Numerical Solutions of Tokamak Equilibria (2/2)

- 핵융합 플라즈마 특강 2 -2009. 2nd Semester

YoungMu Jeon

Homework - Discussion

Solving Tokamak Plasma Equilibrium

• We are solving the following G.S. equation on the rectangular grid of $(r_{min} \le r \le r_{max})$ and $(z_{min} \le z \le z_{max})$ with a given current density profile as a free-boundary problem.

$$\Delta^* \psi^{k+1} = -\mu_0 r J_\phi(\psi^k)$$

- To resolve non-linearity, we use "Picard iteration"
- To solve linearized GS equation, we can use iterative methods such as SOR (Successive Over-Relaxation) or MGM (Multi-Grid Method) methods. In this case, we will have two iteration loops; One is inner loop to solve GS eq. and the other is outer loop for Picard iteration.
- Of course, we can use a matrix inverse directly.

(1) Initialize

- Construct computational grids : (R_I, Z_j), I=1,...,N_R, j=1,...,N_Z
- Initial setup of ψ matrix on grid points if necessary
 - Initial plasma region and corresponding flux distributions
- And do other initializations required

(2) Update $j_{\phi}(\psi)$

• A basic approach for current profile is to assume an explicit form as like $F(\mu r)F'(\mu r)$

$$J_{\phi}(\psi) = -rp'(\psi) - \frac{T(\psi)T'(\psi)}{\mu_{0}r}$$
$$\Rightarrow \begin{cases} J_{\phi}(\psi) \equiv \lambda_{0} \left(\beta_{0} \frac{r}{r_{0}} + (1 - \beta_{0}) \frac{r_{0}}{r}\right) (1 - \psi_{s}^{m})^{n} \\ \psi_{s} \equiv \frac{\psi - \psi_{a}}{\psi_{b} - \psi_{a}} \end{cases}$$

- At first, find the plasma region (i.e. boundary) \rightarrow gives ψ_{b}
 - ψ_{b} could be obtained from the fluxes on limiter points or X-points
 - X-points could be defined as points on which $d\psi/dr=d\psi/dz=0$
- And then, find $\psi_a \rightarrow$ gives ψ_s
- Then, update $p(\psi_s)$, $F(\psi_s)$, and $j_{\phi}(\psi_s)$ on the plasma region
- Probably we need some constraints on $j_{\phi}(\psi_s)$ to make it converge It will be discussed later in a separate section

Find Plasma Boundary

- Tokamak plasma has two types of boundaries : "limited" or "diverted"
- Therefore, the mag. flux at the plasma boundary should be defined from both $\psi_{x\text{-point}}$ and ψ_{limiter} together
- After obtaining ψ_b , one can define ψ_s and the plasma region in which $p(\psi_s)$, $F(\psi_s)$, and $j_{\phi}(\psi_s)$ are defined

Diverted plasma

Limited plasma

(3) Update B.C.

Use Green function formula to calculate the mag. flux at the computational boundary

$$\psi_{\text{bndry}} = \sum_{l} \left(\left(\Delta S_{l} \right) J_{\phi, \text{plasma}}(\mathbf{r}_{l}) \right) G(\mathbf{r}_{\text{bndry}}; \mathbf{r}_{l}) + \sum_{c} I_{c} G(\mathbf{r}_{\text{bndry}}; \mathbf{r}_{c})$$

 Only one time calculation is required for the contribution from the coils, while one need to recalculate the contribution from the plasma whenever the current density is updated

(4) Solve G.S. Equation

• Solve the linearized G.S. equation.

$$\begin{split} \psi_{j,l} &= \frac{1}{2} \Bigg[\left(\frac{h_R^2}{h_R^2 + h_Z^2} \right) \psi_{j-1,l} + \left(\frac{h_R^2}{h_R^2 + h_Z^2} \right) \psi_{j+1,l} + \left(\frac{h_Z^2}{h_R^2 + h_Z^2} \right) \left(1 + \frac{h_R}{2R_l} \right) \psi_{j,l-1} \\ &+ \left(\frac{h_Z^2}{h_R^2 + h_Z^2} \right) \left(1 - \frac{h_R}{2R_l} \right) \psi_{j,l+1} + \left(\frac{h_R^2 h_Z^2}{h_R^2 + h_Z^2} \right) \mu_0 R_l J_{\phi_{j,l}} \Bigg] \end{split}$$

 In this class, we will use SOR(Successive Over-Relaxation) method (cf: also refer to Jacobi and Gauss-Seidel methods)

$$\begin{split} \left(\psi_{j,l}^{k+1}\right)^{*} &= \frac{1}{2} \Bigg[\left(\frac{h_{R}^{2}}{h_{R}^{2} + h_{Z}^{2}}\right) \psi_{j-1,l}^{k+1} + \left(\frac{h_{R}^{2}}{h_{R}^{2} + h_{Z}^{2}}\right) \psi_{j+1,l}^{k} + \left(\frac{h_{Z}^{2}}{h_{R}^{2} + h_{Z}^{2}}\right) \left(1 + \frac{h_{R}}{2R_{l}}\right) \psi_{j,l-1}^{k+1} \\ &+ \left(\frac{h_{Z}^{2}}{h_{R}^{2} + h_{Z}^{2}}\right) \left(1 - \frac{h_{R}}{2R_{l}}\right) \psi_{j,l+1}^{k} + \left(\frac{h_{R}^{2}h_{Z}^{2}}{h_{R}^{2} + h_{Z}^{2}}\right) \mu_{0}R_{l}J_{\phi_{j,l}}^{k} \Bigg] \\ \Delta \left(\psi_{j,l}^{k+1}\right)^{*} &= \left(\psi_{j,l}^{k+1}\right)^{*} - \psi_{j,l}^{k}, \qquad \psi_{j,l}^{k+1} = \psi_{j,l}^{k} + \omega\Delta \left(\psi_{j,l}^{k+1}\right)^{*} \\ \text{here } \omega = \text{relaxation factor}, 0 < \omega < 2 \end{split}$$

(5) Convergence

 In our case, the convergence criteria can be defined as follows (for outer loop: Picard iteration)

$$\mathbf{E}_{\text{total}} \equiv \frac{1}{N_R \times N_Z} \sum_{j,l}^{N_R,N_Z} \left\{ \Delta \left(\psi_{j,l}^{k+1} \right)^* \right\}^2 < \varepsilon \quad (\text{ex:1.e-5})$$

One can define a similar criterion for inner loop (iterative method like SOR)

(6) Post-Processing

 Based on calculated mag. poloidal flux, ψ_s, we can obtain many of useful and important equilibrium quantities such as κ(elongation), δ(triangularity), ι(rotational transform) or q(safety factor), β(plasma beta) so on. Please refer to any text for detail formula.

$$\beta_{p} = \frac{\langle p \rangle}{\langle B_{p}^{2} \rangle_{\psi_{a}} / 2\mu_{0}} \qquad \qquad \beta_{N} = \frac{\langle \beta \rangle}{I_{p}[\text{MA}] / aB_{T0}}$$

$$l_i \equiv \frac{\psi}{\mu_0 r_0 (I_p)^2} \int \frac{B_p^2}{2\mu_0} dV$$

$$l_i(3) \equiv 2V \left\langle B_p^2 \right\rangle / r_0 \left(\mu_0 I_p \right)^2$$

$$q(\psi) = \frac{1}{2\pi} \oint_{\psi} \frac{B_{\phi}}{rB_{\theta}} dl = \frac{F}{2\pi} \oint_{\psi} \frac{dl}{r |\nabla \psi|}$$

(7) Constraints On Current Profile

$$J_{\phi}(\psi) \equiv \lambda_0 \left(\beta_0 \frac{r}{r_0} + (1 - \beta_0) \frac{r_0}{r}\right) (1 - \psi_s^m)^n$$
$$= -rp'(\psi) - \frac{F(\psi)F'(\psi)}{\mu_0 r}$$

1) Plasma current : λ_0 is updated to match given I_p

$$I_p = \int_{\Omega_s} J_{\phi}(\psi) ds \quad \Rightarrow \quad \text{update } \lambda_0$$

2) Plasma beta : β_0 is updated to match given β_p or $p(\psi_a)$

$$eta_p = rac{\left}{\left< B_p^2 \right>_{\psi_a} / 2\mu_0} =$$

 \Rightarrow update β_0

Variations & Applications Of Equilibrium Solution

App-1. Solve Coil Currents For Equilibrium

- If the plasma boundary is given, then we can calculate the equilibrium PF coil currents. In this case, the problem become a sort of fixed boundary problem.
- (1) Solve the G.S. equation as a fixed boundary problem with $\psi_b = \psi(r_{bndry}, z_{bndry})=0$.
- **②** Find out the PF coil currents which satisfies following

$$\begin{cases} \psi_{\text{plasma}}(r_{\text{bndry}}, z_{\text{bndry}}) = \int_{\Omega_{\text{plasma}}} J_{\phi}(\mathbf{r}') G(\mathbf{r}, \mathbf{r}') d\Omega \\ \psi_{\text{PF-coils}}(r_{\text{bndry}}, z_{\text{bndry}}) = \sum_{k}^{N_{\text{coil}}} I_{k} G(\mathbf{r}_{\text{bndry}}, \mathbf{r}_{k}) \\ \min_{I_{k}} \sum_{l}^{N_{\text{bndry}}} \{\psi_{\text{plasma}} + \psi_{\text{PF-coils}}(I_{k})\}^{2} \end{cases}$$

App-2. Reconstructions (EFIT)

- Similar with our equilibrium solution method described in this class except the form of current density profile and the constraints on that.
- In EFIT, polynomial or spline representations for $j_{\phi}(\psi)$ are used according to user's choice.

$$\begin{cases} p(\psi) = \alpha_0 + \alpha_1 \psi + \dots + \alpha_{n-1} \psi^{n-1} \\ F(\psi) = \beta_0 + \beta_1 \psi + \dots + \beta_{n-1} \psi^{n-1} \\ J_{\phi}(\psi) = -rp'(\psi) - \frac{F(\psi)F'(\psi)}{\mu_0 r} \end{cases}$$

• Constraints using experimental measurements (MD) can specify the coefficients, α_0 , α_1 , ..., β_0 , β_1 , ..., so that current density can be identified from measurements.

Constraints On Current Density Profile

- As a constraint on current profile, the experimental measurements can be used in order to configure the coefficients of $p(\psi)$ and $F(\psi)$.
- Many of diagnostics can be used such as magnetic measurements and MSE (Motional Stark Effect) so on.
- Primarily, with magnetic diagnostics (MD), we can find out the appropriate coefficients by solving the following equation using "least-squre method" or "SVD(Singular Value Decomposition)".

$$\min_{\alpha_l, \beta_l} \sum_{l}^{N_{\rm MD}} \{ \widetilde{\psi}_{l,measured} - \widetilde{\psi}_{l,calculated}(\alpha_0, \alpha_1, \dots, \beta_0, \beta_1, \dots) \}^2$$

Reconstruction Example Using Filament Approach

Reconstruction & Its Accuracy By CEC

Reconstruction By UEC With Variations Of EC Number

In 50% from SOL

In 70% from SOL

In 90% from SOL

< Term Project >

Development Of A Free Boundary Tokamak Equilibrium Solver