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%@mj Definition

+» Simulation
» An imitation of some real thing, state of affairs, or process
(Wikipedia)
» The process of replicating the real world based on a set
assumptions and conceived models of reality (Text)

+ Monte Carlo Simulation
» Simulation when dealing with random variables
» The procedure is usually repeated to generate a different set of
values of the variables in accordance with a specified
probability distribution
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%@j Why Monte Carlo Simulation?

% Provides a Model Uncertainty Before and After a Transfer
Function

» To reproduce a model of variability
» To assess the uncertainty of the output after a transfer function
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%@j A Simple Example

% Experiment: Throw 3 dices 100 times and compute the
sum of the values obtained @

% Transfer Function= Zx;
+ 3 Independent Variables
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Q“ The Real World is Much More Complicated!
&
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% Continuous Distribution Z, ¢
+ Large Number of Variables

+ Nonlinear Average
% Average above a threshold

— Impossible to deduce the
total number of combination »
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@ MC Procedure
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% Unknown to be Known: The output distribution F,

%+ Given: The input distribution F, and the transfer function

(or model) TR
% Quantile Transformation
» Equation: q(p)= F'(p)=x,
» Draw a uniform random
number in (0, 1) = “p” (a probability)
> Read the quantile function q(p)
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Cumulative frequency

> to get the simulation value x,

** Input x, to the transfer function to obtain y,

** Repeat the above procedure to generate as many of y,’s
s . 3S You want
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0.7807 B

Frequency
Cumulative Fr oq uency
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Core POI'OSNY Core Porosity

+» Monte Carlo Simulation / Stochastic Simulation / Random
Drawing proceed by reading quantiles from a cumulative
distribution
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% The procedure

» Generate a random number between 0 and 1 (calculator, table,
program, ...)
» Read the quantile associated to that random number

*» For example

Random Number Simulated Number
0.7807 28.83 P
0.1562
0.6587
0.8934
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Example 8.1. Computation of #. Consider a horizontal floor on which parallel lines
are drawn at equal distances a. A needle of length & < a is dropped at random on the
floor. The problem is to find the probability that the needle will intersect a line. Let X
be a random variable that gives the distance of the midpoint of the needle to the nearest
line, with 0 < x = a2, and let ¥ be the variable that gives the acute angle between
the needle (or its extension) and the line.

The outcomes of X and ¥ are boundedas0 < x = a'2and0 < y = 7, 2. Since
Prix <X = x+dx] = (2/a)dxandPr[y <Y = y+dy] = (2 =) dy.ong?b{ains
fx(x) = 2/a and fy(y) = 2/ . Noting that X and Y are independt_:m. the joint _pc_lf
is the product of the marginals; that is, fyy(x, y) = 4 (am). From Figure 8.1.1a. it is
seen that the needle actually crosses a line when X = (b 2)sin¥.
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i Buffon's needle problem: (a) skeich of the
{b) number of trials, m experiment and (b) results of simulation.

The probability of this event is given by

4 w2 pib 2siny 2b
L
When this expression is equated to the frequency of hits (or cmssing_s) observed.m
actual (physical) experiments, accurate values of 7 can be obtained. Fll’Sl,.We specify
aand b < a and assume an appropriate value of 7. Then m independenl‘ pairs of X and
Y that follow the foregoing uniform distributions are generated numenga]ly. Second.
p is estimated as the ratio between the random nunjber N of those pairs (x, y) that
satisfy x = (b/2)sin y and the number of trials m. Finally, 7 is .c:omputed as 2b (ﬂ_p)
or 2bm/(aN). The accuracy increases with the number m of trials, as shou{n in Fig.
8.1.1b. Such experiments are called urn extractions and are used for generation.
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‘Example 8.2. Monte Carlo integration. The definite integral of a function g(u) > 0
from a to b—that is,

I = [bg(u)du.

FIGURE 8.1.2

Monte Carlo method of integration. Random
points are chosen within the area A. The in-
tegral of the function g(-) is esimated as the
area of A rescaled by the fraction of random
points falling below the curve g.

is the area bounded by the curve g(u) within the interval [a, 4], as shown in Figure
8.1.2. Consider a rectangle emhedding this area, and suppose that one were to throw
darts at the rectangle of area A = c(b — a), where ¢ = g(u)fora = u < b. Let n
denote the (large) number of darts thrown uniformly against this target. If & is the
nurnber of darts falling below the curve g(u), the integral may be estimated as the area
A multiplied by the fraction N,/ n of random points that fall below g(u): that is,

]
I =J gfu]duzdb—ﬂ}ﬁ.
= n
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..-3 MCS Text Examples

where p = N/n is the probability of a hit. Instead of throwing darts, one might gener-
ate n pairs 4 and v of two independent uniformly distributed variates I/ and V., with
a=u=band0 = v = c respectively, and count the number N of pairs with
v = g(u). For an increasing number of generated pairs, one expects that the value of
the estimated integral approaches its theoretical value. This method can also be used
in the multidimensional case by picking n random points, say, xi, . ... X,. uniformly
distributed in a multidimensional volume (). Then, the basic theorem of Monte Carlo
integration estimates the integral of a function g over () as

I :J 2dQ = O(g) = Z,
n

where Z is a random variable representing the error in the estimated integral, with zero

mean and standard deviation
2y — 2
oy = BTGP
n

Here, the angle brackets denote taking the arithmetic mean over the n sample points;
that is,

1 < 2 1 & 2
@ =328 ad (g = DD et
There is no guarantee that the error is distributed as normal, so the error term should
be taken only as a rough indication of probable error. Note that the implementation of
this method requires the generation of uniform random numbers in a specified domain,
say, the rectangle A or the hypervolume (2.
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Example 8.4. Seepage under a dike wall. Figure 8.1.3 shows a river valley resting
on a homogeneous alluvial layer of porous matcrial bounded by impervious rock. Sup-
posing the level of the groundwater table BL is constant at hg, the total river head is
constant at A, and there is a head loss of b = hy ~ hy. Also, the boundaries ABCDE-
FGHI and LMN are impervious and there are no sinks in the flow. One superimposes
a square grid, or lattice, on the aquifer to study the movement of a particle of water at
an interior point under a two-dimensional random walk; in other words, this particle

reaches the groundwater table or the riverbed, the path is terminated and values of hy
and h,, respectively, are given to it. After n such random walks from an interior point
5 (where n is large, say, greater than 400), suppose that e paths are assigned A, and
that i, paths arc assigned #,, where n = Ag + n.. We estimate the head at point 5:

n,hs +nh,
ng +n,

Consider an interior node 0 and a particle at any of its neighboring grid points,
1,2,3, or 4 in Figure 8.1.3. The probability of a particle arriving at point 0 is obtained
by weighting the probabilities that it arrives at the four neighboring points. For the
random walk, we assign equal weights of 1/4, as shown. If the point 0 is on a bound-
ary, such as point @, then the weighting is adjusted to 1/4, 1/2, and 1/4, as shown, A
Monte Carlo simulation of the random walks from point 0 in Fig. 8.1.3 produced 423
paths that terminated at the groundwater table boundary and 577 paths that terminated
at the riverbed houndary. The groundwater table boundary represents a total head of
hy = 0'm, and the total head at the riverbed boundary is i, = 3 m. Hence, the pressure

hs =

ryious
+— well Dike Wall Imperdo

ses are

o in parenthes
e values in parent
e d under a dike wall in a river valley transect. Th
Groundwater head un

the _step probabilities in the traced direction
e next-step probabil i i
S

i 1ohy + Ache 423 % 0+ 577 %3 ~ 173
o r . e 9 m. Hence, the
table, is 9 m. i
ion head at point 0, relative to the gr.?:)miw;\[l}esrkga‘
ks elef?;‘[t’r[\‘c water at point (} is 9.81 % (9 + 173
pressure

+»* Uniform Distribution

k.., = (ak, +c) (modulo m)

i+1

k., = (ak, +c)—mn,

i+1

u,, =k  /m=ak /m+c/m-Intl(ak, +c)/ m]
1+ 1 1
where, u,~ U(0,1), a= multiplier, c= increment, m= modulo

n, = Int[(ak, +c)/m]
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; Generation of Random Number

< E’b’ﬁtinuous Distribution

TABLE 8.2.2 dent random bers x generated from selected distributions; ay, 6z, ..., ¥, -
of indep

denote uniform (0, 1) random numbers

x
Distribution Parameters

2T sinl2mie) and - 210 cos(2mis)
Standard nermal

i 18 ; at el B
e [u: “ + uj #|. provided that u| ]

u
Standard heta af Y
forr=1: In [’[u, - Z’Inu“ for integer v; and. in general,
Srandard gamma r L 2
*’Izb‘il.llu F - ln«.)ujff[ul’ oyt “}.whh ¥ = Intry
i 2
T

it
forr< l:ifue+r) e = landu; s e ‘. thenx = lule +riie’ it = &

S"k., withk; = 1. ifu, < psand k; = |, ifw, = p

Binomial np 2
wl
.. . .
xsuchthat > = v () < Land 3 -v ') = 1
Poisson v 2. 2.
Tne/In¢l — p) — |, rounded w the next integer
Geometric P .
S i : and msuch that § = (1 =
binotnial £p S b withh, — 1 ifw; = pi by = L if 4, < p: and msuch that £ >

Negative binomial 8

A
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then x = In[(e + #)(1 — w,}: (er)); otherwise reject and repeat until acceptt
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; Text Example

which le seen to be cyclic with a period of 8, because the underlined sequence of 8
;azlues is repeated indefinitely. This is clearly shown by plotting u; | against u, in Fig.
2.1,

h.’ “:
T -

Example 8.8. Linear congruential algorithm. Suppose we assume low values for
the constants in Eq. (8.2.1): @ = 5, ¢ = l,and m = 8. Let ka-= 1 be the seed for
generating a sequence of random integers &, i = 1.2.3,... Fori = 1, one has i6

ki = akg + ¢ — m Intf{aky + ). 'm) =5x1+1-8xIn[(53x1+1) 8]

=S+l—BXlnt(0.T5)=5+]f--8><0=ﬁ. 0.8+

and, from Egq. (8.2.3), -
uy = k|1m =68 = 0.75. :JE

The second ilerativn yields 0.4 4

ky = ak, + ¢ — mInt[(ak, +¢)/m] = 5364+ 1—8xInt[(5x6+1) 8]

=30+ 1-8xIn(3.875) =30+1-8x3 =17, ;
uy = kp/m = 7/8 = 0.875. 5

0.2 4 ‘

. FIGURE 8.2.1

Trajectory of 100 sequentially generated
00 02 04 06 O e, e randog: paithen il

The subsequent iterations yield the following sequence . i . ; 8 1.0 :' 1; g: ; l [;H,:d;‘[‘: a,:j (::,]:j ;;;I?iu m

05, 0.625 0.25 0.375 0, 0.125, 0.75, 0.875. 0.5, 0.625 0.25, 0.375, 0, Jine)

0.125, 0.75, 0.875, 0.5, 0.625, 0.25, 0375 0. 0.125 0.75. 0.875, 0.5,

0625, 025, 0375, 0. 0.125....,

Also shown in Fig. 8.2.1 are results from the generatora = 27 + 1, ¢ = |, and
m= 2% w!ﬂch yields a much larger period of cyclicity. This choice gives satisfactory
results for binary computers; and a = 101,¢ = 1,and m = 2° for a decimal computer
with a word length b,
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}ample Size and Accuracy of MC Experiment ' : ample Size and Accuracy of MC Experiment

{ In Monte Carlo integration it is seen that choosing n points uniformly and randm?alzy d S
distributed in a multidimensional space leads to an error term that decreasesasn™" =, e

because each new point sampled adds linearly to an accumulated sum of squares
that will become the variance, and the estimated error comes from the square root
of the variance. In designing a Monte Carlo experiment, one must d.ct!anning hD\I#
many simulations are required to assess the system behavior. When simulation is

used to evaluate the probability p that some event occurs, such as unsatisfactory sys-

tem performance, one must search for the sample size required to obtain a speciﬁec; — 1006 =5%
i s number of occurrences o w0)  —1ooe=10%
accuracy of the estimated p. If N denotes the observed oo CURE 8.LS

the event in a sample of size n, the obvious estimator of p is the proportion N/ n.

= T ¥ 5 Simulation sample size n required to estimate
When sequential simulations are independent of each other, N is a binomial vari-

the probability p of the design event within

0.0 01 1

ate with parameters # and p. From Eq. (5.3.7), the standard error of the estimated . 100e% of its true value with 100(1 — )% con-

i fidence.

proportion is e
- P [1 — P) (8.1.2) substituted for p, and the 100{1 — ) percent two-sided confidence limits on the true

op n value p given n and an observed value of the estimator j are determined as
and for large n (say, n > 30 and np > 3), the sampling distribution is very nca’rlly 0= 7) = 7)
normal with mean np and variance np(1 — p). In practice, the sample estimate p is P-a ¥ and P+ a LA i (8.1.3)
n
(where z, 7 denotes a standard normal variate that is exceeded with probability e “2).
WP MEdER WA MEgEa
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ample Size and Accuracy of MC Experiment

2
@ample Size and Accuracy of MC Experiment
{ek

[
AT 7

The necessary sample size n to ensure that the 100(1 — &) percent confidence limits
are within 100e percent of the true value of p, where 0 = £ = 1; that s,

p(l-p)
la/n| = = ep,

is given by

- Za2(1 - p)
= =g,
Since n is a function of p, which is unknown before the experiment is performed, one

must estimate the value of p before the experiment. Figure 8.1.5 shows the increase
of n for decreasing p and different values of acceptable tolerance &.

(8.1.4)

MEc|sin

Num_ber of Samp!es‘w Generate. Enough samples should be generated so that the
required output statistics are estimated accurately. To a large extent, the number of
samples depends on what statistic of the Monte Carlo simulation output is of interest
fc_)r the problem at hand. For example, to determine the mean of the output O witha
given accuracy, one can use the normal approximation to establish the | — o
confidence limits on the population mean wO), from which one can write
Pl—th_g; 0(0)Vm <O = p(0) < u,_;, o(O)Vm]=1—a where O = sample
mean of the output, 6{0) = population variance, u, -aiz = | — a¢/2 quantile of the
normal distribution with mean zero and variance one, | — & = confidence level, and
m =sample size. Thus, if O must be within 0.1 o(0) of #(0) with a probability
I —a=0.95, then o5 =196 and the sample size required is given by 1.96
a(0)/Nm = 0.10(0), which gives m = 384. Likewise, for an accuracy of 0.26(0)
m=96. A better approximation may be generally obtained by using instead the
confidence limits based on the ¢ distribution. In this case, the number of samples is
obtained, for instance, by solving 1, _y/2 m—, = 0.1Vm for m [for 0.1¢(0) accuracy],
;vheé'e li-ajam-1 15 the | — /7 quantile of the 7 distribution with 1 — 1 degrecs of
reedom.

I MEdsia

Likewise, to dete_rmine the standard deviation of the output O with a given accu-
racy, one can establish the confidence limits on the population variance o40). Thus,
one can write '

P( Vm—1 <90 v'm—l) .
—— < T )N,
“Z%—u.rz,m—l S(0) “Xirz.m—1

in which S(0) = sample standard deviation and X3m—1 = Pquantile of the chi-

square distribution with m — | degrees of freedom. For example, for m = 384 and
| —a=0.95, P[0.934 < a{0)/S(0) < 1.077] = 0.95, which means that with a sam-

ple size of 384 one can determine the sample standard deviation of the output such
that its ratio with the population standard deviation is within about 15 percent.

Example 8.16. Pier scour. Pier foundations of bridges over water can be undermined
by local scour. The best-fit scour model for bridge piers proposed by Johnson (1992)
gives the scour depth X measured from the average channel bed to the bottom of the
scour hole as
X = 202¥(b/ ¥R WO,

where ¥ is the depth of flow just upstream of the pier, F, is the upstream Froude number
(F. = V'(g¥)' %, V and g denote the approach flow velocity and acceleration due to
gravity, respectively), W is sediment gradation (equal (o dgs / dsos., the ratio between
the 84% quantile to the median sediment diameter), and b is the pier width. All these
quantities are measured in metric units. Using the Manning formula to compute the
velocity for a wide rectangular channel cross section,

vV =(/ms 2r?
where n is the roughness coefficient and § is the slope. Hence, the Froude number is
F,=Vigh)'t=582r"%a"g"2
thus,
X = 202¥(b/ Y)PB(S! 2y 671 gt 202 02,

which, after substituting 9.81 mys? for g. can be written as
X — 1.5950 980005550105, -0210y,-0240
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@ Example 1-2

The estimation of Y, S, n, and W is affected by uncertainties. We propose to model all
these quantities as random variables. One can thus determine the probability distribu-
tion of X by simulation if the probability distributions of ¥, §, n, and W are known. For

a pier width of 2.5 m, suppose that sediment gradation W ~ lognormal(4, 1. 6

slope § ~ N(0.002, 0.00042), the depth ¥ ~ N(4.75 m, 1.22 m?), and the roughness
coefficient n ~ uniform(0.02, 0.04). Also, one can reasonably assume that ¥, §, n, and
W are independent of each other. To perform each simulation, one will generate a stan-
dard uniform random number, u;, and three independent standard normal numbers. z;,.

221, and z3;. The ith outcome of the roughness coefficient n is found by rescaling
n; = 0.02 + (0.04 — 0.02)uy,,
and those of W, §, and Y are computed as
w; = exp(1.312 + 0.3852);),
si = 0.002 + 0.0004zy. and
yi =475+ 1.2z

), the

u; as
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@ Example 1-3

-

F1gure 8.3.1a shows the sampling cdf Fx(x) of the scour depth resulting from the first
10, 100, and 1000 simulation cycles. It is seen that the size-10 sample provides a rough
approximation to the size-1000 sampling cdf, which is better approximated by the sam-
pling cdf’s obtained from the size-100 sample. The estimated means and standard devi-
ations of the specified variates are shown in Figs. 8.3. 16 and ¢ for an increasing number
of simulation cycles. Note that the sampling means and standard deviations of ¥, S, n.
and W estimated from 1000 simulation cycles practically overlap with those used as
inputs to the simulation procedure.

The 1000-cycle simulated mean and standard deviation of X are 3.39 m and
0.36 m, respectively. Note that the estimated mean is very close to the nominal value
of 3.32 m determined by substituting the mean values for the corresponding variates
in the pier scour model. These results can also be compared with the approximated
mean and standard deviation, which are computed by using Taylor’s series expansion
about the means of independent variates (sec Section 3.4). The first and sccond partial
derivatives of X with respect to each independent variate are as follows:
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@@i‘i Example 1-4
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(@X/3Y), = 1.59 X 0.055150980 ;043 0105, ~0210,, 20240 _ (0325,
(9X/ds), = 1.59 X 0. 1051 50950 noosuso.s';s“;c.m#‘;um = 0.0006,
(9X/dm), = —1.59 % 0.21006°%% p§055 105y ~1210,, 20240 - 939,
(8X/aw), = —1.59 X 0.2400p%%80 , 0055 , 0105, 0210, 212490 — _( 1989,
(dZXfé‘_vl)“ — ~1.59 % DDSZOb”'m -r.mummn—u:mﬂ;pzao = —0.0065.
(3%X 1 d5%), = —1.59 X 0.0940p*80 ,§053 y, S1.895, 0210, 20290 — _ 17863 8,
(@X 'an?), = 1.59 x 0.2542p090, 0055 , 0105, 2210, 0240 - 936 4,
(32X gw?), = 1.59 x 0.2975p0980 0033 0105, ~0.210,, 22330 — 0.0616,
where gy, s, ptn, and py denote the means of ¥, S, n, and W. From Eq. (3.4.36),
E[X] = 3.32 + 0.5(-0.0065 x 1.2* — 17863.8 x 0.0004’
+936.4 x 0.0058% + 0.0616 x 1.6%) = 3.40m,
and, from Eq. (3.4.37).
Var[X] = 0.0325% x 1.22 + 0.0006° X 0.0004* + (=23.21)° X 0.0058°
+(—0.1989)* x 1.6* = 0.1208 m’,

which yields an approximated standard deviation of 0.35 m. These approximations
provide accurate estimates of the mean and standard deviation of scour depth as deter-
mined from simulation.
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