Constrained Optimization

Hoonyoung Jeong Department of Energy Resources Engineering Seoul National University

Key Questions

- Explain the Lagrange multiplier method intuitively for optimization under equality constraints
- Explain how inequality constraints are considered using the Lagrange multiplier method
- Exaplain reduced gradient
- Explain the KKT conditions
- Explain the active-set algorithm
- Explain a barrior function
- Explain a penalty function
- Explain SQP

$$\int_{-\infty}^{\infty} \frac{\partial f}{\partial x_{1}} = -\lambda \begin{bmatrix} \frac{\partial g}{\partial x_{1}} \\ \frac{\partial f}{\partial x_{1}} \\ \frac{\partial f}{\partial x_{N}} \end{bmatrix} = -\lambda \begin{bmatrix} \frac{\partial g}{\partial x_{1}} \\ \frac{\partial g}{\partial x_{N}} \\ \frac{\partial f}{\partial x_{1}} + \lambda \frac{\partial g}{\partial x_{2}} = 0 \end{bmatrix}$$

$$\int_{-\infty}^{\infty} \frac{\partial f}{\partial x_{N}} + \lambda \frac{\partial g}{\partial x_{N}} = 0$$

$$\int_{-\infty}^{\infty} \frac{\partial f}{\partial x_{N}} + \lambda \frac{\partial g}{\partial x_{N}} = 0$$

Equality Constraints (2)

Generalization of Equality Constraints

Generalized form for g_1, g_2, \dots, g_M (ces English) $L(x, \lambda) = f(x) + \sum_{j=1}^{M} \lambda_j g_j(x)$ $\frac{\partial L}{\partial x_{1}} = \frac{\partial f}{\partial x_{1}} + \frac{f}{\sum} \lambda_{j} \frac{\partial g_{j}}{\partial x_{1}}$ $\frac{\partial L}{\partial X_N} = \frac{\partial f}{\partial X_N} + \frac{M}{\sum_{j=1}^{m} X_j} \frac{\partial g_j}{\partial X_N}$ $\frac{\partial L}{\partial \lambda_1} = 3$

Example of Equality Constraints

• See "Ex_Eq_Constraint.pdf"

Inequality Constraints

*
$$x = \operatorname{angmin}_{X} f(x)$$
, $x = [x_1 \cdots x_N]^T$
+ $h(x) \leq 0$

Note $X + S^2 = 0$ for real numbers x and s $\Rightarrow X \leq 0$

Generalization of Equality and Inequality Constraints

X = argmin f(x), $X = [X_1 \cdots X_N]^T$ gm(x) ≤ 0 for m= 1, ..., M $h_{k}(x) = 0$ for k = 1, ..., K $L(x, \lambda, \mu, s) = f(x) + \sum_{k=1}^{k} \lambda h_{k}(x) + \sum_{m=1}^{M} M_{m}(g_{m}(x) + S_{m}^{2}) \cdot \partial \partial (x)$ where $\mu_m \ge 0$ Hoonyoung,-Hoonyoung, hoonyoung

Mathematical understanding of Lagrange Multiplier for Equality Constraints

• See "Mathematical understanding of Lagrange Multiplier for Equality Constraints.pdf"

Other Methods for Constrained Optimization

- Reduced gradient
- KKT conditions
- Active set algorithm
- Barrier function
- Penalty function
- Sequential Quadratic Programming (SQP)

Reduced Gradient

- $\min_{x,y} f(x,y) = x^2 + 2y^2 4$ subject to $h(x,y) = 2(x-1)^2 - 10y + 3 = 0$
- There seem to be 2 decision variables, but actually there is a single decision variable because an equality constraint for x and y is given
- Procedure
 - ✓ Divide (x, y) into decision and state variables
 - # of design variables = 2, # of state variables = 1, # of decision variables = 2-1
 - x and y are a decision variable (d) and a state variable (s), respectively
 - ✓ Calculate $\partial f / \partial s$, $\partial f / \partial d$, $\partial h / \partial s$, $\partial h / \partial d$
 - ✓ Calculate reduced gradient $\frac{\partial z}{\partial d}$ and solve for $\frac{\partial z}{\partial d} = 0$ where f = z(d, s(d))
 - ✓ Solve for s^* from optimal d^* using h
- See the example
- Generalized Reduced Gradient (GRG) solves a problem iteratively
 - $\checkmark \quad d_{k+1} = d_k \alpha_k \left(\frac{\partial z}{\partial d}\right)^T$
 - ✓ Calculate s_{k+1}^* using $\partial f / \partial s$, $\partial f / \partial d$, $\partial h / \partial s$, $\partial h / \partial d$
 - ✓ Correct s_{k+1} from s_{k+1}^* using the given constraints

Karush-Kuhn-Tucker Conditions (1)

 $L(x, \lambda, \mu) = f(x) + \underset{k=1}{\overset{k}{\underset{k=1}{\overset{k=1}{\atop}}} \lambda_k h_k(x) + \underset{m=1}{\overset{M}{\underset{m=1}{\overset{m}{\atop}}} \mu_m g_m(x)$ $h_k(x) = 0 \quad \text{for } k = 1, \dots, k$ $g_m(x) \equiv 0 \quad \text{for } m = 1, \dots, M$ M

1. Stationarity: $\nabla f(x) + \sum_{k=1}^{K} \lambda_k \nabla h_k(x) + \sum_{m=1}^{M} M \nabla g_m(x) = 0$

- 2. Primal constraints : $h_{1x}(x) = 0$ $g_{1x}(x) = 0$
- 3. bunk constraints : Mm 20, Xx 70

4. Complementary slackness: $\mu m g_m(x) = 0$

 \Rightarrow JP x* satisfies kkt conditions, x* is a mininum candidate. (only $\nabla L = 0$)

Karush-Kuhn-Tucker Conditions (2)

 $L(x,\lambda,\mu) = f(x) + \sum_{k=1}^{k} \lambda_k h_k(x) + \sum_{m=1}^{M} \mu_m(g_m(x) + s_m^2)$ $h_{k}(x) = 0$ for k = 1, ..., kgm(x) ≤ 0 for m= 1, ..., M

 $1. \frac{\partial L}{\partial X} : \nabla f(x) + \sum \chi_k \nabla h_k(x) + \sum \mu_m \nabla g_m(x) = 0$

2. $\partial L/\partial \lambda_k$: $h_k(x) = 0$

3. $\partial L / \partial \mu m$: $g_m(x) + s_k^2 = 0$ 4. $\partial L / \partial S_k$: $\mu m S_m = 0$

5. X K 70, Jum 20

Active-Set Algorithm

- An algorithm to solve inequality constrained optimization problems
- Procedure
 - Start with an initial working inequality constraint set
 ✓ Which consists of inequality constraints satisfying an initial solution
 - 2) Solve the problem for only the working set using KKT
 - 3) Check the constraints and the Lagrange multipliers (LM)
 - ✓ A Lagrange multiplier for an inequality constraint ≥ 0
 - 4) If all the constraints and Lagrange multipliers are satisfied, terminate
 - 5) Remove an inequality constraint from the working set that has the most negative LM
 - 6) Add an inequality constraint to the working set that is the most violated
 - 7) Repeat from Step 2

Barrier Function

• Add barrier functions to the Lagrange function to consider inequality constraints

Example of Barrier Function

 $(ohstraint h, (x) = x \leq 0$

t= 0.5

t= 0.5, 1, 2 ろ에서 セニンフト フレンち 25 ちんト

$$\frac{1}{\tau}\phi(x) = -\frac{1}{2}\log(-x)$$

$$X = 1, -\frac{1}{2} \log(-1) = \inf X = 0, -\frac{1}{2} \log(0) = \inf X = -1, -\frac{1}{2} \log(1) = 0$$

$$X = -1, -\frac{1}{2} \log(1) = 0$$

$$X = -2, -\frac{1}{2} \log(2) < 0$$

Penalty Function

 $T(x) = f(x) + \frac{1}{r} P(x), r>0 \longrightarrow \text{Smaller } r,$ $penalty \text{ function} \quad ar$ ity $P(x) = \sum_{m=1}^{M} [\max(0, g_m(x))]^2$ pendly function values min X are more weighted inequality equality $P(x) = \sum_{k=1}^{K} h_{k}(x)^{2}$

Sequential Quadratic Programming (SQP)

- Approximate the objective function using the 2nd order Taylor series (a quadratic function)
- Linerize constraints using the 1st order Taylor series
- See the example