

목 차

- 1. 암석지구화학 탐사
- 2. 토양지구화학 탐사
- 3. 수계지구화학 탐사
- 4. 식물지구화학 탐사
- 5. 가스지구화학 탐사
- 6. 해저광물지구화학 탐사

광체를 찾기 위한 탐사 전략 수립 과정 (Govett, 1983)

1. 암석지구화학 탐사

- 암석지구화학의 정의: 광화작용과 공간적으로 관련된 원소들의 분포 패턴을 탐지할 목적으로 암석의 화학조성(일반적으로 미량원소 함량)을 측정하는 분야
- 탐사 규모에 따른 분류
 - 광역스케일 탐사: 지구화학구(geochemical province) 조사
 - 국지적 스케일 탐사 : 개개의 광상과 관련된 원소들의 분포패턴 규명
 - 광산단위 스케일 탐사 : 광체의 모암에서의 지구화학적 이상을 조사

지구화학적 특성 평가 기준

• 전암(whole rock) 중의 미량원소 함량

• 조암광물 중의 원소(광석원소나 휘발성 원소) 함량

 암석과 광물 중의 지구화학적으로 관련된 원소들의 함량비

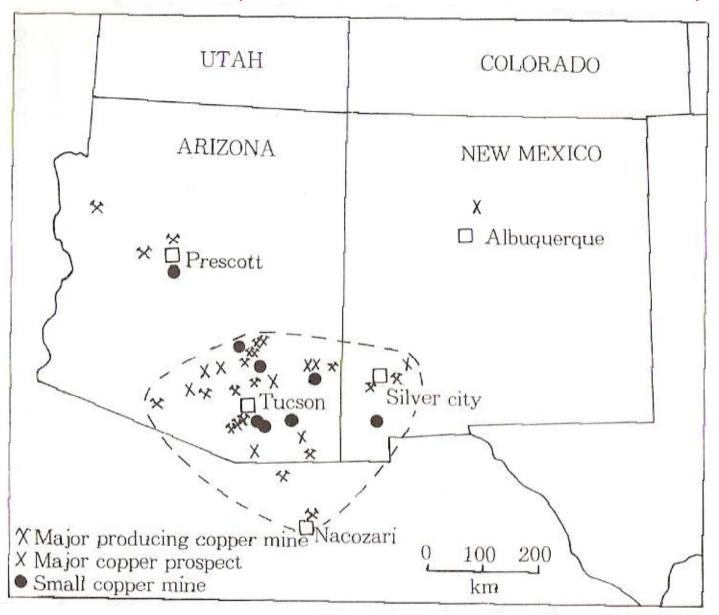
암석중의 원소 함량

- 지구화학탐사를 목적으로 한 원소 분류 (Beus and Grigoian, 1977)
 - 산화물로 존재하는 원소 (oxyphile elements)
 - 황화물로 존재하는 원소 (chacophile elements)
 - 귀금속 원소 (noble elements)
 - 수용액에 존재하는 원소 (hydrophile elements)
 - 기체로 대기 중에 존재하는 원소 (atmophile elements)

분류	주성분원소	부성분원소	미량원소 (< 0.1%)		
	(> 1%)	(0.1 – 1%)	광물형성원소	분산원소	
I.Oxyphile					
a. Lithophile	O, Si, Al, Fe, Mg, Ca, Na, K	Mn, Ti, P, (C)	Li, Be, B, F, Sr, Ba, Y, and rare earth elements, Zr, Nb, Ta, Sn, Cs, W, Th, U	Ga, Ge, Rb, Hf, Se, Ra, (TI)	
b. Siderophile	Fe	_	V, Cr, Co, Ni	_	
II. Chalcophile	_	_	S, Cu, Zn, As, Se, Mo, Mo, Ag, Sb, Te, Hg, Pb, Bi	Cd, In, Re, Tl, (Ga), Ge)	
III. Noble	_	_	Pd, Os, Ir, Pt, Au	Rh, Ru	
IV. Hydrophile	(0)	Н	CI, Br, I, (S)		
V. Atmophile	(0)	С	He, N, Ne, Ar, Xe, Rn		

대표적인 화성암과 퇴적암층의 원소 평균함량 (ppm).

원소	초염기성암	현무암	화강섬록암	화강암	사암	셰일	석회암
Ag	0.06	0.1	0.07	0.04	_	0.05	1
As	1	2	2	1.5	1	15	2.5
Au	0.005	0.004	0.004	0.004	_	0.004	0.005
В	5	5	20	15	35	100	10
Ва	2	250	500	600		700	100
Ве	-	0.5	2	5		3	1
Bi	0.02	0.15	ı	0.1		0.18	_
Br	1	3.6	-	2.9	1	4	6.2
Cd	ı	0.2	0.2	0.2		0.2	0.1
CI	85	60	-	165	10	180	150
Со	150	50	10	1	0.3	20	4
Cr	2000	200	20	4	35	100	10
Cs	1	1	2	5		5	_
Cu	10	100	30	10		50	15
F	100	400	ı	735	270	740	330
Ga	1	12	18	18	12	20	0.06
Ge	1	1.5	1	1.5	0.8	1.5	0.1
Hg	1	0.08	0.08	0.08	0.03	0.5	0.05
	0.5	0.5	_	0.5	1.7	2.2	1.2


대표적인 화성암과 퇴적암층의 원소 평균함량 (ppm).

원소	초염기성암	현무암	화강섬록암	화강암	사암	셰일	석회암
Li	_	10	25	30	15	60	20
Mn	1300	2200	1200	500	_	850	1100
Мо	0.3	1	1	2	0.2	3	1
Ni	2000	150	20	0.5	2	70	12
Pb	0.1	5	15	20	7	20	8
Rb	_	30	120	150	60	140	5
Sb	0.1	0.2	0.2	0.2	_	1	_
Se	_	0.05	_	0.05	0.05	0.6	0.08
Sn	0.5	1	2	3	_	4	4
Sr	1	465	450	285	20	300	500
Te	0.001	0.001	0.001	0.001	_	0.01	_
Th	0.003	2.2	10	17	1.7	12	2
Ti	3000	9000	8000	2300	1500	4600	400
TI	0.05	0.1	0.5	0.75	0.82	0.3	_
U	0.001	0.6	3	4.8	0.45	4	2
V	50	250	100	20	20	130	15
W	0.5	1	2	2	1.6	2	0.5
Zn	50	100	60	40	16	100	25

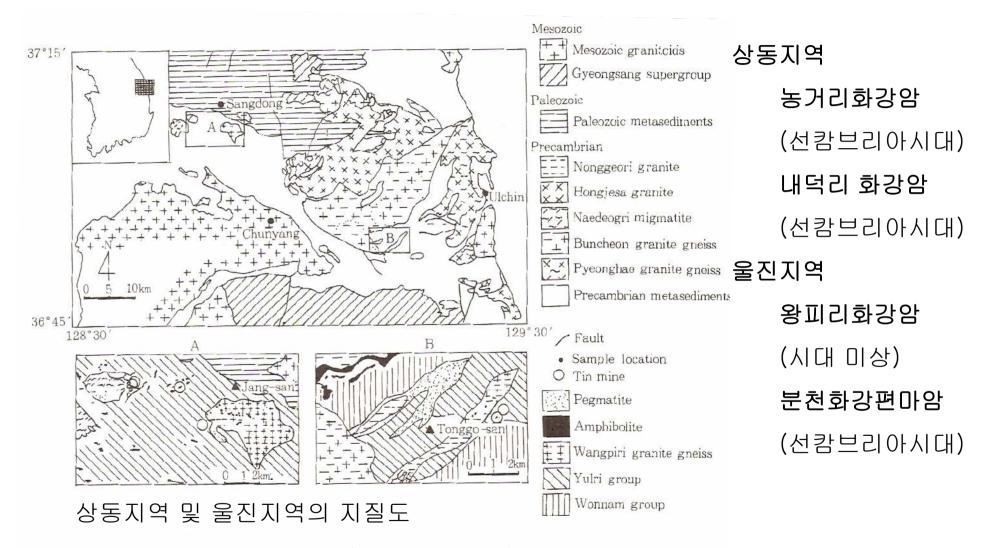
생산성 심성암(Productive Pluton)

- 광상이 어떤 심성암과 밀접하게 수반되는 경우
- 생산성 심성암의 형성 과정
 - 마그마 또는 심성암에 금속원소가 처음부터 부화 (enrichment)
 - 국지적으로 광상형성을 수반하면서 고화된 대규모 화성암체에 외부로부터 금속이 도입(epigenetic)

광역스케일(Regional Scale)의 1차 분산과 지구화학구(Geochemical Province)

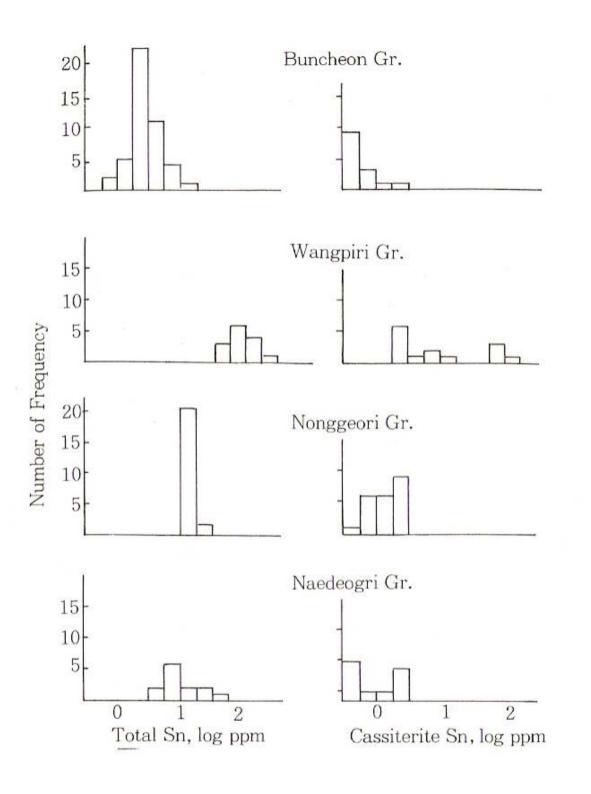
주석(tin: Sn) 광화작용과 화강암

- 주석광화작용과 관련된 화강암
 - 주석 화강암 (tin granite)
 - 함주석화강암 (stanniferous granite)
- 주석 화강암 : Sn 15~20 ppm 이상
- 정상적 화강암의 Sn 배경값 < 3 ppm
- Rb/Sr ↑, Li/K ↑, K/Rb ↓, Mg/Li ↓, Ba/Rb ↓


화강암류의 지구화학적 유형에 따른 미량원소 특성(Tauson, 1984)

Geochemical granitoid types	K (%)	Na (%)	F (%)	Li (ppm)	Rb (ppm)	Sr (ppm)	Ba (ppm)	Sn (ppm)	Pb (ppm)	Zn (ppm)	K/Rb	F(Li+Rb) (Sr+Ba)	Relative distribution (%)
1	0.26	3.1	0.015	5	4	140	60	3	3	75	650	6	2
2	2.0	3.0	0.07	18	100	260	550	2	10	43	200	100	8
3	3.5	3.4	0.08	21	125	700	1700	5	23	70	280	50	5
4	3.6	4.0	0.2	105	270	12	40	18	46	390	130	15000	2
5	3.3	2.8	0.08	50	175	330	830	6	27	51	190	155	40
6	3.9	2.8	0.27	180	440	70	175	22	28	40	90	6800	5
7	4.1	3.5	0.05	27	140	650	1550	4	19	64	300	40	15
8	3.8	3.1	0.09	52	270	170	500	6	20	43	140	430	3
9	1.1	2.4	0.05	12	22	280	450	2	3	50	500	25	4
10	3.3	2.4	0.10	15	90	300	1000	2.5	10	50	370	80	3
11	4.5	2.4	0.17	30	250	110	1400	7	40	90	180	300	5
12	5.0	2.0	0.02	10	140	260	2300	3	12	35	360	12	8
A	3.3	2.9	0.08	42	160	340	1020	6	22	70	200	120	
В	3.3	2.8	0.08	40	200	300	830	3	20	60	160	170	

1=plagiogranites, tholeitic series; 2=granitoids, andesitic series; 3=granites, latitic series; 4=agpaitic rare-metal granites; 5=palingenic granitoids, calcareous-alkaline series; 6=plumasitic rare-metal leucogranites; 7=palingenic granitoids, alkaline series; 8=rare-metal granitoids, alkaline series; 9=enderbites; 10=charnockites; 11=rapakivi; 12=ultrametamorphic granites; A=average granits; B=average granite after Vinogradov(1962).


지구화학적으로 관련된 원소들간의 함량비를 이용하여 희유금속을 함유하는 화강암의 구별을 시도

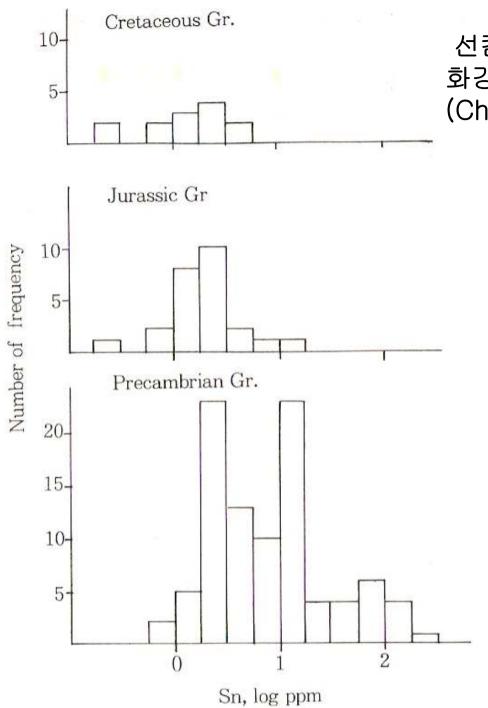
국내 주석화강암 관련 연구 (Chon et al., 1986)

상동지역: cassiterite (SnO, 석석) 함유 pegmatite 광상

울진지역: 석석 함유 석영-견운모 광맥 광상

선캄브리아시대 화강암류의 주석전함량과 석석으로 존재 하는 주석함량의 도수분포도 (Chon et al., 1986)

울진지역


분천화강편마암 (선캄브리아시대)

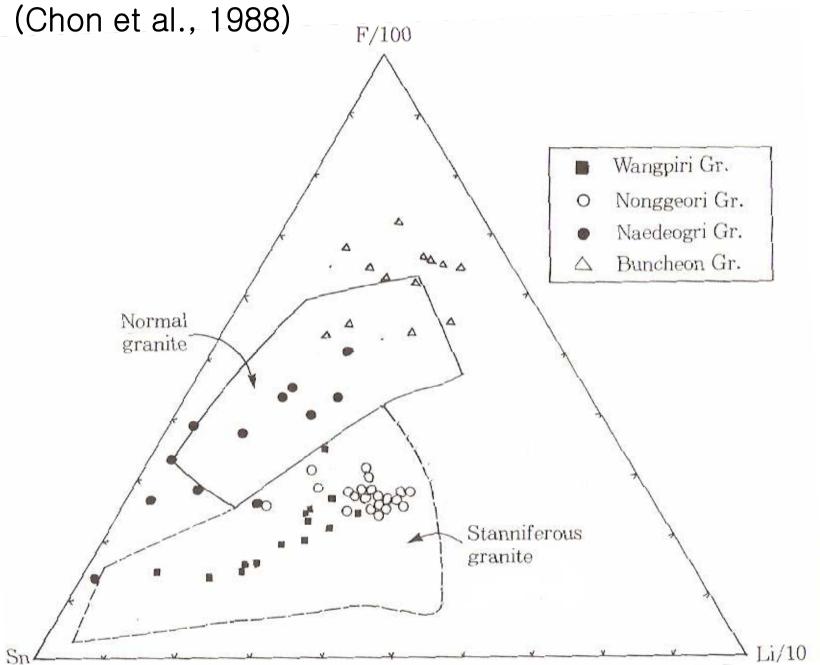
왕피리화강암 (시대 미상)

상동지역

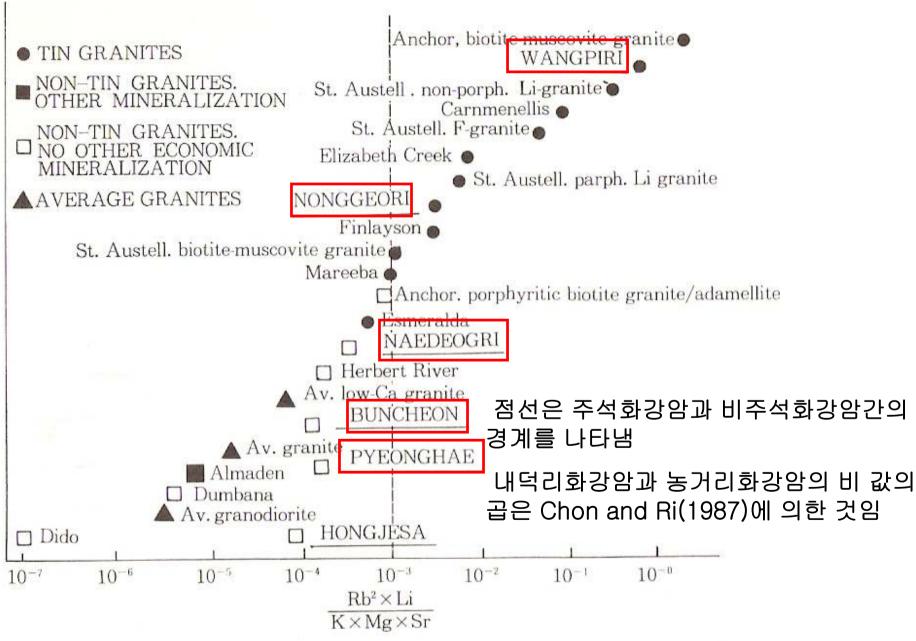
농거리화강암 (선캄브리아시대)

내덕리 화강암 (선캄브리아시대)

선캄브리아시대 화강암류와 중생대 화강암류의 주석전함량의 비교 (Chon et al., 1986)


상동지역 및 울진지역에 분포하는 화강암류의 지구화학적 특성 (Chon et al., 1988)

		Ba/Rb	100× Li/K	K/Rb	Mg/Li	Bb/Sr	Li	Sn	F
Low-Ca granite*		4.9	0.9	247	40	1.7	40	3	850
Naedeogri granite	(13)	1.3	0.5	210	58	3.7	22	13.5	704
Nonggeori granite	(22)	0.6	3.0	149	11	5.9	131	14.9	956
Buncheon granitoids	(46)	1.5	0.8	234	94	5.6	31	3.2	913
Wangpiri granitoids	(14)	0.1	22.2	63	0.7	53.4	687	97	3,280
Tin-bearing granites**		< 0.5	> 2.4	< 150	< 30	> 4	> 100	> 10	-


^{*}Source: Calculated from Turekian & Wedepohl(1961).

^{**}Source: Tauson & Kozlov(1973), Beus & Sithin(1972), Flinter(1971), Olade(1980).

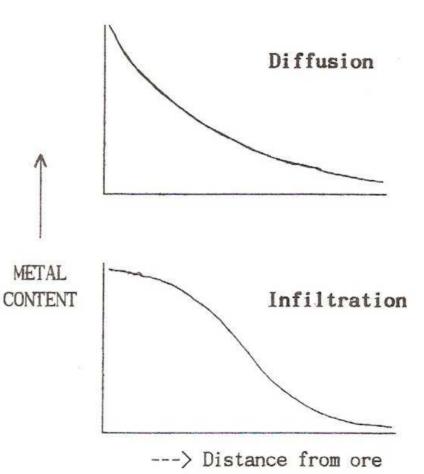
상동지역 및 울진지역 화강암류의 F-Sn-Li 삼각도

(Rb²×Li)/(K×Mg×Sr)비 값의 곱에 의한 주석광화화강암과 비생산성 화강암의 구분 (Govett, 1983)

국지적 및 광산 스케일의 1차 분산

• 지시원소의 분산 기작

- 확산(diffusion)

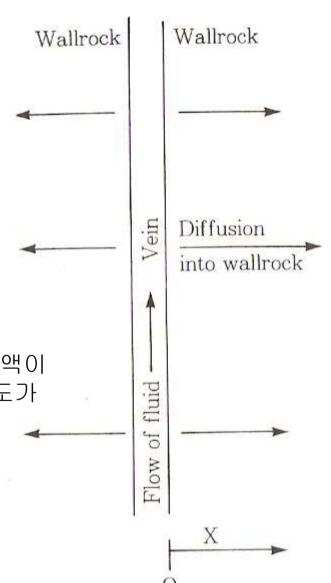

: 후광(diffusion aureole)생성

: 30m 이내로 지구화학적 이상대 형성

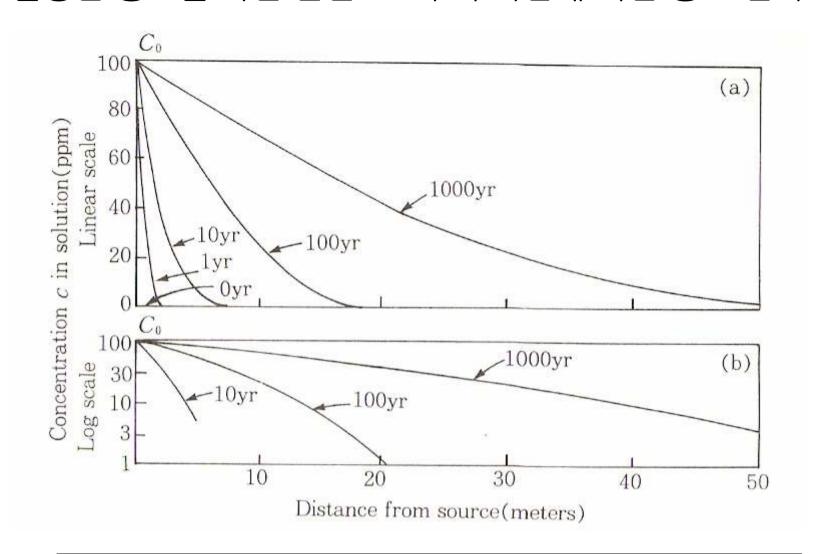
: 모암 내 광맥, 균열, 공극으로 유체가 이동, 누수이상(leakage anomaly) 형성

: 수백m까지 지구화학적 이상대 형성

Fick의 제1법칙과 제2법칙

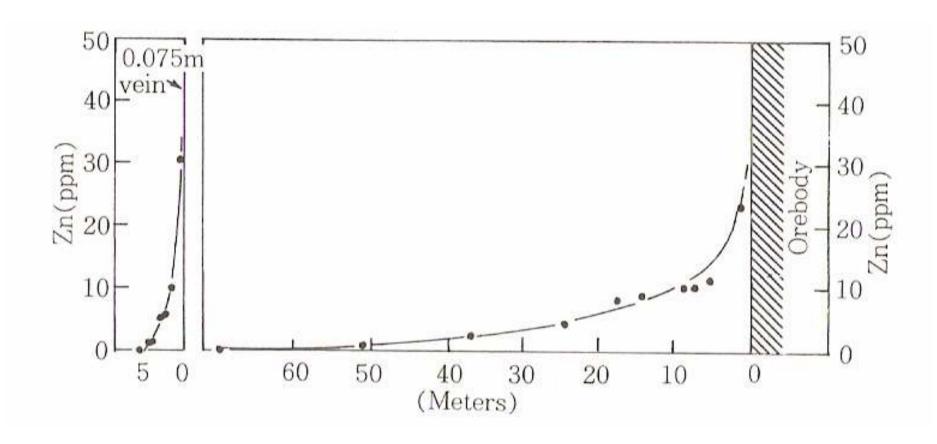

$$F = D imes rac{\partial \, C}{\partial x}$$
 식(1)

$$\frac{\partial C}{\partial t} = D \times \frac{\partial^2 C}{\partial^2 x}$$
 4(2)

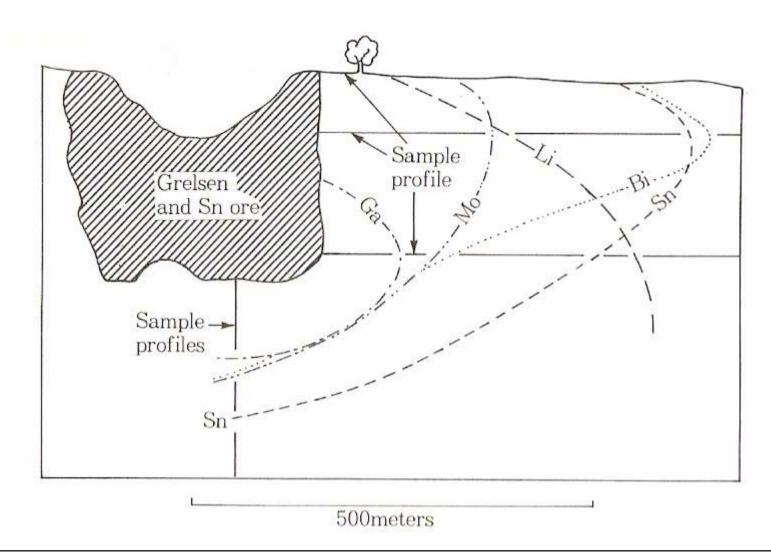

금속을 함유하고 있는(예: Pb, C_0 =100 ppm) 열수용액이 맥을 통과한다고 할 때, t_0 =0년에서의 모암의 Pb 농도가 0 ppm이라고 가정하면 식(2)는 $t=t_0$ 에서...

$$C = C_0 \left(1 - erf \frac{x}{\sqrt{4Dt}}\right)$$

Erf는 $\frac{x}{\sqrt{4Dt}}$ 의 error function



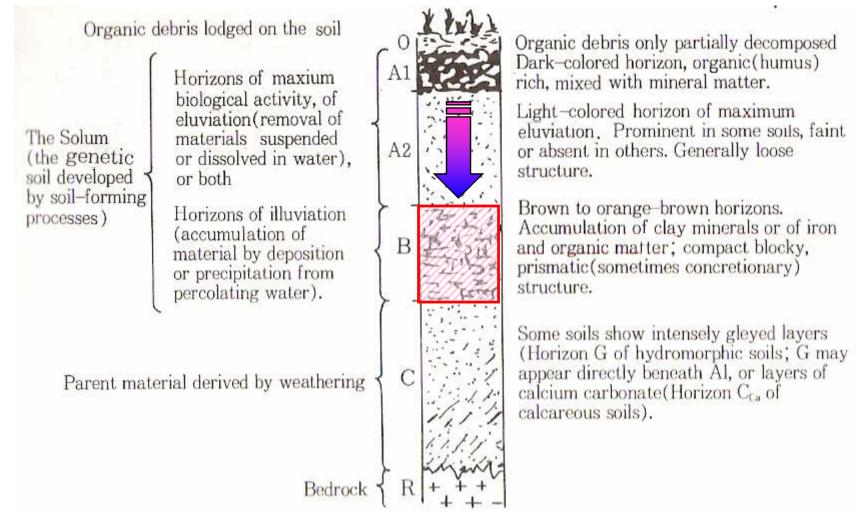
일정한 농도를 가진 근원으로부터 확산에 의한 농도 변화도



(a) 농도좌표계, (b) 대수농도좌표계, $C_o=100$ ppm, $D=10^{-4} cm^2/s$, 유체와 모암 사이에 상호반응은 없음

위스콘신-일리노이 Zn 광상구의 광체와 소규모 맥 주위의 확산 후광(diffusion aureole) (Barnes and Lavery, 1977)

동부 독일 Altenberg의 Sn광상 주위에 나타난 Sn, Li, Bi, Ca 및 Mo의 측면방향과 수직방향의 지구화학적 이상 (Tischendorf, 1973)


파선들은 평균 더하기 3배의 표준편차로 계산된 최대배경값의 경계를 나타냄

2. 토양지구화학 탐사

 금속이 풍부한 모재가 있는 곳에서 간단한 풍화작용에 의한 흔적의 양상은 매장된 광석에 대해 매우 직접적이고 명백한 지구화학적 지침을 제시

- 잔류토양과 이동토양을 대상
- 토양은 지구화학적 환경에 따라 변하므로 사전 조사(reconnaissance survey)를 통해 최적 탐사 계획을 수립해야 함

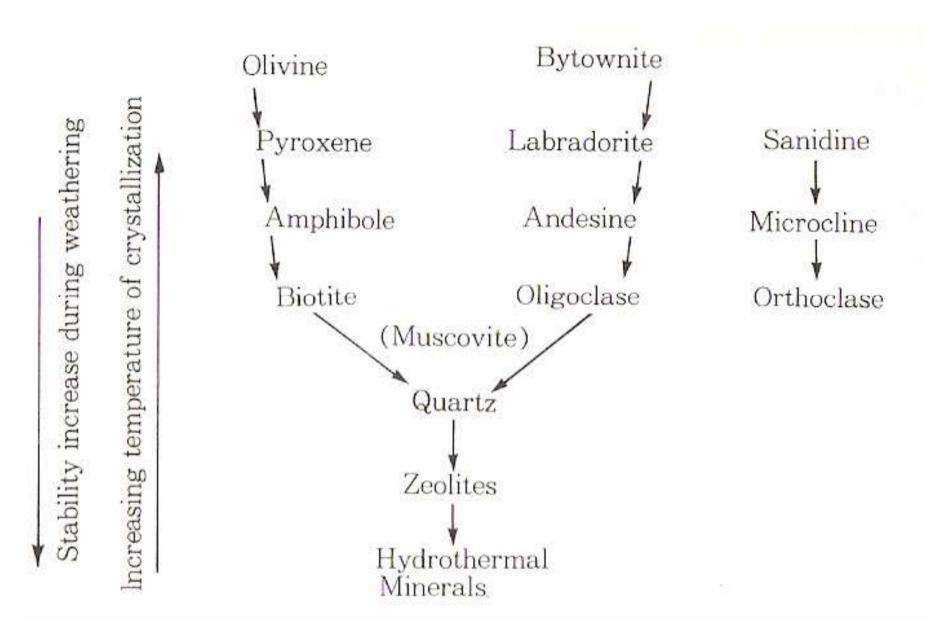
토양 단면

O: 유기물층, A: 용탈층, B: 집적층, C: 다소 풍화된 모재로 구성, R: 암반

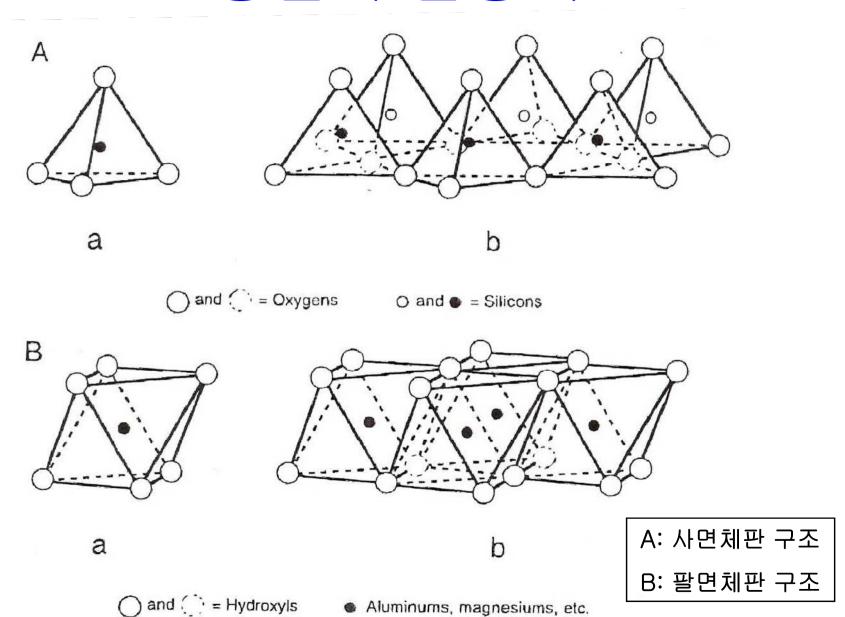
B층: 점토, 산화철, 알루미늄, 부식물질들이 집적되어 미량원소가 농축되는 경우가 많아 지구화학탐사의 대상층이 됨

물리적 풍화작용

- 융기와 침식
- 서로 다른 광물의 결정 정위(crystal orientation)의 확장 비율 차이
- 낮은 온도

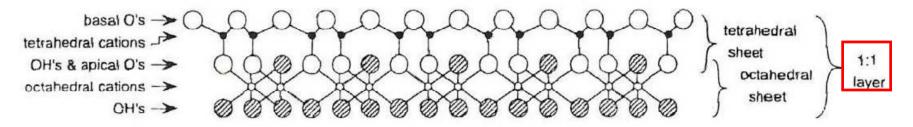

화학적 풍화작용

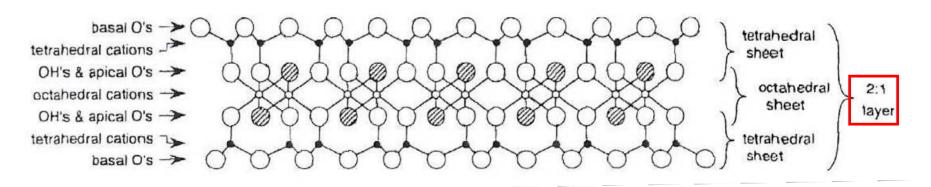
- 수화작용
- 가수분해작용
- 산화작용
- 탄산화작용


생물학적 풍화작용

- 식물의 뿌리 팽창
- 식물 뿌리 부의 극산성
- 호흡작용과 증발작용

풍화에 대한 광물의 안정성


점토광물의 결정 구조


점토광물의 결정 구조

PLANES OF IONS

SHEETS, LAYERS

Ex) kaolinite Al₄Si₄O₁₀(OH)₈

Ex) Montmorillonite Al₄(Si₄O₁₀)2(OH)₄xH₂O

토양 중에 존재하는 일차 및 이차 광물

Name

Chemical formulab

Primary minerals

Quartz SiO₂

Muscovite $KAl_2(AlSi_3O_{10}) (OH)_2$

Biotite $K(Mg, Fe)_3(AlSi_3O_{10}) (OH)_2$

Feldspars

Orthoclase KAlSi₃O₈
Microcline KAlSi₃O₈
Albite NaAlSi₃O₈

Alulte

Amphiboles

Tremolite $Ca_2Mg_5Si_8O_{22}(OH)_2$

Pyroxenes

Enstatite MgSiO₃

Diopside CaMg(Si₂O₆)

Rhodonite MnSiO₃

Olivine (Mg, Fe)₂SiO₄

Epidote Ca₂(Al, Fe)₃Si₃ O₁₂(OH)

Tourmaline (Na, Ca) (Al, Fe³⁺, Li, Mg)₃Al₆(BO₃)₃(Si₆O₁₈) (OH)₄

Zircon ZrSiO₄ Rutile TiO₂

토양 중에 존재하는 일차 및 이차 광물

		J75-2-
INI:	an	ne
7.44	411	10

Chemical formulab

Secondary minerals

Clay minerals^c

Kaolinite $Si_4Al_4O_{10}(OH)_8$

Montmorillonite M_X (Al, Fe²⁺, Mg)₄Si₈O₂₀(OH)₄ (M = interlayer metal cation)

Vermiculite (Al, Mg, Fe³⁺)₄(Si, Al)₈O₂₀(OH)₄

Chlorite [M Al (OH)₆](Al, Mg)₄(Si, Al)₈ O₂₀(OH, F)₄

Allophane $Si_3Al_4O_{12} \cdot nH_2O$ Imogolite $Si_2Al_4O_{10} \cdot 5H_2O$

Goethite FeOOH

Hematite α -Fe₂O₃

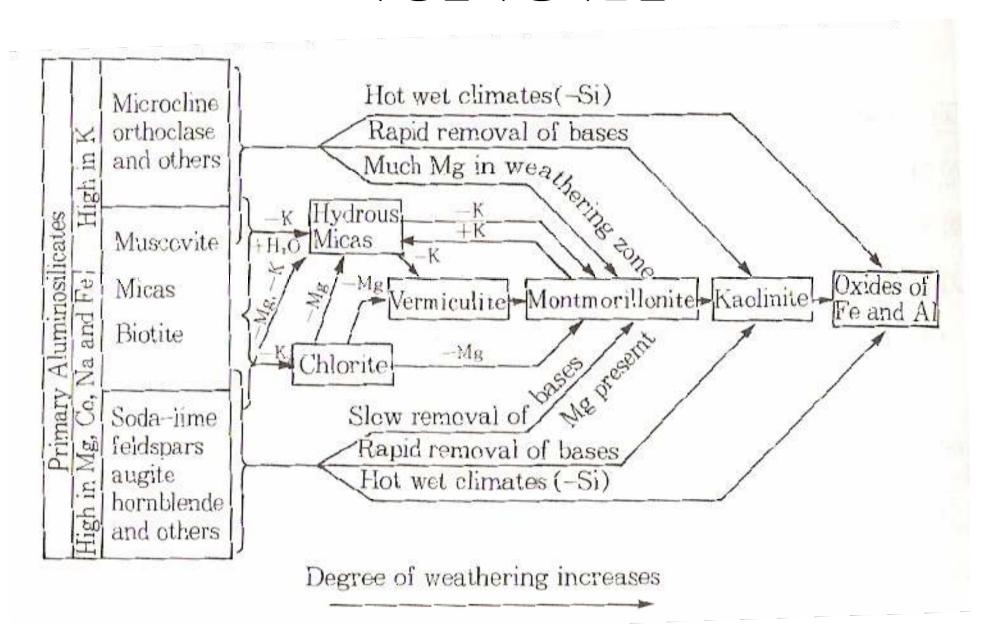
Maghemite γ -Fe₂O₃

Ferrihydrite $Fe_{10}O_{15} \cdot 9H_2O$

Bohemite γ-AlOOH

Gibbsite Al $(OH)_3$

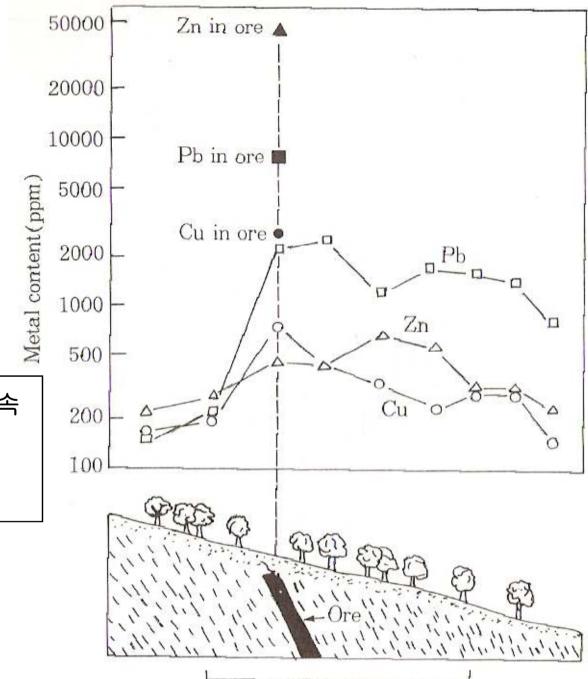
Pyrolusite β -MnO₂


Birnessite δ -MnO₂

Dolomite $Ca Mg(CO_3)_2$

Calcite CaCO₃

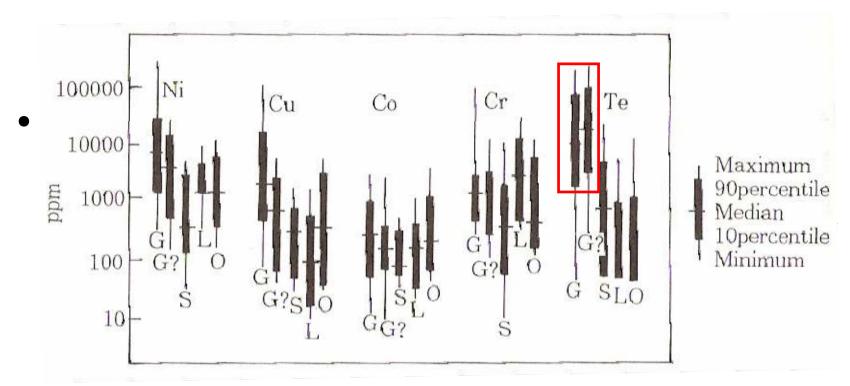
Gypsum CaSO₄ · 2H₂O


1차 광물의 풍화산물

토양의 이상

- 잔류 토양(residual overburden)
 - 광체(orebody)의 상부나 그 근처에 퇴적됨
 - 매장된 광석에 대해 매우 신빙성 있는 토양 이상 (soil anomaly)을 반영
- 이동토양(transported overburden)
 - 중력, 풍력, 빙하력 등의 외부작용에 의해 운반됨
 - 극미량까지 분석하여 이상을 발견할 수 있음

잔류토양 이상과 광석 사이의 관계



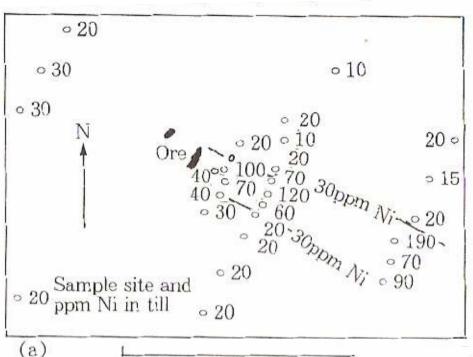
50meters

North Carolina에 있는 비금속 광상 위의 잔류 토양에서 Zn, Cu에 대한 대조는 억제되고 Pb에 의한 1차 대조의 보존

1차 대조(primary contrast): 광석과 광화되지 않은 모암을 비교하는 것

서부 Australia의 Archaean 지역에서의 고산과 가짜고산의 화학 조성

G: Ni광성 위에 형성된 고산,

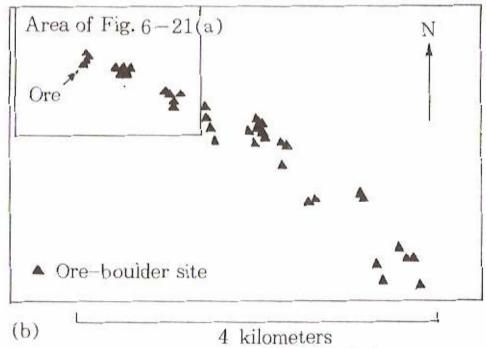

G?: Ni광석 위에 형성된 것으로 보이는 추정 고산

S: 황화광물이 풍부한 퇴적암이나 응회암에서 형성된 가짜고산

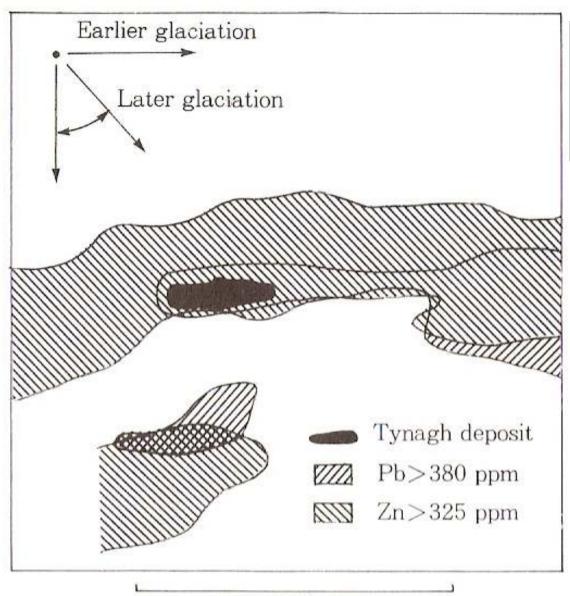
L: 초염기성암의 풍화에 의해 형성된 라테라이트

O: Ni 황화물의 집적이 없는 층에서 형성된 고산

(Bull and Mazzucchelli, 1975)


빙하퇴적물의 쇄설성 이상

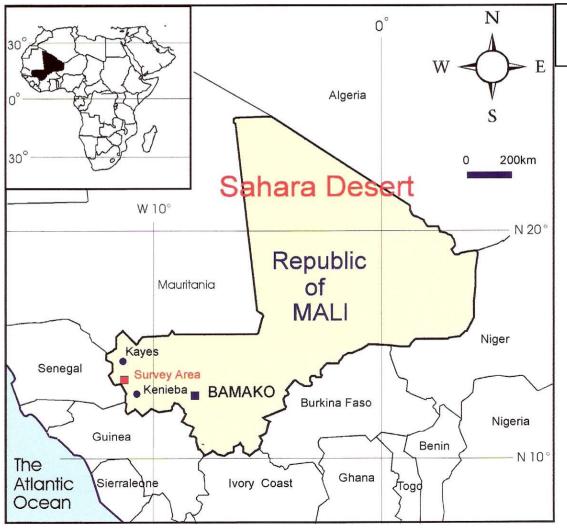
- 큰 입자로부터 미립의 점토까지 (모두 지구화학탐사의 대상)
- 조립질 파쇄물보다 세립질 파쇄물 에서 더 균질한 형태를 나타냄


(a) Ni황화광상 근처의 -0.012mm 빙하점토 파쇄물 중의 Ni함량

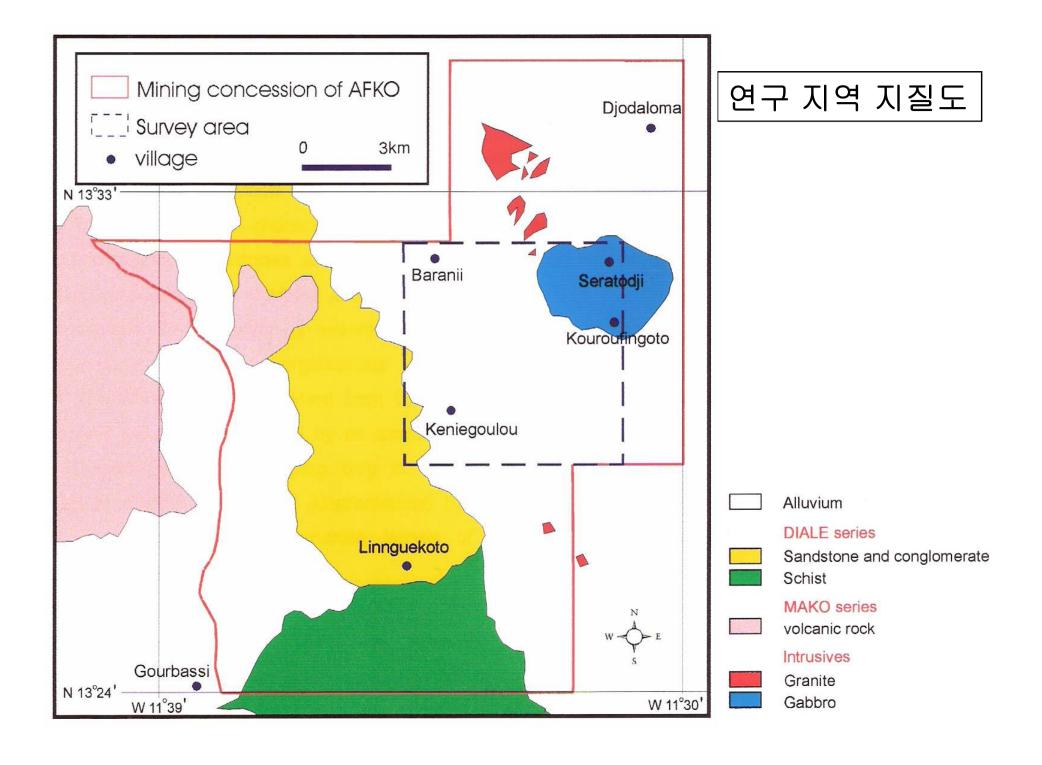
1 kilometer

(b) Ni황화 광상으로부터 광석표력의 발견 위치

빙하토양에서 Pb와 Zn에 대한 쇄설적 및 수태적 분산 패턴 (Donovan, James 1967)

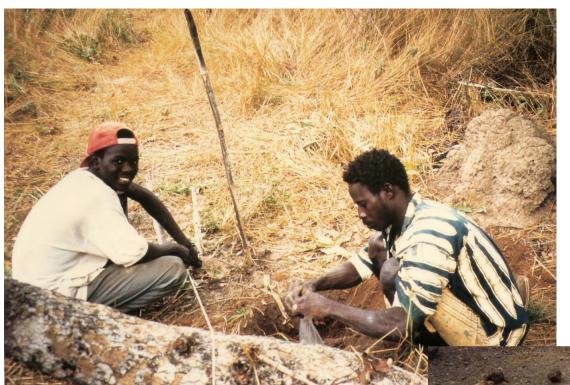


Zn은 쇄설성 분산과 더불어 수태적 분산이 이루어지므로 Pb보다 강한 이상분포를 더 넓게 형성하게 됨

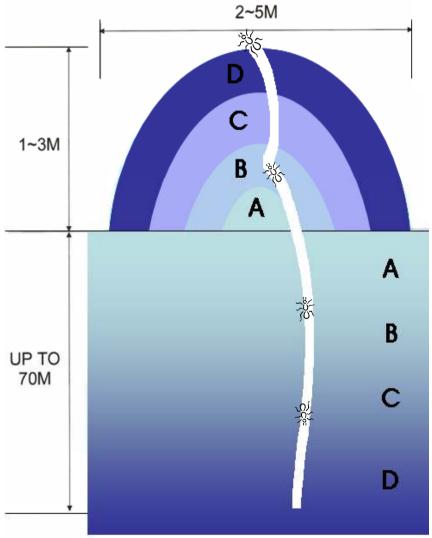

2 kilometers

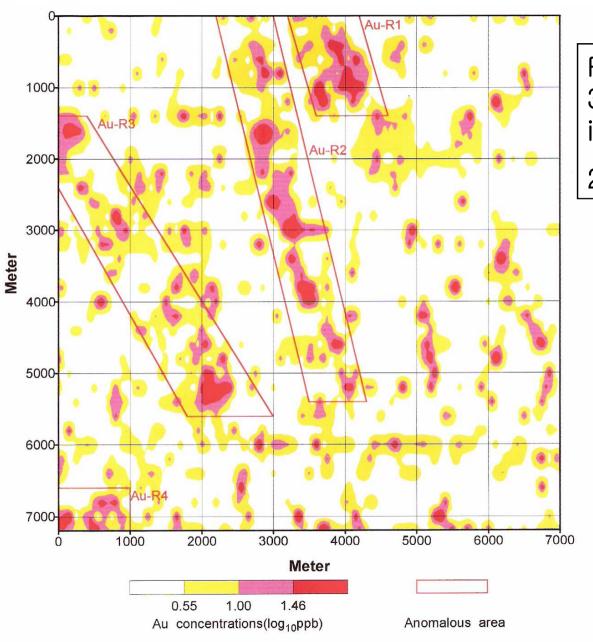

토양지구화학 탐사 연구사례

• 아프리카 말리 지역에서의 금광 탐사 (Chon, 1997)

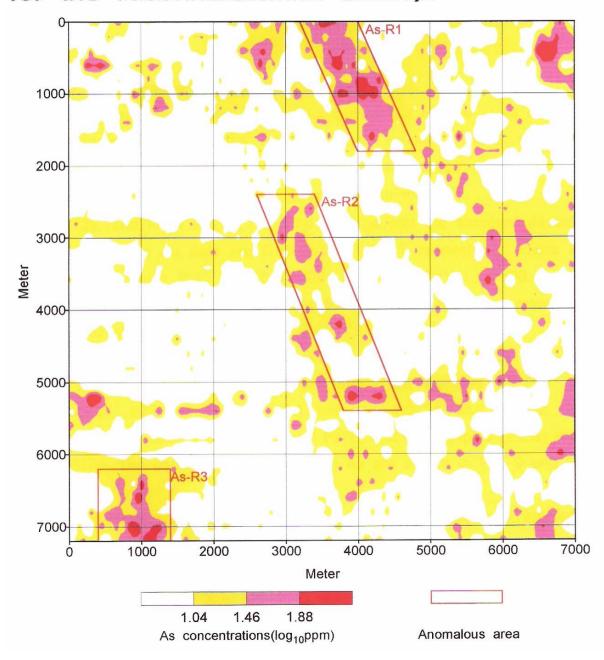

연구지역 지도

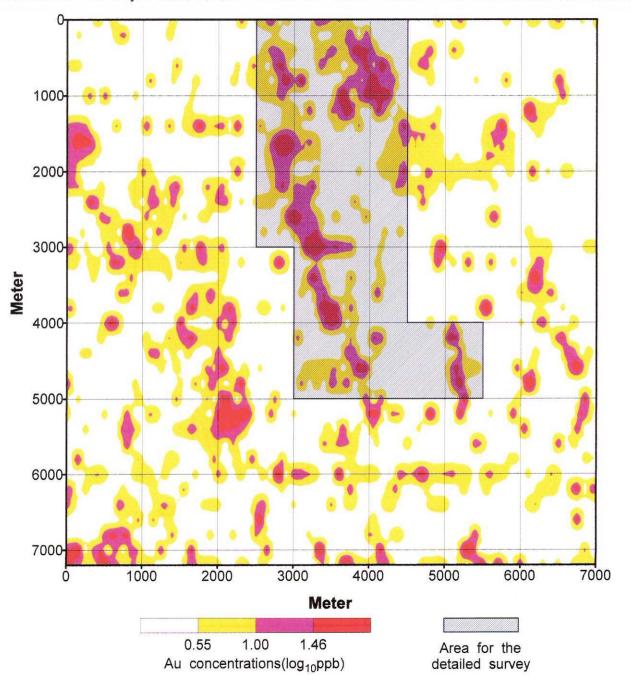
연구지역 주변 사진

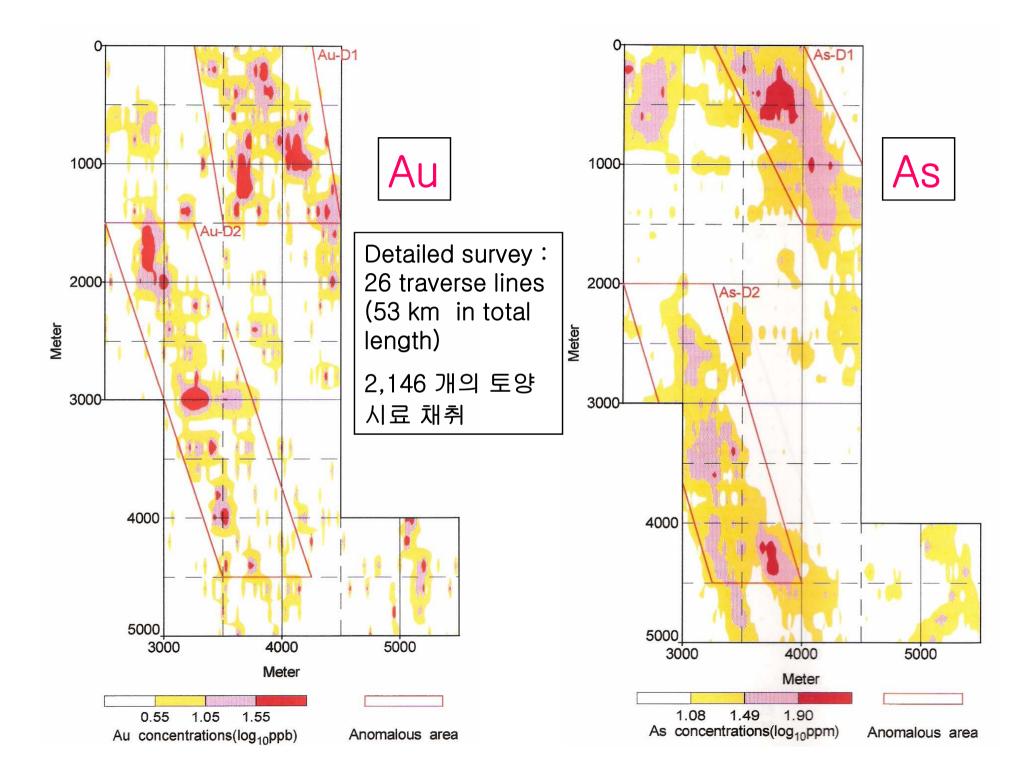

시료 채취 과정

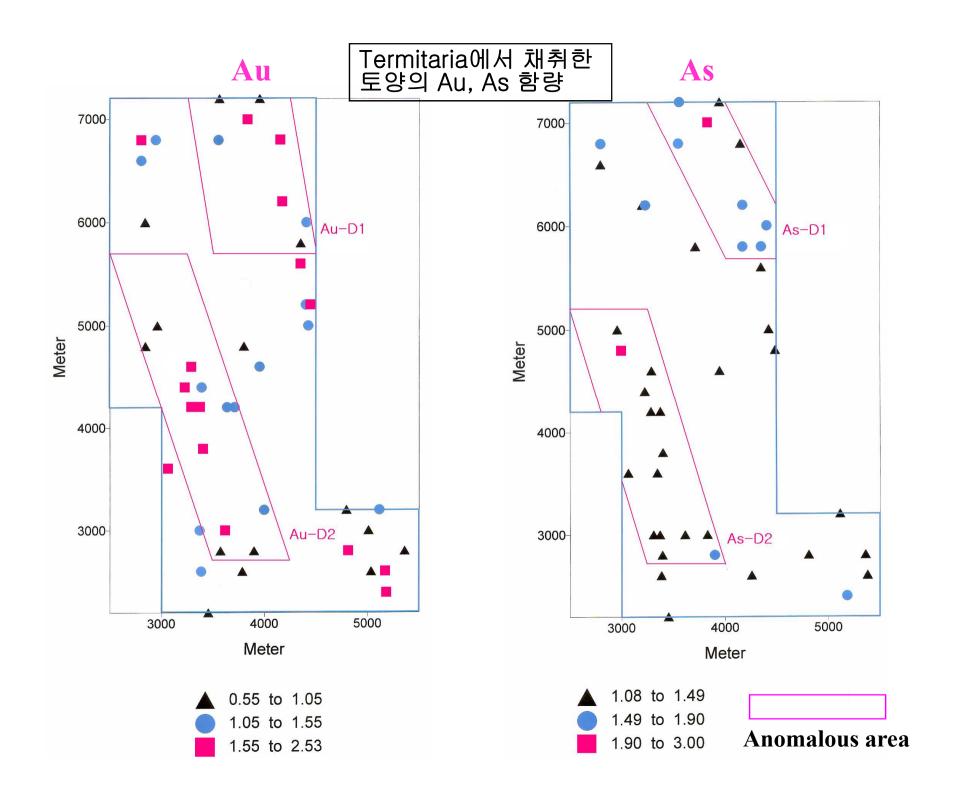

개미집(Termitaria) 시료 채취

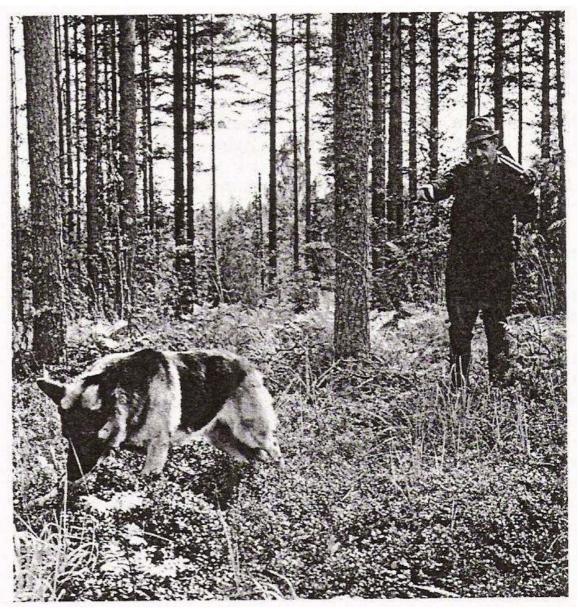
Detailed survey 과정에서 총 80개의 개미집 시료를 채취


Contour map of log-transformed Au concentrations in soil samples for the reconnaissance survey.


Reconnaissance survey: 37 traverse lines (259 km in total length)


2,597 개의 토양 시료 채취


Contour map of log-transformed As concentrations in soil samples for the reconnaissance survey.


Location map of the area for the detailed survey.

• 개를 이용한 황화광상 탐사 (Brooks, 1983)

1964년부터 2년간 황화물의 향을 맡을 수 있도록 개를 훈련시킴

훈련된 개 Lari는 1965년 3km² 지역에서 광물 전문가가 지표에서 270개의 표석(boulders)을 발견한 것에 비해 1330 개의 황화물을 포함하는 표석을 발견하였으며 일부는 깊이 10-20 cm 이하에서 찾아낸 것도 있었음

1965년 여름, 경제적 가치가 있는 동 광체가 있는 황철석과 황동석 float을 발견하였음