a preliminary test at a cost of $600, but
unfortunately, it is not infalliblezz szix 2x).




Bayes’ Theorem

Example #5: Equipment Selection

* The true soil quality can be determined only during the construction process.
In the past, the test has been characterized by the following conditional

probabilities;

) Test results before construction
Actual Quality during
construction Good soil Bad soil
Good 0.8(correct) 0.2
Bad 0.3 0.7(correct)

 Past record shows that there is a 35% chance of getting good soil — base rate.

- Find the appropriate decision based on Expected value criteria

- Should the company perform a test?



Bayes’ Theorem

Example #5: Equipment Selection

Actual From historical data
Soil

(quality of test)
P(T|A)

True Soil
Quality

Prediction (Bayes’ Theorem)
P(A|T)=P(T|A) x P(A) / P(T)

Test Soil




Bayes’ Theorem

Example #5: Equipment Selection

P(A1) = 0.35 P(T1|AT) = 0.8

P(A1NT1) = 0.28 \

P(A1) = 0.35
P(A1NT2) = 0.07 P(T1) = 0.475

Good P(T2|A1)=0.2

P(A2) = 0.65 P(T1]A2) = 0.3 P(A2nT1) =0.195

Bad

> By Bayes’ Theorem

P(A,/T,) = P(TJ/A,) x P(A,)/ P(T;) = 0.8 x 0.35 / (0.35x0.8 + 0.65 x 0.3) = 0.589

P(T2|A2) = 0.7 P(A2 N T2) = 0.455

-» posterior probability that true soil will be good given the test result is good soil.

P(A,/T,)=1-0.59 = 0.411
P(A,/T,) = P(T,/A,) x P(A,) / P(T,) = 0.2 x 0.35 / (0.35x0.2 + 0.65 x 0.7) = 0.133

P(A,/T;)=1-0.13 = 0.867



Bayes’ Theorem

Example #5: Equipment Selection By Bayes’ Theorem

. By Flipping: 1 "

P(A1|T1) = 0.589 P(A1NT1) =0.28

P(T1) = 0.475

Good Test Res P(A2|T1) = 0.411

P(A2NT1) = 0.195

P(T2) = 0.525 P(A1]T2) = 0.133 P(A1nT2) = 0.07

Bad Test Result

P(A2[T2) = 0.867 P(A2 N T2) = 0.455

F---



Bayes’ Theorem

Example #5: Equipment Selection - Take the test or not?

Good soil
Bad soil
Good test result
0.475
Good soil
Bad soll

Bad test result
8.15 0.525

Test? 0.35 ____—» Good soil
065 — Bad soil
({13 —
‘»
—» GGood solil

— Bad soill



Why? — more updated information

Example #5: Equipment Selection - Take the tes}m'.nnt.’{
0.589
11.505 k$ N =
ew

Good test result
0.475

Good soil
Bad soll

Good soil
Bad soll

Bad test result
8.15 0.525

Good soil
€ 05 > Badsoi

- - —
{3

—>
—» Good soll

— Bad soill




Bayes’ Theorem - Bayesian Updating

« Bayes’ Theorem is useful in updating prior probability (i.e., P(A)) given new

data on conditional events.

P(A) x P(B|A)
P(B)

P(A|B) =

where, P(B) = P(B N A) + P(B n A) = P(A) x P(B|A) + P(A) x P(B|4)

. So, you can update P(A) when given that B or B has occurred.



Bayes’ Theorem - Bayesian Updating

* |In soil test & equipment selection problem,
- Initial prior probability of good soil P(A1) = 0.35
- Initial prior probability of bad soil P(A2) = 0.65
* If we have data to predict the quality of soil based on the previous soil test, we
can update the P(A1) or P(A2) given the results of soil test,
 That is;
- P(A1|good test) = 0.589: accuracy increased from 0.35 to 0.589
- P(A2|bad test) = 0.867: accuracy increased from 0.65 to 0.867



Bayes’ Theorem - Bayesian Updating

« If we will collect more data to update the prior probabilities and their
conditional states, i.e.;
- Initial prior probability of good soil P(A1) = 0.40, bad soil P(A2) = 0.60
- P(good test/A1) =0.80 — 0.85
- P(bad test/A2) = 0.70 — 0.75
« S0, we can predict the quality of soil more accurately based on the updated
data (soil test results) through Bayes’ theorem.
 That is;
- P(A1|good test) = 0.694: accuracy increased from 0.589 to 0.694
- P(A2|bad test) = 0.882: accuracy increased from 0.867 to 0.882
« We can say it as “Bayesian updating” to update the uncertainties.

* This sequential updating process will continue indefinitely!



PART Il

MODELING UNCERTAINTY
- Measurement of uncertain variables



1. Probability vs. Statistics

» Probability  Statistics
— Deductive — Inductive reasoning
reasoning: use via inferential
knowledge of a statistics:
population to understand the
understand a population by
sample studying a sample

e o
° o 0 @ 2]
&\ ool @ E
0 o8 @ pt
e o

What will it be? Probability of failure Generalize

Iimﬂﬂﬂ



Types of Statistics

 Descriptive Statistics

- for organizing & summarizing data

» Inferential Statistics / Inductive Reasoning

- for drawing conclusions about a population based on knowledge of a

sample (i.e., regression model)



Important Terms

Measure of central tendency:
 mean, median, mode
- mean is sensitive to outliers

- mean is analogouss s to expected value [E(X)]

Measure of variability & dispersion:
* range, deviation from meanx), standard deviation, variance=«), coefficient of

variance (COV), box plots w/ quartiles

Population vs. Sample



Mean, Median, Mode

« Mean: Average value “E(x)”
* Median: 50% of cumulative curve (Not sensitive to outlier)

* Mode: Most frequently value (PEAK POINT)

Mode
| Median
\ ean In normal distribution,
6.4 ol | © - three values are all
Identical
100 200 300 400

100%

o

50%

0%

100 200 300 400



Degree of Dispersion

EX. Box plot
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Po PuU lation and Sam P le https://m.blog.naver.com/sw4r/221021838997

» Suppose that the number of samples from population are “N”;

1 -
Population Mean = = Z x, =X

_ _ 1 — , Population is more spread
Population Variance = ﬁZ(xj — A than samples

« The net weight of the concrete samples randomly selected from the
population: 85.4, 85.3, 84.9, and 85.0

5. 5 9+85
Population I\df:au_i > X, T atahis G =853

N~ 4

. , 1 85.4—85.3)> +(85.3-85.3)> +(84.9-85.3)" +(85-85.3)°
Population Varlan-:e:ﬁ?{ -—X) _( )+ ’l +1( 3y 3)

”
0 6—0087

3




2. How to Measure Uncertain Input Data?

* Uncertain Inputs are essentially a mathematical description of the “frequency”
and “severity” of the variability (e.g. histogram)

» Uncertainty can be often measured by;

— Mean = E(X) — measure of central tend.
— Standard Deviation = o(X) =V (X) = measure of dispersion
o(X)

— COV:TX) (coefficient of variance) - measure of spread

* There are two forms in displaying uncertainty
- PDF (Probability Density Function)

- CDF (Cumulative Distribution Function)



PDF and CDF

 PDF(Probability Density Function)

- y=/()
« CDF (Cumulative Distribution Function)

- F= jf(x)dx

V(x) =[] f(x)d
¥(200)=0.1+0.6=0.7

100 200 300 400 01| ____

100 200 300 400
<CDF>

<P D F>



Discrete and Continuous Distribution

* Discrete: Uncertainty can take only specific value

(1,2,3,4, ... — histogram)

- EX) number of operations computer performs in any given second
ECO)= Y axPix)

— V(X)=2 (x,— E(X))" xP(x,)

.
o

« Continuous: Uncertainty can take any value within the some range (15~20)

- Ex) tomorrow temperature, measurements such as height

E(X)— Ixx £(x)dx
V(X)=[(x=EX)* f(x)dx




Discrete and Continuous Distribution

Example

 Discrete casting die
- E(X)=1(1/6) + 2(1/6) + ...... +6(1/6) = 3.5
- V(X) = (3.5-1)2 (1/6) + ....... + (3.5-6)% (1/6) = 2.92
- 0(X) =(2.92)%° =1.71

e Continuous function
-f(x)=ae™
1

-E(X) = [ x f(x)dx = J‘xx ae Tdx=—
i a

- 1.y 1
V(X)=|(x——)"ae Ydx=—
: a a-




3. Concept of Moments

i We have Considered n™ centralmoment
Only two Values to M :J(x—p)”f(x)dx—continuous
estimate uncertainty n, =2 (x, — )" xp(x,) — discrete
( mean & varian Ce) - First central moment(mean value)

* In general, we need oy = 2%, xP(x;) ~ discrete
Concept Of moments = fo(x)dx—continumus
— First central moment: L

mean - 2™ moment

|L, = variance

— Second: variance o
G =,4/i, (standarddeviation)

— Third: skewness (right or )
left?) -3™ moment

— Fourth: flatness (uniform or '}':% (skewness)
central peak?)



Charactering probability distribution

Skewness

y=4 | 7 <0
Positively skewed : Negatively skewed

-

H, = medan



Charactering probability distribution

Flathess

O

L,

p4/ O = coefficient of kurtosis

The higher, the flatter

M, =mean



4. Central Limit Theorem (CLT)
— predicting distribution

 For a population with a mean y and a population standard deviation o, the
sampling distribution of the mean of all possible sample size generated from
the population will be approximately normally distributed — with the mean of
the sampling distribution equal to y and the standard deviation equal to o/+/n
— assuming the sample size is sufficiently large
- The sum of a large number of independent random variables will tend
toward a normal density function irrespective of their original distributions

- For large n, any reasonable distribution on the “x;°, distribution “y” will tend to

become normal

|
¢ 0 0.5

NonMNormal Distribution of X



4. Central Limit Theorem (CLT)
— predicting distribution

Y
$e

7~

N

Population Sampling distribution
Distribution &t e riean

» Required conditions for CLT:

- The RV(random variable)s are independent and identically distributed

- The RVs are not identically distributed, but each RV has a small impact on

the total
- The RVs are not independent, but the correlations are small



5. Probability Distribution Models

To provide reasonable representation of the observed data

Find a standard distribution that provides close fit to the observed/subjective

probability

It will be easier for a decision maker to make calculation of probability and its

value when we can model the shape of probability distribution

Typical types of distributions

- Normal, Lognormal, Binomial, Poisson, Uniform, Exponential, Triangular,

Beta, ...



Variables & Distributions o
30:25: "\ e A

. [ ||
“Random?” Variables 25 HheD 2?'\_
/ " 00

0.15f

. . |/ \ 2
- Discrete vs. Continuous Lo Sl X N
005t / R LY °

/ . |
0.00 ESUN-LSVPNS T VOPPRL- TN ufc : 22

Distributions: how is the total probability distributed among all possible values?
* Probability Mass Function (PMF)

- Discrete distribution for discrete variable (point masses)
» Probability Density Function (PDF)

Probability density function

- Continuous distribution for continuous variable el v




Variables & Distributions

Types of Distribution |
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Variables & Distributions

Types of Distribution li
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Variables & Distributions

Unifar  — Bernoulli
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Variables & Distributions

« Bernoulli: possible values =1 or 0 (szo eysizia o=t 0 £= 1 801 LOIUX 2= 22)

* Binomial: possible outcomes = success or failure ==

EEN et 2. =, 2210| Bernoulli 222 2= O|HIEN Oiol 1 £= 00| &

rulo
L
_L
2
o
=]
U
e
2
ou
HO
e
=)
C

rdS S0l Uit 28 =52)

« Poisson: for modeling the # of events that may occur during a given period
(FAHE AlZ2E S0t

OlgEIL A

O

ﬂﬂﬂl )

H S 1AM B2 10812 MotS3t)
ol A

P
2 Binomial & X J} Poisson & L0l =&)

S
=

2 O
- e.g., # of trucks arrived, rate of accidents, etc.



Variables & Distributions

o Uniform: flat (=isix2 2= 200 gs 250 =28 =)

s
uin
10
[z
>
g
M
ro
|

* Normal: symmetrical, single model w/ tails (s 2e 20 s2 gg=z= 51z o

MES0 HY 2EZE 2= 2= Gaussian L2 +=3)

- Widely applicable due to Central Limit Theorem: Sample mean is Normally

distributed for large samples drawn from non-Normal populations
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» Beta: distortable, skewable Normal-like, thus very useful (= oei+ emer sieron mer
)

Hl

[0, 1] P2H0IA Holgl= H=stER



Characteristics of Probability Model

Normal Distribution
* The mean value is most likely
« Symmetrical about the mean
 Bell shape curve resulting from unbiased measurement error
« Lots of applications such as peoples’ height & weight, production rate,
inflation, project’s profitability, quality control
-u—o<Y<u+o:68%
-u—1960 <Y < u+ 1960 :95%
- u—2570 <Y <u+2570:99%

6sigma: u—60 <Y < u+60:99.99966% * ° - ° @ . ¢ L ¢



Characteristics of Probability Model

Normal Distribution — Example
« A distilled water machine dispenses an amount of water that is Normally
distributed with u = 64 oz. and o = 0.78 0z. per hour.

 What container size is needed to limit overflow to 0.5% of the time?

Sol.

¢ = size of container

e P(x <c) =0.995

» “Z2” value associated with [=0.995]: +2.58 from the statistic table

- This is the number of o from u associated with 0.995
 Thus, c=64 + 2.58 (0.78) = 66.01 oz.




Characteristics of Probability Model

Lognormal Distribution
* Natural logarithm of the distribution is a normal distribution
- If X is log-normally distributed with parameters u and o, then Y = In(X) is
normal with same mean and standard deviation
« Upper limit is unlimited, but values cannot fall behind zero
 Distribution is positively skewed, with most values near lower limit

» Applied to the situations where values are positively skewed, but cannot be

negative such as real estate price, stock price, oil reservoir size, labor

productivity



Characteristics of Probability Model

Triangle Distribution

* Lower bound and upper bound are fixed

« Most likely value in this range forms a triangle

* When you have limited data

* Applied when you know the minimum, maximum, and most likely values such
as sales estimate, # of cars sold per week, durations of construction activity

Uniform Distribution

* Only you have Worst Scenario and Best Scenario

 All values in this range is equally likely to occur

 When you know the extreme range and all possible values are equally likely
such as location of a leak on a pipeline, which high wind may approach to the

building



Characteristics of Probability Model

Binomial Distribution

« For each trial, only 2 outcomes are possible, usually success and fail

The trials are independent

The probability is the same from trial to trial

Describe the number of times an event occurs in a fixed number of trials

- such as number of heads in 100 flips of a coin, likelihood of defective sheets

in the production of 500 sheets.

n!

Px=r)=p"x(1—-p)" "X

ri(n—-r)!
where, p is probability of success in each trial, r is number of success, n is

total number of trial



Characteristics of Probability Model

Binomial Distribution — Combinationsz=z) / Permutations=<«

« # of Combinations: # of unordered sets of size r from sample of n objects

(Z) T (Trll!— r)!

- Complication: are you sampling with or without replacement?

« # of Permutations: # of sets with objects in different order with set size r from

a sample of n objects

nl

(n—r1)!

P(n,r) =

- Always larger than # of Combinations



Characteristics of Probability Model

Binomial Distribution — Example
* In the project, a defective bolting occurs at random with probability 1/500.

What is probability that the number of defects is 5 in a 500 bolting?

Sol.

n! 499,49 500!

5 — 30
(500) (500) 5!495! = 3%

P(x=5)=p"x(1—-p)"" Xr,(n_r),



Characteristics of Probability Model

Poisson Distribution

» Describe the number of times an event occur in a given interval (usually time

in Min, hour, day)

Number of possible occurrences is not limited

Occurrences are independent

Applied such as number of telephone calls per minutes, number of trucks

arrived per minutes, number of defects per 100 square yards of concrete slab

e~ AT

r!

Px=1r)=

where, A is average arrival rates (defects) per unit



Characteristics of Probability Model

Poisson Distribution — Example
 Past history reveals 3 flaws in producing a 20m steel sheet piles. What is the

probability of 0 flaw in this type of pile?

Sol.

e~ )r 7330

P(r=0) = = 5%




Characteristics of Probability Model

Exponential Distribution

 When event (such as arrivals, defects, accidents) are purely random, the time
between successive events are described by exponential distribution

« Distribution is not affected by previous events

* Applied such as time between incoming calls, time between truck arrival in

earthwork

X

O = e
. P(XSx)zl—e_ﬁ

. . 1
where, u is average mean time (= i)



Characteristics of Probability Model

Exponential Distribution — Example
» The historical data indicates that it has been normally recorded 7 days of rains

during May. Estimate the probability of no-rain during any week in May?

Sol.

* Mean time between rain = 3—71 X 24 = 106.28HR

« x =7 X 24 = 168HR (one week)

168

» Rain within a week: P(X <168) =1 —e 10628 = (0.794 = 79.4%
e No—rain=1-79.4% = 20.6%



Characteristics of Probability Model

Beta Distribution

* Range is between 0 and a positive value

« Shape can be specified with two positive values, “a” and “f”

» Represent variability over a fixed range

« Describe empirical data such as representing the reliability of a company’s

devices



Characteristics of Probability Model

Beta Distribution
 PDF can be shaped with use of parameters a and £

- Large a: tight distribution; Small a: spread-out or flat distribution

- B < 5: skewed to left; B = —: symmetrical about 0.5; 8 > — skewed to right

« CDF provided in the figure (with various a and f3)

1.0 -

—3=05 : S ; :
a=54=1 —  a=53=1 : /'/

a=1,0=3 a=1,3=3 : / .

a=2.0=2 . . Y | 0.8‘ weslB B [P R ..... / .....................
a=303=h — a=200=5 | |
web M oo \ ) A ] 0.6
: : e T i :
: ; : ! = ; :
j e ! : :
: 1 : 2 : :

1.0 / \ ] 0.4} [ -/-/-/

bl 14 ]

2.0k N ....................

PDF
CDF

; ; i ' \ 0 — . . ;
%80 0.2 0.4 0.6 0.8 1.0 9.0 0.2 0.4 0.6 0.8 1.0
X X



6. Discrete Approximation

* Most of uncertain quantities are continuous
« Often, we cannot know the exact density function

* We need to transform continuous into discrete trees attempting to apply them

in risk analysis




6. Discrete Approximation

How to apply continuous PDF models to Decision Trees?
« Two alternative approaches:
- Use Monte Carlo simulation instead of decision tree (with its discrete
branches); MC simulation software easily handles continuous functions
- Discretize the PDF in order to ascertain discrete tree branch probabilities

But are you loosing valuable information?



6. Discrete Approximation

How to apply continuous PDF models to Decision Trees?

* How best to convert a continuous distribution into a discrete one? AND How to
control the size of tree?

« Conventional Method
- Middle value is chosen equal to the mean of continuous distribution
- The other point is chosen to minimize the total area

» Usually underestimating

* Discretize the distribution /

- Bracket median Dl I I
- Pearson-Tukey 3 points method /
h




6. Discrete Approximation

Discretizing a PDF — Approach #1

1.
2.

Draw the CDF F(x)

Establish # of intervals for x and draw vertical lines so that intervals of x are
approximately equal

For each interval, draw horizontal line such that areas between CDF and line
(above & below) are equal

Determine the estimator of x for each interval of x from the intersection of
the horizontal line and CDF

Cumulative probabilities associated with each estimator of x can be read off
the vertical axis at the interval separations

Summarize discrete probabilities for each x estimator with a histogram



6. Discrete Approximation

Discretizing a PDF — Approach #1
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6. Discrete Approximation

Discretizing a PDF — Bracket Median Method
100%

A 358 i 5 i 32.799

¥

A v
26,440(P=0.3) 28.072(P=0.9) 29,954(P=0.2)



6. Discrete Approximation

Discretizing a PDF — Bracket Median Method
e we can approximate (discretize) the continuous risk profile through a bracket

median method to assign it to the decision tree. The results are as follows:

29,954(P=0.2)
32 7899

— 28.072(P=0.5)

=280 26.440(P=0.3)



6. Discrete Approximation

Discretizing a PDF — Bracket Median Method (zs22ts 212t 259%4 472102 Uis)
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6. Discrete Approximation

Discretizing a PDF — Pearson-Tukey 3 points Method

« Developed by Keefer & Bodily(1983)

 Works best for approximating systematic distributions for easy and simple
measurement

» This method adopts three-point approximation using the median and the 0.05

and 0.95 fractiles
« Based on the approximation, the probability of normal scenario case is 0.63,
and the probability of worst and best scenario is 0.185, respectively

0.70 MORMAL
T~
0.50
T 0.40 v i
& 0:30 < N
0.20 ——.,st& u,tssx‘i
0.10 WORST BEST
0.00

Bog K09 85%
Fractile




6. Discrete Approximation

Discretizing a PDF — Pearson-Tukey 3 points Method
* 0.05 fractile = 23,825 (p = 0.185)

* 0.50 fractile = 27,500 (p = 0.63)

* 0.95 fractile = 32,326 (p = 0.185)

o 32 326(P=0.185)

— . 27.500(P=0.63)

2296 23 825(P=185)

»The resulting approximation is reasonably accurate for a wide variety of

distributions



6. Discrete Approximation

Discretizing a PDF — Pearson-Tukey 3 points Method
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