Topics in Fusion and Plasma Studies 2 (459.667, 3 Credits)

Prof. Dr. Yong-Su Na (32-206, Tel. 880-7204)

Contents

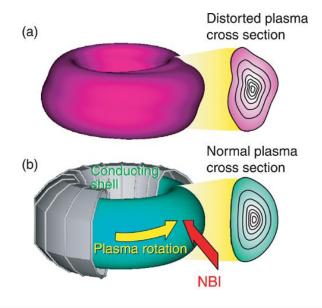
Week 1-2. The MHD Model, General Properties of Ideal MHD Week 3. Equilibrium: General Considerations Week 4. Equilibrium: One-, Two-Dimensional Configurations Week 5. Equilibrium: Two-Dimensional Configurations Week 6-7. Numerical Solution of the GS Equation Week 9. Stability: General Considerations Week 10-11. Stability: One-Dimensional Configurations Week 12. Stability: Multidimensional Configurations Week 14-15. Project Presentation

Contents

Week 1-2. The MHD Model, General Properties of Ideal MHD Week 3. Equilibrium: General Considerations Week 4. Equilibrium: One-, Two-Dimensional Configurations Week 5. Equilibrium: Two-Dimensional Configurations Week 6-7. Numerical Solution of the GS Equation Week 9. Stability: General Considerations Week 10-11. Stability: One-Dimensional Configurations Week 12. Stability: Multidimensional Configurations Week 14-15. Project Presentation

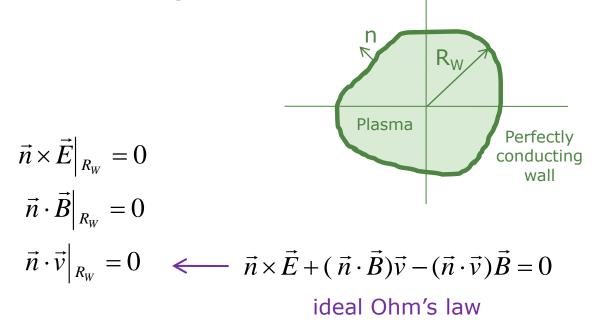
Introduction

- Short description of the three most common classes of boundary conditions
- Conservation of mass, momentum, and energy, both locally and globally despite the significant number of approximations made in ideal MHD
- Consequence of the perfect conductivity assumption



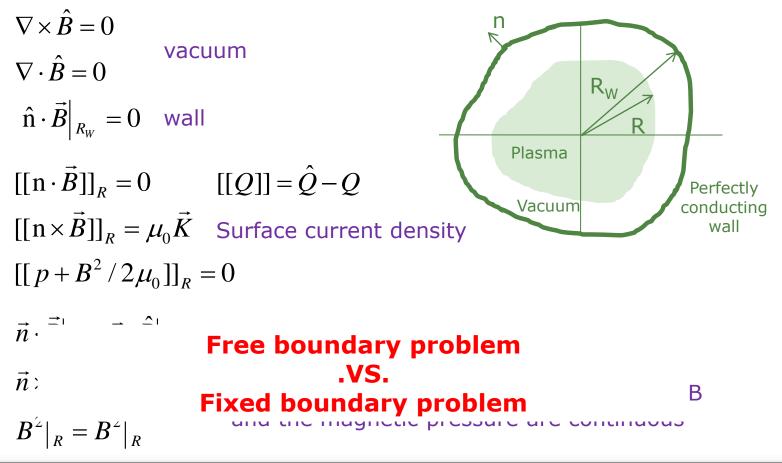
Boundary Conditions

 Perfectly conducting wall: tangential electric field and normal magnetic field vanish on the conducting wall



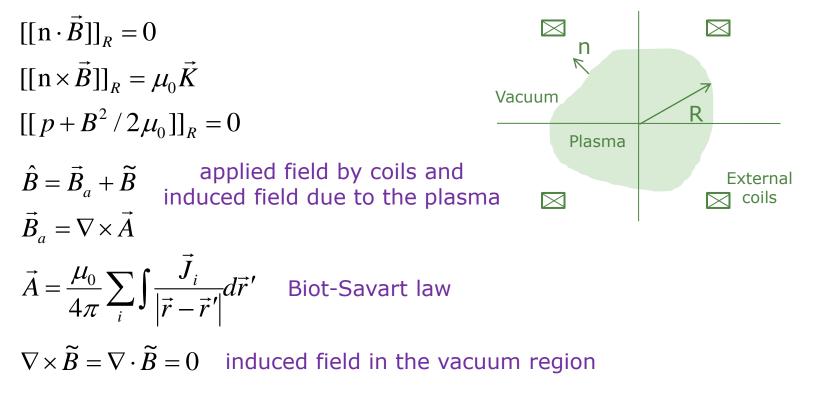
Boundary Conditions

• Insulating vacuum region: assume that the equations can be solved in each region



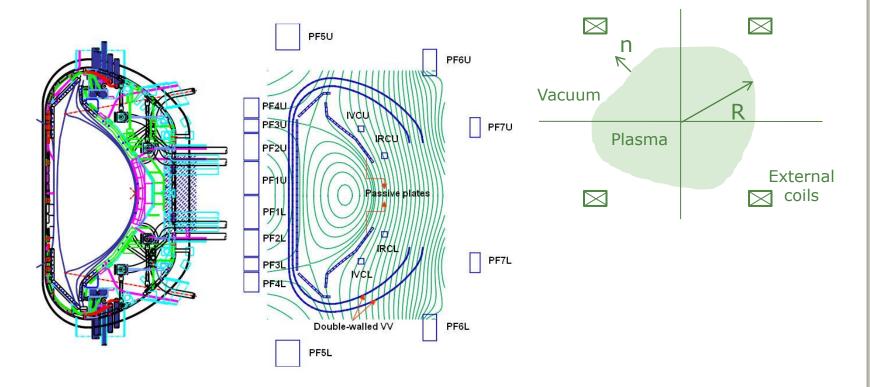
Boundary Conditions

• Plasma surrounded by external coils: difficult but realistic situation where the plasma is confined by the magnetic fields created by a fixed set of external conductors



Boundary Conditions

• Plasma surrounded by external coils: difficult but realistic situation where the plasma is confined by the magnetic fields created by a fixed set of external conductors



Local Conservation Relations

• Since a considerable number of assumptions were made in the derivation of the MHD equations it is important to investigate whether the resulting model still satisfies the basic conservation laws.

$$\begin{aligned} \frac{\partial}{\partial t} \left(\begin{array}{c} \right) + \nabla \cdot \left(\begin{array}{c} \right) = 0 \\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{v}) = 0 \\ \frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot \vec{T} = 0 \\ \frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot \vec{T} = 0 \end{aligned} \qquad \begin{aligned} \vec{T} &= \rho \vec{v} \vec{v} + \left(p + \frac{B^2}{2\mu_0} \right) \vec{I} - \frac{\vec{B} \vec{B}}{\mu_0} \\ \frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot \vec{T} = 0 \\ \frac{\partial \rho \vec{v}}{\partial t} + \nabla \cdot \vec{s} = 0 \end{aligned} \qquad \begin{aligned} \vec{w} &= \frac{1}{2} \rho v^2 + \frac{B^2}{2\mu_0} + \frac{p}{\gamma - 1} \\ \frac{\partial w}{\partial t} + \nabla \cdot \vec{s} = 0 \\ \frac{\partial v}{\partial t} + \nabla \cdot \vec{s} = 0 \end{aligned} \qquad \begin{aligned} \vec{s} &= \left(\frac{1}{2} \rho v^2 + \frac{\gamma}{\gamma - 1} p \right) \vec{v} + \frac{1}{\mu_0} \vec{E} \times \vec{B} \end{aligned} \qquad \text{energy flux} \end{aligned}$$

Local Conservation Relations

$$\vec{T} = \rho \vec{v} \vec{v} + \left(p + \frac{B^2}{2\mu_0} \right) \vec{I} - \frac{\vec{B}\vec{B}}{\mu_0}$$
Reynolds stress
$$\vec{V}$$

$$\vec{T}_R = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \rho v^2 \end{pmatrix}$$

$$\vec{T}_B = \begin{pmatrix} p_\perp & 0 & 0 \\ 0 & p_\perp & 0 \\ 0 & 0 & p \end{pmatrix}$$
Important with large fluid flow,
$$p_\perp = p + \frac{B^2}{2}, \quad p_\parallel = p - \frac{B^2}{2}$$

large fluid flow, but usually not in studies of plasma stability where the flows are either small or zero

$$p_{||} = p - \frac{B}{2\mu_0}$$
 isotropic pressu

 R^2

isotropic plasma pressure

Total pressure parallel to the field: negative magnetic pressure correspond to a tension along the field lines

 $2\mu_0$

Local Conservation Relations

$$w = \frac{1}{2}\rho v^{2} + \frac{B^{2}}{2\mu_{0}} + \frac{p}{\gamma - 1} = w_{K} + w_{P} \qquad w_{K} = \frac{1}{2}\rho v^{2} \qquad \begin{array}{c} \text{plasma kinetic} \\ \text{energy} \end{array}$$

$$w_{P} = \frac{B^{2}}{2\mu_{0}} + \frac{p}{\gamma - 1} \quad \begin{array}{c} \text{Potential} \\ \text{energy} \end{array}$$
Magnetic energy+

internal energy of the plasma

$$\vec{s} = \left(\frac{1}{2}\rho v^2 + \frac{p}{\gamma - 1}\right)\vec{v} + p\vec{v} + \frac{1}{\mu_0}\vec{E} \times \vec{B}$$
Flow of plasma
kinetic+internal energy
Poynting flux:
flow of electromagnetic
energy
Mechanical work
done on or by the
plasma as it moves

Global Conservation Laws

Obtained by integrating the local conservation laws over the volumes appropriate to each of the three sets of boundary conditions.

• Perfectly conducting wall

11 /

$$\frac{dM}{dt} = 0 \qquad \qquad M = \int \rho d\vec{r} \qquad \text{total mass of plasma} \\ \frac{d\vec{P}}{dt} = -\int \left(p + \frac{B^2}{2\mu_0} \right) \vec{n} dS \qquad \qquad \vec{P} = \int \rho \vec{v} d\vec{r} \qquad \qquad \text{mechanical} \\ \text{momentum of plasma} \\ W = \int \left(\frac{1}{2} \rho v^2 + \frac{p}{\gamma - 1} + \frac{B^2}{2\mu_0} \right) d\vec{r} \\ \text{total kinetic potential energy} \end{cases}$$

Total force exerted by the walls on the plasma. If the system remains in place, zero. total kinetic, potential energy of plasma and magnetic field: energy can be transferred each other

Global Conservation Laws

- Insulating vacuum region
- More complicated since the plasma is allowed to move.
- The combined plasma-vacuum energy is conserved.

$$Z(t) = \int z(\vec{r}, t) d\vec{r}$$
 global quantity

$$\frac{dZ(t)}{dt} = \int_{V} \frac{\partial z}{\partial t} d\vec{r} + \int_{S} z\vec{n} \cdot \vec{u} dS$$

Total time derivative in a volume whose boundary is moving with u

plasma energy $\frac{dW}{dt} = -\int \left(p + \frac{B^2}{2\mu_0}\right) \vec{n} \cdot \vec{v} dS$ $W = \int \left(\frac{1}{2}\rho v^2 + \frac{p}{\gamma - 1} + \frac{B^2}{2\mu_0}\right) d\vec{r} \qquad w = \frac{1}{2}\rho v^2 + \frac{B^2}{2\mu_0} + \frac{p}{\gamma - 1}$

Global Conservation Laws

$$\frac{dZ(t)}{dt} = \int_{V} \frac{\partial z}{\partial t} d\vec{r} + \int_{S} z\vec{n} \cdot \vec{u} dS$$

vacuum

 $\hat{W} =$

Global Conservation Laws

$$\frac{dW}{dt} = -\int \left(p + \frac{B^2}{2\mu_0}\right) \vec{n} \cdot \vec{v} dS \qquad \qquad \frac{d\hat{W}}{dt} = \int \frac{\hat{B}^2}{2\mu_0} \vec{n} \cdot \vec{v} dS$$
$$\frac{d}{dt} (W + \hat{W}) = 0 \quad \longleftarrow \quad \left[\left[p + \frac{B^2}{2\mu_0}\right]\right]_R = 0$$

- When an ideal MHD plasma is isolated from a conducting wall by a vacuum region, the combined energy of the plasma-vacuum system is conserved.
- The fact that only the total is conserved indicates that, in general, energy will flow from one region to the other as the plasma moves.

Global Conservation Laws

- Plasma surrounded by external coils:
- The energy of the system is no longer conserved.
- With external sources present, energy can be supplied to or extracted from the system.

$$\frac{d}{dt}(W+\hat{W}) = -\int \frac{1}{\mu_0} (\vec{E} \times \vec{B}) \cdot \vec{n}_W dS_W$$

The rate of increase of the total energy in the combined plasma-vacuum system is equal to the electromagnetic power flowing into the region.

Conservation of Flux: "Frozen" Field Line Picture

- A consequence of the perfect conductivity Ohm's law, is that the magnetic flux passing through any arbitrary open surface area moving with the plasma is constant.
- Flux is conserved locally as well as globally.

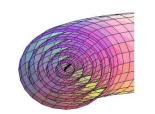
$$\frac{d\psi}{dt} = \int \frac{\partial \hat{B}}{\partial t} \cdot \vec{n} dS - \oint \vec{u} \times \vec{b} \cdot d\vec{l}$$
 time rate of change of the flux
passing through any moving
surface, S
$$\psi = \int \vec{B} \cdot \vec{n} dS$$
$$\frac{d\psi}{dt} = -\oint (\vec{E} + \vec{u} \times \vec{B}) \cdot d\vec{l} \quad \longleftarrow \text{ Faraday's law, Stokes theorem}$$
$$\frac{d\psi}{dt} = 0 \quad \longleftarrow \text{ u=v (plasma velocity), ideal Ohm's law}$$

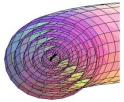
Conservation of Flux: "Frozen" Field Line Picture

$$\frac{d\psi}{dt} = 0$$

- The total flux in an ideal MHD plasma is conserved.
- Magnetic lines move with the plasma; they are "frozen" into the fluid.
- Any allowable physical motion of the plasma requires that neighboring fluid elements remain adjacent to one another; fluid elements are not allowed to tear or break into separate pieces.
- Since the magnetic lines move with the plasma, the field line topology must thus be preserved during any physically allowable MHD motion.

Ideal MHD: $\eta = 0$





Resistive MHD: $\eta \neq 0$