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Example of Tokamak Equilibrium Analysis
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Physical Understanding of Tokamak Equilibrium

inner poloidal field coils

poloidal magnetic field

| outer poloidalfield coils Vp — J X B’ V X B = :qu’ V . B = O

resulting helical magnetic field toroidal field coils

plasma electric current

toroidal magnetic field
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How much plasma can be supported by B, and B %



Physical Understanding of Tokamak Equilibrium

(p)

“how much plasma” = plasma beta /= 8% /21

High beta plasma - large shafranov shift & J (y) profile change
J,(v) profile change = safety factor 0=27/: & inductance (V)

B,=0.088, B,[%]=0.185  B,=0.484, B\[%]=0.944  B,=1.129, B,[%]=1.991 B =2.098, By[%]=3.113
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Numerical/Mathematical Understanding

of Tokamak Equilibrium

Magnetic Flux Current Sources

Ay =—p, rJ,

where Ay =rv-(r?vy) J,(w)=-rp(y)-

* Non-linear, elliptic PDE (partial differential equation)

A sort of non-linear Poisson equation in toroidal geometry
« Unknown: yAr,z), Known(given): J ,(yAr,z))

= Solve mag. flux, y(r,z), with given source, J (y(r,z))



(Ref.) Green Function Method In General

« Alinear differential equation in a general form can be expressed as

follows
L(x)u(x) = T(x)
(L(x):a linear,self -adjoint differentl operator
u(x) : unknown function
| f (X) : known non -homogeneots term

N

* Its solution can be written as
u(x) =L*(x)f(x) ,whereLL™ =L"L =1 = Identityoperator
 More specifically, define the inverse operator as

L = j G(x;x) f(x)dx

where the kernel G(x; x') is the Green's Function of operatorL
« Recall the properties of the Dirac delta function o(X)
j S(x—x)f(x)dx = f(x), j S(x)dx =1

* Reference : http://www.boulder.nist.gov/div853/greenfn/tutorial.html



(Ref.) Green Function Method - Cont.

« The Green’s function G(x;x’) then satisfies
L(X)G(Xx;X)=0(X—X)

« The solution can then be written directly in terms of the Green’s
function as

u(x) = TG(x; x ) f(x)dx

« From basic physics, the Green’s function gives the potential at the
point x due to a point charge at the point x’ the source point. And the
Green’s function only depends on the distance between the source
and field points.



Green Function for Toroidal Ring Current

Ay = —er¢] + NG ) =—wsr-r,)]

j J,G(r,r,)dS fromplasma
Q

O

NP /[1)\9 p(r)=:
Y

|1 .G(r,r,) fromcoils

In cylindrical (r, ¢, z) coordinates

G(r,r,) =ﬁ(rro)m[(Z—kz)K(k)—ZE(k)]

-

) 4rr,
T(r+1n)?+(z-12,)°
K (k) = completeellipticintegral of the firstkind
E (k) = completeellipticintegral of the secondkind

-

\

*« Howard S. Cohl et. al., “A Compact Cylindrical Green’s Function Expansion for the Solution of Potential
Problems”, The Astrophysical Jornal, Vol. 527, p86-101 (1999)

*B.J. Braams, “The interpretation of tokamak magnetic diagonostics”, Plasma Physics and Controlled
Fusion, Vol. 33, No. 7, p715~748 (1991)



Remark On Use Of Green Function

If there is a toroidal ring current source such as PF coil, then
one can calculate the magnetic flux at the position, (r,z), from
the source, (ry,2,), directly using Green function.

w(r,z)=1.G(r,z;1, 2,)

In addition, one can calculate the magnetic field strength
easily as follows with B =0

1oy 1, 0G(r,r)

B =——7"=—
r oz r 0Z
BZ:+18_W_+ICGG(r,r)
r or r or

Basically one could solve the GS equation using Green
function by assuming the plasma as a set of toroidal ring
current elements. However it requires rather large
computational costs.



Direct Solution By Green Function

By assuming the plasma as a set of current elements, the
magnetic flux can be calculated by Green function directly
as follows

§ A*W = —Hy r-‘ngﬁ,total (W(r’ Z))
p(r,2) = [, 0alr', 2)G(r, z;r', 2)dS(r, )

.(‘]¢ plasma(r )+ ‘]¢ external (r )F(r r )dS(r )

NG = 37889, e JB31) + 1531

/

Drawbacks 2

« Slow computation speed
* Not enough smoothness of solution



Various Numerical Approaches
For Tokamak Equilibria



Numerical Methods For Tokamak Equilibria

Real space solver Inverse equilibrium solver

* [terative method e [terative metric method
- I F'\m n
SOR, ADI, or MGM with FDM/FEM J =VW><V9'V¢=A!(R—) W
0
* Direct method * Direct inverse solution method

- DCR (double cyclic reduction) or
FACR (fourier analysis cyclic * Poloidal angle expansion method

reduction)
Others I

» Green function method
« Orthogonal function expansion method
« Conformal mapping method




Types Of Equilibrium Solutions

Real space equilibrium Inverse equilibrium
With free boundary With fixed boundary
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Approximation Using Finite Difference Method

Let’s consider a simple discretization based on rectangular grids

Using Centered Difference Scheme

( oy _ Yz "YWz _ Wi — Vi
X |y, n, 2h,
oy 1/ . . 1
ox 2 = h_ (Wk+1/2 - ‘//k—yz): F (‘//k+1 — 2y, + ‘//k—l)
\ X=X, K k

By applying it to GS eq.

il// +( L + L 1 }// —2(i+i)l// +[ 1 11 }/j +il// =—1,RJ
BFETERIE 1 11 1 11 1
Vil = h_§+h_zz X h_zzl//j—l,l + h? + R 2h, Yila™ h? ~ R 2h. ‘//j,|+1+h_zgl//j+1,| +luORI‘]¢j’|




Approximation Using Finite Difference Method

* (j,D™ element can be updated/adjusted with adjacent 4
elements and its current source on the same grid point

* Now it’s a boundary value problem (B.C. required ).

 This linearized equation can be solved using various
numerical algorithms such as SOR and MGM so on.



Boundary Condition

J=N, * (Ng-2)X(N,-2) eqgs. Obtained from the
previous page
- (), element is calculated with adjacent
4 elements
* 2(Ng-2) + 2(N,-2) — 4 eqgs. required to close
the linear equations-> boundary condition

>

(j+1,D)

® 5 9 » For free boundary problems, B.C. can be
(j.1-1) G.h [Ul+1) given from external current sources and

plasma currents using ‘free-space Green

® function’
(j-1.1)

» For fixed boundary problems, the B.C. can
be specified by user. Normally zero flux.




How To Handle Non-linearity ??
“Picard Iteration”

Existence/Uniqueness Of Solution : Picard-Lindelof Theorem

* Inthe inlitial value problem as follows
y(®)=fty®), Y=Y teft-at+a]
« Suppose f is Lipschitz continuous in ¥ and continuous int

Then, for some value ¢ >0, there exists a unique solution y(t)to the
initial value problem within the range [t,—&,t, +¢] .

Successive Approximation By Picard Iteration

(1) guess y,(t)

(2)s0lve y, ,(t) from y,,(t) = f, (t, ¥, (1))
(3) iterate(2) with k =1,---until y, ,(t) Isconverged

* Refer to the chapter 2 of ‘First-order differential equations’ in ‘Advanced Engineering Mathematics’



« Make two contour plots of wy(r,z) with a computational region

(1.1m< r £2.4m,

-1.5m

<

z < 1.5). Here wy(r,z) is solved with

following information. One contour is without PFO and the other
one is with PFO. Compare these two plots and understand the
difference. Probably 3D contour might be better than 2D contour.

Current # of

PF1U/PF1L
PF2U/PF2L
PF3U/PF3L
PF4U/PFAL
PF5U/PF5L

PF6U/PF6L

PF7U/PF7L
PFO

0.57
0.57
0.57
0.57
1.09

3.09

3.73
1.80

+0.25
+0.70
+1.00
+1.26
+2.30
+1.92

+0.98
0.00

144
72
108
208

128
72
1

Current

[KA]
-8.85
-1.43
9.49
10.17
10.66
-2.07

-17.20
2000

Tlps

Use Green function formula as a
direct method

e One can solve this in an iterative
way studied above if one want.



