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Homework - Discussion
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Solving Tokamak Plasma Equilibrium

• We are solving the following G.S. equation on the

rectangular grid of (rmin  r  rmax) and (zmin  z 

zmax) with a given current density profile as a

free-boundary problem.

• To resolve non-linearity, we use “Picard iteration”

• To solve linearized GS equation, we can use

iterative methods such as SOR (Successive

Over-Relaxation) or MGM (Multi-Grid Method)

methods. In this case, we will have two iteration

loops; One is inner loop to solve GS eq. and the

other is outer loop for Picard iteration.

• Of course, we can use a matrix inverse directly.
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(1) Initialize

• Construct computational grids : (Rl,

Zj), l=1,…,NR, j=1,…,NZ

• Initial setup of  matrix on grid

points if necessary

– Initial plasma region and corresponding

flux distributions

• And do other initializations required

l=1 l=NR

j=NZ

j=1



(2) Update j()

• A basic approach for current profile is to assume an explicit form as

like

• At first, find the plasma region (i.e. boundary) gives b

- b could be obtained from the fluxes on limiter points or X-points

- X-points could be defined as points on which d/dr=d/dz=0

• And then, find a  gives s

• Then, update p(s), F(s), and j(s) on the plasma region

• Probably we need some constraints on j(s) to make it converge

- It will be discussed later in a separate section
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Find Plasma Boundary

• Tokamak plasma has two types of

boundaries : “limited” or “diverted”

• Therefore, the mag. flux at the

plasma boundary should be defined

from both x-point and limiter

together

• After obtaining b, one can define s

and the plasma region in which

p(s), F(s), and j(s) are defined

Diverted plasma Limited plasma



(3) Update B.C.

• Use Green function formula to calculate the mag. flux at the

computational boundary

• Only one time calculation is required for the contribution from

the coils, while one need to recalculate the contribution from

the plasma whenever the current density is updated

    
c

cc

l

lll GIGJS )()()( '

bndry

'

bndry

'

plasma,bndry r;rr;rr



(4) Solve G.S. Equation

• Solve the linearized G.S. equation.

• In this class, we will use SOR(Successive Over-Relaxation)

method (cf: also refer to Jacobi and Gauss-Seidel methods)
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(5) Convergence

• In our case, the convergence criteria can be defined as

follows (for outer loop: Picard iteration)

• One can define a similar criterion for inner loop (iterative

method like SOR)
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(6) Post-Processing

• Based on calculated mag. poloidal flux, s, we can obtain 

many of useful and important equilibrium quantities such 

as (elongation), (triangularity), (rotational transform) or 

q(safety factor), (plasma beta) so on. Please refer to any 

text for detail formula.
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(7) Constraints On Current Profile

1) Plasma current : 0 is updated to match given Ip

2) Plasma beta : 0 is updated to match given p or p(a)

0 update)(   s

dsJI p

0

0

2
 update

2









a
p

p
B

p

     

 
   

r

FF
rp

r

r

r

r
J

nm

s

0

'
'

0
0

0

00 11
























Variations & Applications

Of Equilibrium Solution



App-1. Solve Coil Currents For Equilibrium

• If the plasma boundary is given, then we can calculate the

equilibrium PF coil currents. In this case, the problem become

a sort of fixed boundary problem.

① Solve the G.S. equation as a fixed boundary problem with b=

(rbndry, zbndry)=0.

② Find out the PF coil currents which satisfies following
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App-2. Reconstructions (EFIT)

• Similar with our equilibrium solution method described in

this class except the form of current density profile and

the constraints on that.

• In EFIT, polynomial or spline representations for j()

are used according to user’s choice.

• Constraints using experimental measurements (MD) can

specify the coefficients, 0, 1, , 0, 1, , so that

current density can be identified from measurements.
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Constraints On Current Density Profile

• As a constraint on current profile, the experimental

measurements can be used in order to configure the

coefficients of p() and F().

• Many of diagnostics can be used such as magnetic

measurements and MSE (Motional Stark Effect) so on.

• Primarily, with magnetic diagnostics (MD), we can find

out the appropriate coefficients by solving the following

equation using “least-squre method” or “SVD(Singular

Value Decomposition)”.
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Reconstruction Example

Using Filament Approach

Circular Equivalent Currents (CEC) Uniform Equivalent Currents (UEC)

B-Probe

Flux Loop

Filament



Reconstruction & Its Accuracy By CEC
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Reconstruction By UEC

With Variations Of EC Number

In 50% from SOL In 70% from SOL In 90% from SOL



< Term Project >

Development Of

A Free Boundary Tokamak Equilibrium Solver 


