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Stability: General Considerations

- The existence of an MHD equilibrium state implies a situation

where the sum of the forces acting on the plasma is zero.

- If the plasma is perturbed from this state, the resulting perturbed

forces either restore the plasma to its original equilibrium (stability)

or cause a further enhancement of the initial disturbance (instability).

- Avoidance of ideal MHD instabilities is necessary requirement for 

a fusion reactor.

- Analytic linear theory is primarily concerned in this chapter.

• Introduction
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Stability: General Considerations

• Definition of Stability

Equilibrium?

Stable?
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Stability: General Considerations

• Definition of Stability

Equilibrium?

Stable?
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Stability: General Considerations

• Definition of Stability

metastable

- Generation of instability is the general way of redistributing energy
which was accumulated in a non-equilibrium state.

- The fact that one can find an equilibrium does not guarantee 

that it is stable. Ball on hill analogies:

linear unstable non-linear unstablestable
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Stability: General Considerations

• Definition of Stability

Marginally stable

- Often times in marginally stable plasmas, a small change in some 
parameter, e.g. β or Ip, transforms the system into one of type, 
stable or unstable.

- The condition of neutral stability defines the boundary between 
stability and instability.

- To a good approximation ideal MHD is closely analogous to the set of
situations on the left hand side. There is no dissipation and the instabilities
are so virulent that nonlinearities do not dramatically change the behaviour.
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Stability: General Considerations

• Definition of Stability

- Definition of ideal MHD instability: 
assuming all quantities of interest linearised about their equilibrium values.
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small 1st order 
perturbation

Im ω > 0: exponential instability

Im ω ≤ 0: exponential stability

→ provide a simple and reliable test for stability
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Stability: General Considerations

- Consider a configuration with an infinite, homogeneous 

and unidirectional magnetic field

• Waves in an Infinite Homogeneous Plasma
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Stability: General Considerations

- Consider a configuration with an infinite, homogeneous 

and unidirectional magnetic field

• Waves in an Infinite Homogeneous Plasma
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Stability: General Considerations

• Waves in an Infinite Homogeneous Plasma
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Setting the determinant of this system to zero: dispersion relation

ω2 ≥ 0: Im ω = 0 → exponentially stable system because no sources of 
free energy available to drive instabilities
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Stability: General Considerations

• Waves in an Infinite Homogeneous Plasma

1. Shear Alfvén wave

- Purely transverse → causing the magnetic field lines to bend

- Incompressible producing no density or pressure fluctuations

- Describing basic oscillation between perpendicular plasma kinetic energy

and perpendicular line bending magnetic energy; i.e. a balance between

inertia and field line tension
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Stability: General Considerations

• Waves in an Infinite Homogeneous Plasma

2. Fast magnetoacoustic wave

- Nearly transverse

- Both the magnetic field and the plasma pressure compressed

- Compressional Alfvén wave                           where

- Most of the compression involves the magnetic field not the plasma.

- Basic oscillation between perpendicular plasma kinetic energy

(plasma inertia) and compressional (field line pressure) plus line 

bending (field line tension) magnetic energy.
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Stability: General Considerations

• Waves in an Infinite Homogeneous Plasma

3. Slow magnetoacoustic wave

- Nearly longitudinal

- Both the magnetic field and the plasma pressure compressed

- Sound wave                  where

- Basic oscillation between parallel plasma kinetic energy 

(plasma inertia) and plasma internal energy (plasma pressure)

- Dispersion relation is identical to that of the ion acoustic wave of

two-fluid theory.
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Stability: General Considerations

• Waves in an Infinite Homogeneous Plasma

- Basic wave propagation characteristics of an ideal MHD plasma described

- In the homogeneous geometry, all are stable.

- In inhomogeneous geometries each of these waves is modified and 

can couple to one another.

- The most unstable perturbations almost always involve the shear 

Alfvén wave.
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Stability: General Considerations

• General Linearized Stability Equations

Energy Principle: an elegant and powerful procedure for testing 

ideal MHD stability in arbitrary 3-D geometry

1. Initial value problem using the general linearised equations of motion

2. Normal-mode eigenvalue problem

3. Transformed into a variational principle

4. Reduced to the energy principle
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• Initial Value Formulation
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: displacement of the plasma   
away from its equilibrium 
position

Aim: to express all perturbed quantities in terms of ξ and then 
obtain a single equation describing the time evolution of ξ
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Stability: General Considerations

• General Linearized Stability Equations

• Initial Value Formulation
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Integrated with respect to time

conservation of mass

conservation of energy

Faraday‘s law
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Stability: General Considerations

• General Linearized Stability Equations

• Initial Value Formulation
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momentum equation

force operator

+ Boundary conditions

Formulation of the generalized stability equations as an initial value problem
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Stability: General Considerations

• General Linearized Stability Equations

• Normal-Mode Formulation
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normal-mode formulation

- An eigenvalue problem for the eigenvalue ω2

- Assumed that for the problems of interest the eigenvalues are discrete 
and distinguishable so that the concept of exponential stability is valid.

- To obtain a more complete understanding, additional detailed knowledge 
of F is required.

conservation of mass

conservation of energy

Faraday‘s law
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Stability: General Considerations

• Properties of the Force Operator F

• Self-Adjointness of F

- major impact on both the analytic and the numerical formulation

of linearized MHD stability
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Stability: General Considerations

• Properties of the Force Operator F

• Real ω2
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Dot product with *(r) and integrating over the plasma volume

In ideal MHD the self-adjointness of F guarantees that at any stability 
boundary Im ω =0, the Re ω must also be zero simultaneously.

ω2 >0: pure oscillation (stable)

ω2 <0: exponentially grow (unstable)
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Stability: General Considerations

• Properties of the Force Operator F

• Orthogonality of the Normal Modes
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Stability: General Considerations

• Properties of the Force Operator F

• Spectrum of F

- In general F exhibits both discrete eigenvalues and continua

- Spectrum: (initial conditions)

- The points where                    do not exist define the spectrum of F.

- Continua significantly complicate MHD analysis for general initial value

problems. They require more than just picking up the pole 

contributions from the displace transform.

- However the continua lie on stable side of the spectrum and thus 

do not affect stability.

- Accumulation points: these provide a simple necessary condition 

for stability.
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Stability: General Considerations

• Properties of the Force Operator F
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Stability: General Considerations

• Elements of Variational Calculus

Construction of the Variational Principle
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Classic eigenvalue problem

Method of solution

- Analytical methods if f, g are sufficiently simple.

- Power series expansions

- Asymptotic expansions

- Transform methods

- Numerical methods

- Variational calculus

: eigenvalue
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Stability: General Considerations

• Elements of Variational Calculus

Construction of the Variational Principle
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Multiplied by y

and integrated over the region 0 ≤ x ≤ 1

Why is this variational?

- Substitute all allowable trial function y(x) into the equation above. 

- When resulting  exhibits an extremum (maximum, minimum, 

saddle point) then  and y are actual eigenvalue and eigenfunction.
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Stability: General Considerations

• Elements of Variational Calculus

Construction of the Variational Principle
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Proof

- assume y0(x) as a trial function yielding 0.

- Modify y by a small but arbitrary perturbation
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Stability: General Considerations

• Elements of Variational Calculus

Construction of the Variational Principle
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equivalent to the original eigenvalue equation

Infinite number of integral relations for  possible but not variational

multiplied by h(x)y(x)
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Stability: General Considerations

• Elements of Variational Calculus

Construction of the Variational Principle
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Since  = 0 when y coincides with a true eigenfunction, 

this implies that an estimate for  using a guess (trial function) 

for g is more accurate than the trial function itself.
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Stability: General Considerations

• Elements of Variational Calculus

Generalized Boundary Conditions
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- Proper variational principle equivalent to the original eigenvalue problem.

- Although using trial functions which satisfy y’(1)=Ay(1) is not 

unexpected, it is often difficult to implement practically. 
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Stability: General Considerations

• Elements of Variational Calculus

Generalized Boundary Conditions
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More elegant and more convenient alternative variational principle: 

replace y’(1) with Ay(1)
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- If we choose trial functions which allow y(1) to float freely, then 

the variational principle forces the trial function to satisfy y’(1)=Ay(1).

- This is the natural boundary condition. It has the important advantage of

allowing trial functions to be substituted that do not automatically satisfy 

this condition.



33

Stability: General Considerations

• Variational Formulation
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 normal-mode formulation

Application of the variational principle to MHD

dot product with * then integrated over 
the plasma volume

Any allowable function  for which ω2 becomes an extremum is an 

eigenfunction of the ideal MHD normal mode equations with eigenvalue ω2.
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Stability: General Considerations

• Variational Formulation
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Using self-adjoint property

Since is δξ arbitrary and δω2 =0 (extremum)

Demonstrated that the normal-mode eigenvalue equation and the 

variational principle are equivalent formulations for the linearised ideal MHD 

stability problem.

Proof
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Stability: General Considerations

• Variational Formulation
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- Change in potential energy associated with the perturbation

- Equal to the work done against the force F()

in displacing the plasma by an amount .

Conservation of energy
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