Lecture Note #4 (Fall, 2022)

Chemisorption, Physisorption, & Dynamics

- 1. Type of interactions, binding sites, diffusion
- 2. Non-dissociative chemisorption
- 3. Dissociative chemisorption
- 4. Reactivity of metals
- 5. Atoms and molecules incident on a surface
- 6. Reaction mechanisms
- 7. Measurement of sticking coefficients

Reading: Kolasinski, ch.3

	Chemical
LN#1,2	reaction
Structure (ch.1)	mechanism
Analysis (ch.2)LN#3	(ch.3, ch.4) LN#4,5

 $\begin{array}{l} \mbox{Geometric structure} \rightarrow \mbox{geometric effect} \\ \mbox{Electronic structure} \rightarrow \mbox{electronic effect} \end{array} \end{array} \begin{array}{l} \mbox{Ensemble effect} \end{array} \end{array}$

Liquid & charged interface (ch.5) LN#6

Applications to catalysis, nano (ch.6-7) LN#7,8

Type of interactions

Physisorption vs. Chemisorption

Physisorption (physical adsorption)

- Van der Waals interaction (weak interaction)
- Small adsorption energy: ≤ 20 kJ/mole
- Similar to condensation
- Multilayer adsorption possible
- No charge transfer
- Substrate non-specific

Chemisorption (chemical adsorption)

- Chemical bonding (covalent bonding)
- Large adsorption energy: ≥ 200 kJ/mole
- Charge transfer : work function change
- Limited to a monolayer
- Substrate specific
- Gas specific

Synoptic table 25.1* Maximum

observed enthalpies of physisorption

Adsorbate	$\Delta_{ad} H^{\Theta}/(kJ \text{ mol}^{-1})$
CH ₄	-21
H ₂	-84
H ₂ O	-59
N ₂	-21

Synoptic table 25.2* Enthalpies of chemisorption, $\Delta_{ad}H^{\Theta}/(kJ \text{ mol}^{-1})$

Adsorbate	Adsorbent (substrate)				
	Cr	Fe	Ni		
CH_4	-427	-285	-243		
CO		-192			
H ₂	-188	-134			
NH ₃		-188	-155		

Atkins, Physical Chemistry

Chemisorption	Physisorption
Electron exchange Chemical bond formation Strong	Polarization van der Waals attractions Weak
≥1 eV (100 kJ mol ⁻¹) Highly corrugated potential Analogies with co-ordination chemistry	≤0.3 eV (30 kJ mol ⁻¹), stable only at cryogenic temperatures Less strongly directional

Table 3.1 A comparison between chemisorption and physisorption.

1 eV = 1.6 x 10⁻¹⁹ J = 96.485 kJ/mol = 8065.5 cm⁻¹

Table 3.2	Enthalpy of	f adsorption	for a few	selected sy	stems.
------------------	-------------	--------------	-----------	-------------	--------

Physisorption	$-\Delta_{ m ads}H_{ m m}^{ m o}$ kJ mol $^{-1}$	Atomic chemisorption	$-\Delta_{ m ads}H_{ m m}^{\circ}$ kJ mol ⁻¹	Molecular chemisorption	−∆ _{ads} H [°] _m kJ mol ⁻¹	Dissociative chemisorption	$-\Delta_{ m ads}H_{ m m}^{\circ}$ kJ mol ⁻¹
Ar/MgO(100)	8.4	N/Ni(100)	420	CO/Ni(111)	122	NO/Ni(100)	290
Kr/MgO(100)	11.7	H/Pt(111)	265	CO/Pt(111)	120	O ₂ /Ni(111)	480
Xe/MgO(100)	15.5	H/Ni(111)	279	CO/Rh(111)	139	$O_{2}/Ni(100)$	530
$N_2/MgO(100)$	14.7	H/Rh(111)	265	CO/Cu(111)	53	$\bar{O_2/Pt(111)}$	208
$CH_4/MgO(100)$	12	H/Pd(111)	274	NO/Pt(111)	114	$O_{2}/Rh(100)$	358
$C_2 H_6 / MgO(100)$	18	O/Ni(111)	495	NO/Pd(111)	179	$H_{2}/Ni(1.11)$	94
$C_{3}H_{8}/MgO(100)$	23	O/Ni(100)	518	NO/Pd(100)	161	$H_{2}/Pt(111)$	72
		O/Pt(111)	357	$C_6 H_6 / Pt(111)$	164	$H_{2}/Pd(111)$	88
$D_2O/Pt(111)$	51.3	O/Rh(100)	430	CH/Pt(111)	727	$\bar{H_{2}/Rh(111)}$	70
		I/Pt(111)	232	CH ₃ /Pt(111)	250	CH ₃ I/Pt(111)	212

Source: Physisorption values taken from [300]. Atomic chemisorption (and CH and CH₃) values taken from [301]. Molecular and dissociative chemisorption values taken from [17].

Cryogenic temperatures: liquid He (4K), liquid N₂ (77K)

- Adsorption, especially chemisorption \to surface free energy $\downarrow \to$ surface tension, $\gamma \downarrow$
- Chemisorption → usually exothermic process → ∆S < 0 (gas in 2D), ∆G < 0 (constant T & P, free energy↓, spontaneous) → ∆G = ∆H - T∆S → ∆H < 0 (exothermic)
- Temperature $\downarrow \rightarrow Adsorption \uparrow$
- exception: dissociate adsorbates & high translational mobility on the surface (∆S > 0). Repulsion between adsorbates by coverage↑ → less exothermic

e.g., H₂ on glass: endothermic, H₂(g) \rightarrow 2H (glass), Δ S > 0 $\rightarrow \Delta$ H > 0

Terminology

- Adsorption site density
 - $N_s = \# \text{ of sites } / \text{cm}^2 \sim 10^{15} / \text{cm}^2$

Coverage

fractional coverage $\theta = N_s/N$ saturation coverage : $\theta_s = 1$

• Wall collision rate Z_w

$$\begin{aligned} Z_w &= \# \text{ molecules striking a surface /cm^2 \cdot s} \\ Z_w &= P / (2\pi \text{ mkT})^{1/2} \sim 10^{15} \text{ molecules /cm^2 \cdot s} \\ & @ 10^{-6} \text{ Torr and } 298 \text{ K} \\ 1 \text{ L (Langmuir)} &= 10^{-6} \text{ Torr \cdot s} \text{ of gas exposure (Lecture Note#1)} \end{aligned}$$

• Monolayer completion time ~ 1sec @ 10⁻⁶ Torr

 $(1 \text{ atm} = 1.013 \text{ x} 10^5 \text{ Pa}, 1 \text{ torr} = 133.3 \text{ Pa})$

Binding sites and diffusion

Surface sites are separated by energetic barriers \rightarrow diffusion barrier Potential energy surface (1-D and 2-D)

Diffusion

 $D = D_0 exp(-E_{diff}/RT)$

D: diffusion coefficient D_0 : diffusion pre-factor E_{diff} : activation energy for diffusion

Figure 3.1 The interaction potential of an adsorbate is corrugated as can be seen in these (a) 1D and (b) 2D representations of energy versus position on ideal defect-free surfaces.

Generally, E_{diff} is small compared to E_{des} (desorption activation E) If low temp limit, $RT \ll E_{diff} \rightarrow D \sim 0$, adsorbate motion: vibrational only, localized to a binding site \rightarrow adsorbate as a lattice gas If very low temp for light adsorbates as $H \rightarrow$ quantum effects dominate \rightarrow tunneling (diffusion is independent of temp) As $T\uparrow$, $RT \sim E_{diff} \rightarrow$ diffusional hoping between sites \uparrow If high temp ($RT >> E_{diff}$) \rightarrow adsorbate translates freely across the surface (type of Brownian motion) \rightarrow not bound in x & y directions (free 2D motion) \rightarrow 2D gas Chemisorbates experience greater diffusion barriers than physisorbates Below the high-temp limit, D is related to the hoping frequency (v)

 $\mathsf{D} = \mathsf{v}\mathsf{d}^2 \,/\, 2\mathsf{b}$

d: mean-square hoping length (related to the distance between sites) b: dimensionality of diffusion (1D: b = 1, diffusion in a plane: b = 2) The root mean square distance, $\langle x^2 \rangle^{\frac{1}{2}}$, in 1D in a time t

 $\langle x^2 \rangle^{\frac{1}{2}} = \sqrt{(2Dt)}$ (uniform 1D potential)

For 2D potential energy surface(PES) (b = 2),

 $\langle x^2 \rangle^{\frac{1}{2}} = \sqrt{4Dt}$ (uniform 2D potential)

Diffusion barrier is not always uniform across the surface e.g. Si(100)(2 x 1): easier diffusion along rows, difficult across lows

Step-up diffusion (E_s)

Steps, or defects: higher diffusion barriers

Lateral interactions of adsorbates: Repulsive: D↑ Attractive: D↓

Figure 3.3 A step changes the diffusion activation energy, E_{dif} [one-dimensional (1D) diffusion]. Step-up diffusion is often negligible because of the increased barrier; note also the increased binding strength at the bottom of the step – a feature that is often observed. $E_{s'}$, Ehrlich-Schwoebel barrier.

Diffusion for strongly interacting atoms (metal on metal)

 \rightarrow exchange mechanism

Figure 3.4 The exchange mechanism of diffusion. Mass transport occurs via the replacement of one atom with another. This can happen either (a) on a terrace or (b) at a step

Non-dissociative chemisorption

Theoretical treatment of chemisorption (Langmuir, Nobel Prize (1935)) Chemisorption \rightarrow formation of a chemical bond between adsorbate & surface \rightarrow molecular orbital formation

Figure 3.5 Orbital interactions. (a) Gas phase. (b) Weak chemisorption. (c) Strong chemisorption. a, b, atomic orbitals; ab, ab^* , bonding and antibonding molecular orbitals; α , β energy shifts of molecular orbitals with respect to the mean energy of a and b.

Figure 3.6 Diagram of broadening and shifting of adsorbate levels as they approach a surface. E_F , Fermi energy; E_{vac} , vacuum energy; Φ work function of the surface material; E_1 , E_2 , E_3 , energies of molecular orbitals 1, 2 and 3, respectively, of the molecule far from the surface; $E_{1,ads}$, $E_{2,ads}$, $E_{3,ads}$, energies of molecular orbitals 1, 2 and 3, respectively, of the adsorbed molecule; shaded area, occupied band (e.g. valence band).

As a molecule approaches a surface, its electronic states interact with the electronic states of the metal

 \rightarrow this broadens the MOs and it also lowers the energy of the MOs \rightarrow the reason why MOs experience a shift and broadening is that they interact with the electron of the substrate

Core level \rightarrow little interaction (e.g. E₃, core levels) \rightarrow sharp MO

Blyholder model of CO chemisorption on a metal

CO: why non-dissociative molecular adsorption?

Electronic structure of gas-phase $CO \rightarrow modification of electronic structure on surface$

HOMO(highest occupied MO): 5σ MO (non-bonding of C-O)

LUMO (lowest unoccupied MO): $2\pi^*$ (antibonding of C-O)

Figure 3.7 The molecular orbitals of gas-phase CO. The wavefunction changes sign in going from the regions enclosed by solid lines to those enclosed by dashed lines. Energies, E, are given in atomic units (1 atomic unit = 27.21 eV). Orbitals with negative energies are occupied in the ground state of the neutral molecule. Reproduced from W. L. Jorgensen, L. Salem, The Organic Chemist's Book of Orbitals, Academic Press, New York. © (1973) with permission from Academic Press.

MO

CO: Stable MO → molecular adsorption 50 J or 50 € donation to metal → more stable

2e in 2π^{*} antibonding MO → stable to donate 2π^{*} e⁻ (2π^{*}e⁻) → dissociative

HOMO & LUMO with respect to the surface

 5σ orbital is localized on the C end of the molecule $2\pi^*$ is symmetrically distributed along the molecular axis

 5σ is completely occupied as it lies below E_F $2\pi^*$ is partially occupied

 \rightarrow

 \rightarrow

(1) 5σ orbital interacts strongly with the metallic electronic states 5σ electron is donated to the metal and new hybrid electronic states are formed (donation)

- \rightarrow localized C end of molecule
- (2) $2\pi^*$ orbital accept electron from the metal (backdonation)
- \rightarrow new hybrid electronic states \rightarrow localized about CO molecule

Donation & backdonation \rightarrow both bonding with respect to M-CO bond (chemisorption) $2\pi^*$ backdonation weaken the C-O bond \rightarrow weaker C-O bond leads to increased reactivity of the CO

 $2\pi^*$ backdonation \rightarrow C-O vibration frequency \downarrow

Pt 5d°65' empty dorbital Au 5010 65' Pd 4d12 Ni 3d8452 Rh 4d8.55

 σ donation + π backdonation

- (1) To form strong chemical bond between metal surface and C of CO (M-CO)
- (2) To weaken the C-O bond because of the charge depletion of the CO 5σ bonding orbital and charge increase CO $2\pi^*$ antibonding orbital

- Charge transfer : work function change
- e⁻ donation + backdonation
- Orbital symmetry
- Transition & noble metal : d-band metal

Molecular oxygen chemisorption

- vibrational spectrum of O₂/Pd(111): O-O stretching peaks (Fig. 2.29)
- occupation of $\pi^*\uparrow$, M-O₂ bonding $\uparrow \rightarrow$ vibrational frequency \downarrow
- O_2 dissociative at high temp (e.g. O_2 /Pd dissociative > 180 K) \rightarrow this related to the MO structure of O_2 . two $2\pi^*$ orbitals are half-filled and degenerate in the gas phase

Figure 3.8 $O_2/Pd(111)$ adsorbate structure. The labelling of the three states (ω_1 , ω_2 and ω_3) correlates with the loss peaks observed in the electron energy loss spectrum as shown in Fig. 2.30.

The binding of ethene

- a model of the binding of polyatomic molecule to a surface
- Fig.3.9(a): -73 kJ/mol on Pt(111)
- Fig.3.9(b): π electron donated to the surface to form two σ bonds \rightarrow structure of ethane (sp³ hybridization), -117 kJ/mol on Pt(111) (~280 K)
- Fig.3.9(c): loss of H with T↑

Figure 3.9 The binding of ethene at a metal surface. (a) The weakly chemisorbed π -bonded C_2H_4 . (b) The a σ -bonded chemisorbed state. (c) Ethylidyne.

Dissociative chemisorption: H₂ on a simple metal

• bonding + antibonding pair

cf) CO: backdonation into π system is bonding with respect to the M-CO bond but antibonding with respect to the C-O bond

• H₂: electron donation from the metal into the $2\sigma^*$ antibonding orbital \rightarrow weaken of H-H bond and strengthen the adsorbate/surface interaction \rightarrow dissociation

Figure 3.10 Calculated changes in the electronic structure of the orbitals associated with H_2 as the molecule approaches a Mg surface. Moving to the left in the diagram represents motion toward the surface. Reproduced from J. K. Nørskov, A. Houmøller, P. K. Johansson, B. I. Lundqvist, Phys. Rev. Lett., 46, 257. © 1981, with permission from the American Physical Society.

• H_2 1 σ and 2 σ^* orbitals shift and broaden as they approach the surface \rightarrow electron transfer from the metal to the H_2 occurs because the 2 σ^* drops in energy and broadens as H_2 approaches the surface \rightarrow As it drops below E_F , electrons begin to populate the orbital and H_2 bond grows progressively weaker while M-H bonds become progressively stronger

What determines the reactivity of metals?

- What makes Au so noble whereas Pt & Ni are highly catalytic active?
- Surface structure plays a role in reactivity: defects (steps, kinks) \rightarrow enhance reactivity. Adsorption hindered on close packed (fcc(111), bcc(110), hcp(001)) Structural effect

H on metal: two step process

Step 1) H1s \leftrightarrow s band of the metal (s band in transition metals are very broad) \rightarrow weak chemisorption

Step 2) H1s \leftrightarrow d band of the metal \rightarrow

- (a) Early transition metal: antibonding above $E_F \rightarrow$ antibonding: not-filled \rightarrow chemisorption(bonding) attractive $\uparrow \rightarrow$ strong exothermic
- (b) Coinage metal (Cu, Ag, Au...): antibonding below E_F
 left to right in Periodic Table: filled electrons in antibonding↑ →
 chemisorption(bonding) repulsive↑(attractive↓) → weaken chemisorption

Figure 3.11 The two-step conceptualization of chemisorption bond formation on transition metal surfaces. (a) Early transition metal. (b) Coinage metal.

Adsorption energy, $\Delta E = \Delta E_{sp} + \Delta E_d$ $\Delta E_{sp}, \Delta E_d$: coupling to the sp states & d states

Coupling to the d band, $\Delta E_d = \Delta E_d^{hyb} + \Delta E_d^{orth}$ ΔE_d^{hyb} , ΔE_d^{orth} : attractive hybridization term & repulsive orthogonalization term

Shift of d band center

Source: Wikimedia Commons

d band center vs. catalytic activity

Enhancing Bifunctional Electrocatalytic Activities via Metal d-Band Center Lift Induced by Oxygen Vacancy on the Subsurface of Perovskites

Hansol Lee et al, ACS Catal. 2020, 10, 8, 4664-4670.

d band center vs. catalytic activity

Source: 신소재경제(2018.4.5)

d band center vs. catalytic activity

Electrochemical tuning of $Pd_{100-x}Au_x$ bimetallics towards ethanol oxidation: effect of an induced d-band center shift and oxophilicity

Sreejith P. Babu et al, PCCP. 2019, 16

- In Cu(3d), Ag(4d), Au(5d), why Au is more noble than Cu?
- $3d \rightarrow 5d$, core \rightarrow valence, wider band in valence

• orthogonalization energy between adsorbate & metal d orbitals, which is repulsive, increases with increasing coupling strength \rightarrow this energy increases as the d orbitals become more extended \rightarrow 5d orbitals of Au are more extended than the 3d orbitals of Cu, which renders Au less reactive than Cu because of the higher energy cost of orthogonalization between the H1s & Au 5d orbitals

- Two criteria influencing the strength of the chemisorption interaction
- (i) The degree of filling of the antibonding adsorbate-metal d states
- (ii) The strength of the coupling

 \rightarrow the filling increases in going from left to right across a row of transition metals in the periodic table and is complete for the coinage metals (Cu, Ag, Au). The coupling increases in going down a column in the periodic table. It also increases in going to the right across a period

Same principle can be extended to molecular adsorption e.g. CO, Blyholder model (next page) \rightarrow

Source: 신소재경제(2018.4.5)

- 5σ derived states (bonding & antibonding combinations) are predominantly below E_F, and, therefore, lead to a repulsive interaction
- $2\pi^*$ derived states lead to attractive interaction because the bonding combination lies below E_F while the antibonding combination is (at least partially) above E_F
- \rightarrow Moving to the left in the periodic table, the M-CO adsorption energy increases as the filling of the 2π*-metal antibonding combination rises further above E_F. However, the adsorption energy of C and O increases at a greater rate than that experienced by the molecular adsorbate
- \rightarrow therefore, a crossover from molecular to dissociative adsorption occurs
- \rightarrow this happens from Co to Fe for the 3d transition, Ru to Mo for 4d and Re to W for 5d
- \rightarrow similar trends are observed for N_2 and NO
- In dissociative chemisorption of H₂ both the filled σ_g orbital and the unfilled σ_{u}^* MO must be considered
- $\rightarrow \sigma_{q}$ orbital acts like H1s orbital
 - σ_{u}^{*} orbital undergoes similar hybridization

 \rightarrow the strength of the $\sigma_u{}^*$ interactions is the dominant factor that determines the height of the activation barrier

Atoms and molecules incident on a surface

• Atoms & molecules incident on a surface \rightarrow adsorption & desorption

Scattering channels

- Elastic scattering: no energy is exchanged \rightarrow equal angle (incident & reflection) \rightarrow specular scattering \rightarrow return to the gas phase (no adsorption) (special case of elastic scattering: diffraction for light particles)
- Inelastic scattering: energy is exchanged
- (i) Direct inelastic scattering: particle either gains or loses energy and returned to the gas phase. e.g. He atoms scattering to investigate surface phonons
- (ii) Trapping or sticking: particle loses enough energy to be trapped in the adsorption well at the surface
- Sticking probability or initial sticking coefficient

$$s_0 = \lim_{\theta \to 0} \frac{N_{\text{stick}}}{N_{\text{inc}}} = \lim_{\theta \to 0} \frac{N_{\text{stick}}}{N_{\text{el}} + N_{\text{in}} + N_{\text{stick}}}$$

where N_{stick} is the number of particles that stick to the surface, N_{inc} is the total number incident c the surface, N_{el} is the number scattered elastically, and N_{in} is the number scattered inelastically by which do not stick. Values of s_0 , even for simple molecules such as H₂ and O₂, can vary between 1 ar <10⁻¹⁰. This extreme range of sticking probabilities indicates that sticking is extremely sensitive to th

 $1 \sim 10^{-10}$ for H₂, O₂

Figure 3.13 Scattering channels for a molecule incident upon a surface.

Adsorption dynamics

- The outcome of the gas-surface collisions;
 1) Trapping: becoming a bound state after the 1st collision
 2) Direct reflection to the gas phase
- The trapping probability is determined by the amount of the energy transfer to the surface
- Energy transfer occurs via multiphonon excitations

TABLE 5.1 Some Typical values of the Initial Sticking Probability at 300	pical Values of the Initial Sticking Probability at 30	Probability :	cking Pr	Sticking	Initial	f the	Values o	Typical	Some	TABLE 5.1
--	--	----------------------	----------	----------	---------	-------	----------	---------	------	-----------

Gas	Surface	S(0)	Gas	Surface	S(0)
H ₂	Ni(100)	0.06	N ₂	W(320)	0.7
H ₂	Ni(111)	0.02	N ₂	W(110)	$< 3 \times 10^{-3}$
H ₂	Pt(110)	0.2	Ga	GaAs(100)-B	1.0
H ₂	Si(100)	< 10 ⁻⁴	As ₄	GaAs(100)-B	< 10 ⁻³
co	Pt(111)	0.67	As ₄	GaAs(100)-A	0.5

Data taken from Morris et al. [1984] and Joyce and Foxton [1984].

/ Phonons Electron-hole pair excitation?

Non-activated adsorption

No energetic barrier

Distance from Surface, z

Figure 3.14 A one-dimensional representation of non-activated adsorption: (a) elastic scattering trajectory; (b) direct inelastic scattering trajectory; (c) sticking event (chemisorption); (d) sticking event (physisorption).

2D potential energy hyperstructure (PES) \rightarrow to describe dissociative adsorption

Figure 3.15 2D PES for non-activated dissociative adsorption. z is the distance from the molecular centre of mass to the surface. R is the internuclear distance between the atoms of the molecule.

Hard cube model for non-activated adsorption: surface is modeled by a cube of mass m

Activated adsorption

Figure 3.17 A Lennard-Jones diagram is a one-dimensional representation of the potential energy. In the case shown here, the one dimension is taken as the distance above the surface. A barrier separating the chemisorption well from the gas phase distinguishes activated adsorption. Also shown in the diagram are the energies of two hypothetical trajectories at (a) low and (b) high kinetic energy. Classically, only high energy trajectories can overcome the adsorption barrier.

Activated adsorption

 $\rm X_2~(g) \rightarrow 2~\rm X_{ad}$

- Important process in heterogeneous catalysis
 Very small s₀ due to the presence of an
- adsorption barrier
- A fast N₂ can overcome the barrier to directly populate the atomic state
- A large kinetic energy dependence of s₀

 $\begin{array}{ll} \mbox{fast chemisorption} & \mbox{slow chemisorption} \\ \mbox{gas on clean metal} & \mbox{H}_2 \mbox{ on Cu} \\ & \mbox{20}{\sim}40 \mbox{ kJ/mol E}_a \end{array}$

Energy

2D PES of activated dissociative adsorption: different position of the barrier

Figure 3.18 Potential energy surfaces (PESs) for activated dissociative adsorption with (a) early, (b) middle and (c) late barriers. z, the distance from the molecular centre of mass to the surface (vertical axis); R, internuclear distance between the atoms of the (diatomic) molecule (horizontal axis). George Darling is thanked for providing these very fine model PESs.

Direct vs. precursor mediated adsorption (Table 3.3)

• Direct adsorption corresponds to the case in which a molecule makes the decision to stick or scatter upon its first encounter with the surface \rightarrow a molecule hit the surface, loses energy, and adsorbs at the site where it lands or hop sites away from the point of impact

• Precursor mediated adsorption: a molecule loses sufficient energy \rightarrow trapped into a mobile precursor state \rightarrow hop or migrate

Table 3.3 A survey of various adsorption systems. Unless stated to be extrinsic, precursor refers to the sticking behaviour on the clean surface.

Species	Surface	Pr	operties	Reference
Atomic		<i>1</i> 2		
Хе	Pt(111)	C	ombination of direct and extrinsic precursor mediated adsorption leads to <i>s</i> increasing with increasing coverage, non-activated	[125]
Kr	Pt(111)	In	trinsic and extrinsic precursors, non-activated	[126]
Cs	W	Pr	ecursor mediated, non-activated	[127]
Ir, Re, W, Pd	lr(111)	D	irect at $\theta = 0$, non-activated	[128]
Molecular				
CO	Ni(100) Pt(111)	D	irect non-activated adsorption on clean surface. Extrinsic precursor for low $E_{\rm K}$ and low $T_{\rm s}$. Direct adsorption possible at $\theta(CO) > 0$ for higher $E_{\rm s}$.	[125][129, 130]
CO ₂	Cu(110)	D	adsorption. Below 91 K s increases with increasing coverage.	[131]
	Ni(111)	Pr	ecursor mediated, non-activated	[132]
N ₂	Fe(111)	D	rect into first molecular state, activated transfer into second molecular state, K co-adsorption lowers barrier to transfer	[133, 134]

NO	Pt(111)	Direct non-activated	[135]
	Pt(110)	Precursor mediated, $s_0 = 0.87$	[136]
	$Pt(100)-(1 \times 1)$	Direct non-activated, $s_0 = 0.68$	[136]
	Pt(100)-hex	Precursor mediated, $s_0 = 0.86$	[136]
	Pd(100)	Direct non-activated, $s_0 = 0.85$	[136]
	Ni(100)	Dissociative at 300 K up to $\theta = 0.16$ ML, molecular above 0.16 ML	[136]
O ₂	Ag(111)	Activation barrier between physisorbed and chemisorbed molecular states	[137]
	Pt(111)	Precursor mediated switching to direct for high E _v	[138]
	Pt(100)	s ₀ two orders of magnitude lower on HEX-R0.7° reconstruction compared to	[139]
		$(I \times I)$, precursor switches to direct for high $E_{\rm K}$	
n-alkanes	Pt(111)	Precursor mediated, non-activated, s increases with coverage for C ₂ H ₆ and C ₂ H ₈	[125]
Si_2H_6	$Si(111(-(7 \times 7)$	Precursor mediated, non-activated	[140]
Dissociative			
H ₂	$Si(111(-(7 \times 7)$	Direct activated, large barrier on clean	[141-144
~	$Si(100)-(2 \times 1)$	terraces, lower barrier at steps, lower barrier in neighbourhood of adsorbed H	*****
	Ni(997)	Precursor mediated	[125]
	Cu(100) Cu(111)	Direct activated, $E_{ads} = 0.74 \text{ eV} (100), 0.63 \text{ eV} (111)$	[48, 145]
	$Ge(100)-(2 \times 1)$	Direct activated, large barrier	[146]

Competitive adsorption & collision induced processes

• e.g. $O_2 + CO$ on Pd(111) O_2 on Pd(111) at 100 K \rightarrow 3 states $\stackrel{CO}{\rightarrow}$ CO can displace O_2 from the surface \rightarrow remain ω_3 (most able to compete with CO for adsorption sites)

 \rightarrow CO and O₂ compete for sites on Pd surface

Figure 3.23 Competitive adsorption in the $CO + O_2/Pd(111)$ system is investigated by electron energy loss spectroscopy (EELS). The species associated with species ω_1 , ω_2 and ω_3 are illustrated in Fig. 3.8. arb units, arbitrary units; T_s , surface temperature. Reproduced from K. W. Kolasinski, F. Cemič, A. de Meijere, E. Hasselbrink, Surf. Sci., 334, 19. © 1995, with permission from Elsevier.

Classification of reaction mechanism

Langmuir-Hinshelwood mechanism (LH mechanism)

 Most common surface reaction mechanism → both reactants are adsorbed on the surface where they collide and form products → adsorption, desorption and surface diffusion play essential roles in the LH mechanism

 $A(a) + B(a) \rightarrow AB(a)$

• Reaction rate should depend on the surface coverage of both species

$$R = k \theta_A \theta_B$$

• RDS (rate determining step): adsorption or adsorbate decomposition or diffusion of an adsorbate to a reactive site or desorption of a product e.g. NH₃ synthesis: N₂ adsorption(RDS) O_2 + CO to form CO₂ on Pt group

Reaction Co-ordinate

Eley-Rideal mechanism

• A surface reaction need not involve two surface species \rightarrow if a gas-phase molecule sticks an adsorbed molecule, the collision leads to reaction and that the product escapes directly into the gas phase

 $A(a) + B(g) \rightarrow AB(g)$

 \rightarrow reaction rate is expected to depend on the coverage of the adsorbed species and the pressure of the other reactant

$$R = k\theta_A P_B$$

Hot atom mechanism

• Mechanism between LH and ER \rightarrow one of the reactants were adsorbed while the other was not yet fully accommodated to the surface \rightarrow hot precursor or hot atom mechanism

 $A(a) + B(hot) \rightarrow AB(g)$

e.g. O atoms incident on CO/Pt(111)

Measurement of sticking coefficients

Figure 3.25 The King and Wells method of sticking coefficient determination: (a) apparatus, (b) pressure curve.

Sticking probability

s = # molecules adsorbed / # molecules impinging on a surface

• Molecular beam method, in which the partial pressure change is monitored with a QMS (quadrupole mass spectroscopy)

Gas	Surface	S(0)	Gas	Surface	S(0)
H ₂	Ni(100)	0.06	N ₂	W(320)	0.7
H ₂	Ni(111)	0.02	N ₂	W(110)	$< 3 \times 10^{-3}$
H ₂	Pt(110)	0.2	Ga	GaAs(100)-B	1.0
H ₂	Si(100)	< 10 ⁻⁴	As ₄	GaAs(100)-B	< 10 ⁻³
co	Pt(111)	0.67	As ₄	GaAs(100)-A	0.5

Data taken from Morris et al. [1984] and Joyce and Foxton [1984].

Factors influencing s_0 in chemisorption

- Gas- surface combination
- Efficiency of energy transfer in gas-surface collisions
- Surface orientation of the surface for a given single crystal material
- Presence of an energy barrier for dissociative adsorption: activated adsorption

Summary

- Physisorption is a weak adsorption interaction in which polarization (dispersion) forces such as van der Waals interactions hold the adsorbate on the surface.
- Chemisorption is a strong adsorption interaction in which orbital overlap (sharing of electrons) leads to chemical bond formation.
- Binding sites at surfaces are separated by energy barriers. Therefore, diffusion on surfaces is an activated process.
- When the surface temperature is sufficiently high to cause rapid desorption, the adsorbed molecule may be able to enter a state with unhindered diffusion known as a 2D gas.
- The chemisorption bond is formed by hybridization of substrate electronic states with the MOs of the adsorbate.
- As a first approximation, the interaction of frontier MOs with the substrate should be considered to understand chemisorption bonding and adsorbate structure.
- On transition metals, chemisorption bond formation is conceived of as a two-step process (the d band model). In step 1, the frontier orbitals of the adsorbate are broadened and shifted by the interaction with the s band. In step 2, bonding and antibonding hybrids are formed by the interaction of the modified frontier orbitals with the d band.
- The strength of the chemisorption bond depends on the position of the hybrid orbitals with respect to $E_{\rm F}$.
- The strength of chemisorption correlates with the energy of the d band centre. The lower the d band relative to $E_{\rm F}$, the weaker the bond. Therefore, transition metals to the left of a row bind simple adsorbates more strongly than those on the right.
- In general, a strengthening of adsorbate-surface bonding leads to a weakening of intramolecular bonds in the adsorbate.
- Sufficiently strong chemisorption can lead to the scission of intramolecular bonds in the adsorbate (dissociative chemisorption).
- Adsorption can either be a non-activated or activated process.
- Dissociative chemisorption is most commonly associated with activated adsorption. The height of the activation barrier depends on the molecular orientation and the impact position within the unit cell.
- For non-activated adsorption, the sticking coefficient tends to one for low-energy molecules but decreases for very high-energy molecules.
- For activated adsorption, sticking can only occur if the incident molecule has sufficient energy to overcome the adsorption barrier. Molecules with energy far in excess of the barrier height may have difficulty sticking as they cannot follow the minimum energy path.
- Adsorption occurs on a multidimensional potential energy hypersurface (PES) and the effect on the sticking coefficient of placing energy in any particular degree of freedom depends on the shape of the PES.
- Adsorption can either be direct or precursor-mediated.

- Adsorption and desorption are connected by microscopic reversibility.
- In any system for which the sticking coefficient is a function of energy, the desorbed molecules do not have an energy distribution corresponding to an equilibrium distribution at the surface temperature.
- Corrugation is the variation of barrier heights across the surface.
- Whereas initial sticking coefficient values for activated adsorption may exhibit Arrhenius behaviour over some range of temperature, a more general expectation is that they follow the sigmoidal form of Eq. (3.15.3).

Additional Note

Norskov, PNAS January 18, 2011, 108 (3) 937-943

Bond formation at a transition-metal surface. Schematic illustration of the formation of a chemical bond between an adsorbate valence level and the *s* and *d* states of a transition-metal surface. The bond is characterized by the degree to which the antibonding state between the adsorbate state and the metal *d* states is occupied. The higher the *d* states are in energy relative to the Fermi level, the more empty the antibonding states and the stronger the adsorption bond. DOS, density of states.

It can be described by two terms: covalent attraction due to the orbital hybridization and repulsion due to the energy cost associated with the orbital orthogonalization (this term is sometimes referred to as Pauli repulsion).

Illustration of the extent of the *d*-band model. Calculated CO and O adsorption energies for a range of different Au (*A*) and Pt (*B*) surfaces including 12 atom clusters are seen to correlate with the calculated *d*-band center (ε_d).

- In Cu(3d), Ag(4d), Au(5d), why Au is more noble than Cu?
- 3d \rightarrow 5d, core \rightarrow valence, wider band in valence

• orthogonalization energy between adsorbate & metal d orbitals, which is repulsive, increases with increasing coupling strength \rightarrow this energy increases as the d orbitals become more extended \rightarrow 5d orbitals of Au are more extended than the 3d orbitals of Cu, which renders Au less reactive than Cu because of the higher energy cost of orthogonalization between the H1s & Au 5d orbitals

- Two criteria influencing the strength of the chemisorption interaction
- (i) The degree of filling of the antibonding adsorbate-metal d states
- (ii) The strength of the coupling

 \rightarrow the filling increases in going from left to right across a row of transition metals in the periodic table and is complete for the coinage metals (Cu, Ag, Au). The coupling increases in going down a column in the periodic table. It also increases in going to the right across a period

Same principle can be extended to molecular adsorption e.g. CO, Blyholder model (next page) \rightarrow

Why gold is the noblest of all the metals •B. Hammer & J. K. Norskov <u>Nature</u> volume 376, pages238–240(1995)

...nobleness is related to two factors: the degree of filling of the antibonding states on adsorption, and the degree of orbital overlap with the adsorbate. These two factors, which determine both the strength of the adsorbatemetal interaction and the energy barrier for dissociation, operate together to the maxima detriment of adsorbate binding and subsequent reactivity on gold.

FIG. 2 Schematic illustration of the interaction between two electronic states. The down-shift of the bonding state is smaller than the up-shift of the antibonding state because the overlap of the initial states gives rise to an energy cost related to the orthogonalization of the two states. Both the energy associated with the orthogonalization, and the hybridization energy associated with the formation of bonding and antibonding states, scale with the square of the coupling matrix element. a, The simple case of two sharp atomic or molecular states. *b*, The interaction between a state of an adsorbate outside a metal surface, which has been broadened out to a resonance owing to the interaction with the metal *s* band, and the metal *d* bands.

FIG. 3 The density of one-electron states (DOS) (solid lines) for H atomically chemisorbed on the (111) surface of Ni, Cu, Pt and Au. The DOS is projected onto the atomic H 1s state. The surface d bands DOS (dashed lines) of the four clean metal surfaces are shown for comparison. The dominant features are the H 1s-metal d bonding resonances at energies, ε , between -5 and -10 eV. Also prominent are the H 1smetal d antibonding DOS peaks (indicated by arrows) directly above the metal d bands. These antibonding states cause repulsion on Cu and Au, where they are filled. As indicated by the grey-shading, only states below the Fermi energy (which is the energy zero in all cases) are filled.

FIG. 4 The *s*–*d* coupling matrix element (V_{sd}^2 ; refs 17, 18), the filling of the metal *d* bands and the cohesive energy²² for metals in the vicinity

of gold in the periodic table. The filling of the metal d bands is taken

as a measure of the filling of the adsorbate-metal *d* antibonding state. The largest adsorbate-metal *d* repulsion, and hence the largest noble-

ness in terms of the surface reactivity, is obtained by maximizing V_{st}^2

and having an antibonding state filling of one. This is obtained for gold.

The nobleness in terms of ability to resist corrosion and dissolution

further involves the cohesive energy of the metals. This energy is largest

for the 5d metals like Ir and Pt and adds particularly to the nobleness

of these metals.

Ni(111) Cu(111) Pt(111) Au(111) 5 0 H 1s-d antibonding ε (eV) -5 ् X H 1s-d bonding -10 Projected DOS (arbitrary units) Increasing V_{cd}^2 Cohesive energy (eV) V_{cd}^2 (Relative to Cu) Increasing cohesive energy 1.35 0.46 Filling of *d* bands 4.93 1.47 4.43 1.34 3.50 1.0 Co Ni Cu Zn 0.8 0.9 1.0 1.0 Increasing 5.75 3.32 3.94 2.78 2.96 2.26 1.16 1.58 Rh Pd Ag Cd 0.8 0.9 1.0 1.0 6.93 4.45 5.85 3.90 3.78 3.35 0.69 2.64 V_{sd}^2 Ir Pt Au Hg 0.8 0.9 1.0 1.0

Coupling to the d band, $\Delta E_d = \Delta E_d^{hyb} + \Delta E_d^{orth}$ ΔE_d^{hyb} , ΔE_d^{orth} : attractive hybridization term & repulsive orthogonalization term Organic Electronics 9 (2008) 783-789

Contents lists available at ScienceDirect

Organic Electronics

journal homepage: www.elsevier.com/locate/orgel

A role of metal d-band in the interfacial electronic structure at organic/metal interface: PTCDA on Au, Ag and Cu

Eiji Kawabe ^{a,*}, Hiroyuki Yamane ^{a,1}, Ryohei Sumii ^{b,2}, Kenji Koizumi ^a, Yukio Ouchi ^a, Kazuhiko Seki ^a, Kaname Kanai ^b

^a Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan ^b Research Center for Materials Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan

ABSTRACT

We analyzed the vacuum level shift (Δ) induced by the dipole layer at the interfaces between perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) and noble metals (Au, Ag and Cu). The variation of Δ observed by ultraviolet photoelectron spectroscopy does not show a simple dependence on the metal work function, which contradicts the prediction by the induced density of interface states (IDIS) model proposed by Vázquez et al. [H. Vázquez, F. Flores, R. Oszwaldowski, J. Ortega, R. Pérez and A. Kahn, Appl. Surf. Sci 234 (2004) 107]. We found that two factors, (1) the energy separation between the lowest unoccupied molecular orbital (LUMO) of PTCDA and the metal d-band states, which results in the attractive effect due to the orbital hybridization, and (2) the coupling matrix element between the adsorbate states and the metal d-band states, which result in the repulsive effect due to the orbital orthogonalization between the adsorbate states and the metal d-band states, have a clear correlation with the Δ formation. Our results indicate that the interactions between the molecular orbitals of PTCDA and the metal d-band states play an important role in determining the interfacial electronic structure, which has not been taken into account within the framework of the IDIS model. As an example for such interaction with the metal dband, we consider the H₂ adsorption on noble and transition metals [8–10]. The hydrogen 1s-state is broadened into resonances and shifted down in energy by the interaction with the broad continuum of metal sp-bands, and the broadened adsorbate state interacts with the metal d-band states resulting in the formation of the bonding and anti-bonding states. For these systems, it is well known that three parameters, (i) the centroid of the metal d-band states (ε_d), (ii) the filling of the metal d-band (f_d) and (iii) the coupling matrix element (V_{ad}) between the adsorbate states and the metal d-band states, govern the interaction energy between the adsorbate state with the filling f_d at the energy ε_a and the metal d-band state with the filling f_d at the energy ε_d as

$$E_{d-hyb} = -C(f_a, f_d) \frac{V_{ad}^2}{|\varepsilon_a - \varepsilon_d|} + \alpha V_{ad}^2,$$
(3)

where $C(f_a, f_d)$ only depends on the number of electrons in the adsorbate state and the metal d-band state. The first

term gives the hybridization energy leading to the attraction if the anti-bonding state is not completely filled, while the second term gives the repulsion due to the orthogonalization between the adsorbate states and the metal d-band states. We can see that ε_d is a key parameter to investigate such interaction with the metal d-band. For a given adsorbate f_a is fixed, and for noble metals f_d is also fixed; the interaction energy E_{d-hyb} between the adsorbate states and the metal d-band states is governed by the delicate balance of $|\varepsilon_a - \varepsilon_d|$ and V_{ad}^2 .

Fig. 1. Molecular structure of PTCDA.

face is not yet well understood. Narioka et al. found the vacuum level (VL) shift at the O/M interface due to the

Fig. 2. Schematic illustrations of the interactions between the metal dband and the HOMO and LUMO of the organic molecule: (a) original molecular states; (b) formation of the broadened molecular states by the interaction with the broad continuum of the metal sp-bands; (c) formation of the bonding and anti-bonding states by the interaction with the metal d-band states. The interface E_F position depends on the system. The interfacial interaction is governed by the occupation of the antibonding state originated from the hybridization between the LUMO and the metal d-band states.

 Table 1

 Experimentally obtained and estimated energy parameters

	Φ_{M}	Δ	ε _d	€ _{d-LUMO}
Au	5.31	-0.52	3.56	4.98
Ag	4.24	0.27	4.30	4.58
Cu	4.58	0.29	2.67	3.40

 $\Phi_{\rm M}$ and Δ are the observed values of the metal work function and the vacuum level shift; $\varepsilon_{\rm d}$ is the reported value of the centroid energy of the metal d-band with respect to the Fermi level [10] and $\varepsilon_{\rm d-LUMO}$ is the estimated energy separation between the LUMO of PTCDA and the $\varepsilon_{\rm d}$. All values are written in eV.

Fig. 7. Schematic view of the correlation among ε_{d-LUMO} , V_{ad} , d_C and ε_{orth} . These parameters increase with n. The dominant origins of Δ are determined by the delicate valence of these factors.

PtNi nanoparticles

using UHV Electrochemistry (XPS + EC chamber)

- Pt 4f peak shift to lower BE
 PtNi ~ 0.4 eV
 PtRuNi ~ 0.2 eV
 PtRu ~ 0.09 eV
 *Electronegativity
 Ni(1.92) < Ru(2.2) < Pt(2.28)
 Modified Pt : Au-like?
 - CO binding energy

lr	>	Pt >	- Au
2.2	2	1.76	0.37 eV

J. Phys. Chem. B, 2002, 106, 1869.

cited ~949

Pt-Based Alloy Nanocatalysts for Oxygen Reduction

Pt₃M alloy d-band characterization by synchrotron-based XPS directly correlates the catalytic ORR activity variations with variations in Pt₃M alloys.

J. Am. Chem. Soc., 2012, 134, 19508.