
6. OAuth (an open standard to authorization)

+ OpenID Connect (OIDC)

some pictures from Ping Identity,

 IETF RFC 6749,

N. Barbettini@OCTADEV

1

Motivating example

2

• Interaction in web

– A photo printing service website prints user’s
photos stored at another website.

– User authorizes the photo printing website to

access her photos

client

(Photo printing web)

username/

password

?
resource server

(stores user’s photos)

resource

owner

(user)

APIs for web services
• Three party authentication

– resource server: photo storage (google photos)

– Client: photo printing service website

– User: resource owner

• A method for the user to grant client access to the

data stored at resource server

• Through the API defined by resource server

– e.g. Amazon Web Services API

• OAuth 2.0 authorization framework enables a

third-party application to obtain limited access to

owner’s resources by the resource server’s APIs

3

Sharing user credential?
• if users are indiscriminate with distributing their

passwords

• resource server is not involved in authorization; it

cannot know which client the user has approved

• Sharing password with client presents a risk of

breach

• It doesn’t support granular permissions

• It doesn’t support (easy) revocation

4

OAuth status: example
• Allows the user to delegate to requesting

site (or client) the desired permissions

5

Terminology (1/2)
• Resource Owner

– An entity capable of granting access to a protected resource. When

the resource owner is a person, it is referred to as an end-user

• Client

– An application making protected resource requests on behalf of the

resource owner and with its authorization. The term "client" does not

imply any particular implementation characteristics (e.g., whether the

application executes on a server, a desktop, or other devices

• Resource Server (RS)

– The server hosting the protected resources, capable of accepting

and responding to protected resource requests using access tokens

• authorization server

– The server issuing access tokens to the client after successfully

authenticating the resource owner and obtaining authorization

6

Terminology (2/2)

• Access token

– Access tokens are credentials used to access protected resources.

An access token is a string representing an authorization issued to the

client. Tokens represent specific scopes and durations of access.

• Refresh Token

– Refresh tokens are credentials used to obtain access tokens. Refresh

tokens are issued to the client by the authorization server and are

used to obtain a new access token when the current access token

becomes invalid or expires, or to obtain additional access tokens with

identical or narrower scope (access tokens may have a shorter

lifetime and fewer permissions than authorized by the resource

owner).

7

Basic OAuth Flow

8

(A) The client requests authorization from the resource

owner. The authorization request can be made directly

to the resource owner (as shown), or preferably

indirectly via the authorization server as an

intermediary.

(B) The client receives an authorization grant, which is a

credential representing the resource owner's

authorization. The authorization grant type depends on

the method used by the client to request authorization

and the types supported by the authorization server.

(C)The client requests an access token by authenticating

with the authorization server and presenting the

authorization grant.

9

(D) The authorization server authenticates the client and

validates the authorization grant, and if valid, issues an

access token.

(E) The client requests the protected resource from the

resource server and authenticates by presenting the

access token.

(F) The resource server validates the access token, and if

valid, serves the request

10

Authorization grant

• a credential representing the resource owner’s
authorization (to access its protected resources)

• 4 types

1) authorization code (front + back channels)

2) implicit (front channel)

3) resource owner password credentials (back channel)

4) client credentials (back channel)

11

* front channel: may be vulnerable

* back channel; secure like TLS

(1) Authorization code
• the client directs the resource owner to an authorization

server (via its user-agent, e.g. browser), which in turn

directs the resource owner back to the client with the

authorization code

• Because the resource owner only authenticates with the

authorization server, the resource owner’s credentials are
never shared with the client.

• The authorization code provides a few important security

benefits, such as the ability to authenticate the client, as

well as the transmission of the access token directly to

the client without passing it through the resource owner’s
user-agent and potentially exposing it to others, including

the resource owner.
12

(1) Auth code to access token

13

snapfish

 connect with google

accounts.google.com

email:

passwd:

accounts.google.com

allow snapfish to

access your photos?

photo printing web

(client)

YES NO

snapfish.com/callback

loading...

photos.google.com

back to redirect URI

redirect URI: snapfish.com/callback

response type: code

authorization server

resource

owner

with authorization code

go to authorization server

talk to resource server

with access token
resource

server

request consent

from resource owner

front channel
back channel

(2) implicit
• The implicit grant is a simplified authorization code flow

optimized for clients implemented in a browser using a

scripting language such as JavaScript. In the implicit

flow, instead of issuing the client an authorization code,

the client is issued an access token directly

• no intermediate credentials (such as an authorization

code) are issued

• The authorization server does not authenticate the client.

In some cases, the client identity can be verified via the

redirection URI used to deliver the access token to the

client. The access token may be exposed to the resource

owner.

14

(2) Implicit flow

15

snapfish angular app

 connect with google

accounts.google.com

email:

passwd:

accounts.google.com

allow snapfish to

access your photos?

client

YES NO

snapfish angular app

loading...

photos.google.com

back to redirect URI

redirect URI: snapfish.com/callback

response type: token

authorization server

resource

owner

with token

go to authorization server

talk to resource server

with access token
resource

server

request consent

from resource owner

No back channel!

(3) Resource owner pwd credentials

• The resource owner password credentials (i.e.,

username and password) can be used directly as

an authorization grant. The credentials should

only be used when there is a high degree of trust

between the resource owner and the client (e.g.,

the client is part of the device operating system)

• This grant type can eliminate the need for the

client to store the resource owner credentials for

future use, by exchanging the credentials with a

long-lived access token or refresh token.

16

(4) Client credentials

• The client credentials (or other forms of client

authentication) can be used as an authorization grant

when the authorization scope is limited to the protected

resources under the control of the client, or to protected

resources previously arranged with the authorization

server.

• Client credentials are used as an authorization grant

typically when the client is acting on its own behalf (the

client is also the resource owner) or is requesting access

to protected resources based on an authorization

previously arranged with the authorization server.

17

Access token

• a string representing an authorization issued to

the client

– usually opaque to the client

• an identifier used to retrieve the authorization

information or may self-contain the authorization

information in a verifiable manner

– E.g. a token string consisting of some data and a

signature

• It removes the resource server’s need to
understand a wide range of authentication

methods
18

Refresh token (optional)

• issued to the client by the authorization server

• used to obtain a new access token when the

current access token becomes invalid or expires

• If the authorization server issues a refresh token,

it is included when issuing an access token, i.e.,

step (D)

• a string representing the authorization granted to

the client by the resource owner

• refresh tokens are intended for use only with

authorization servers and are never sent to

resource servers
19

Refreshing tokens

20

Client registration

• Before initiating OAuth, the client registers

with the authorization server

– Client identifier

• In registration, the client should

– Specify redirection URI, client type,…

• client may set up a secret with

authorization server in advance

21

client types

• Confidential

– Clients can maintain the confidentiality of their

credentials

• E.g. running on a secure server

• Public

– Clients cannot maintain the confidentiality of

their credentials

• E.g. clients running on the device by the resource

owner

22

Client profiles
• Web application

– a confidential client running on a web server

– Client credentials are not accessibly by the resource

owner

• user-agent based application

– A public client which is running in a browser of the

resource owner

– Credentials are accessible by resource owner

• Native applications

– a public client installed and executed on the device

used by the resource owner

– Dynamically issued credentials (access/refresh tokens)

are protected from other servers 23

Another Drawing of case (1):

Authorization code

24

25

(A) GET /authorize?response_type=code&client_id=s6BhdRkqt3&state=xyz

 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb HTTP/1.1

 Host: server.example.com

(C) HTTP/1.1 302 Found

 Location: https://client.example.com/cb?code=SplxlOBeZQQYbYS6WxSbIA

 &state=xyz

(D) POST /token HTTP/1.1

 Host: server.example.com

 Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

 Content-Type: application/x-www-form-urlencoded

 grant_type=authorization_code&code=SplxlOBeZQQYbYS6WxSbIA
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb

(E) HTTP/1.1 200 OK

 Content-Type: application/json;charset=UTF-8

 Cache-Control: no-store

 Pragma: no-cache

 {"access_token":"2YotnFZFEjr1zCsicMWpAA",
 "token_type":"example",

 "expires_in":3600,

 "refresh_token":"tGzv3JOkF0XG5Qx2TlKWIA",

 "example_parameter":"example_value“}

OpenID Connect (OIDC)

26

identity use cases

• single sign-on across sites (Oauth 2.0)

• mobile app login (Oauth 2.0)

• delegated authorization (Oauth 2.0)

27

identity use cases

• single sign-on across sites (Oauth 2.0): authentication

• mobile app login (Oauth 2.0): authentication

• delegated authorization (Oauth 2.0): authorization

28

problems with Oauth 2.0 for

authentication
• no standard way to get the user’s info

• every implementation is a little different

• no common set of scopes

29

OpenID Connect (OIDC)

• add a thin layer on top of Oauth 2.0

30

HTTP

Oauth 2.0

OpenID Connect

• OIDC for authentication

• Oauth 2.0 for authorization

what OIDC adds are
• ID token

– issuer, subject, time, expiration,...

– name, email, DoB,...

– signature is added

• UserInfo Endpoint

– URL that, when presented with an Access Token by

the Client, returns authorized information about the

End-User

– over https

• standard set of scopes

– profile, email, addrss, phone,...

• standardized implementation 31

OIDC authorization code flow

32

snapfish

 connect with google

accounts.google.com

email:

passwd:

accounts.google.com

allow snapfish to

access your profile?

client

YES NO

snapfish.com/callback

Hello! Donald!

accounts.google.com

/userinfo

back to redirect URI

redirect URI: snapfish.com/callback

response type: code

scope: openId profile

authorization server

resource

owner

with authorization code

go to authorization server

talk to resource server

with access token

resource

server

request consent

from resource owner

front channel
back channel

Oauth and OpenID Connect

use Oauth 2.0 for

• granting access to your API

• getting access to user data

in other systems

(authorization)

use OIDC for

• logging the user in

• making your account

available in other systems

(authentication)

33

