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1.1 Scope of Fluid Mechanics 

• Problems of  water supply 

flood prevention  

       navigation           need to know fluid phenomena 

        water power 

       irrigation 

 

1.2 Historical Perspective 

• d'Alembert (1744) 

"The theory of fluids must necessarily be based upon experiment" 

 

• d'Alembert paradox   theory - ideal, inviscid fluid 

        practice - real fluid 

 

• Two schools    theoretical group → hydrodynamics  

practical group → hydraulics  

 

• Navier and Stokes 

→ general equations for viscous fluid → equation of motion  

 

[Re] Navier-Stokes equation 

Claude-Louis Navier (1785-1836, French engineer) and George Gabriel Stokes (1819-1903, 

UK mathematician & physicist) 
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- model the weather, ocean currents, water flow in a pipe, the air's flow around a wing, 

and motion of stars inside a galaxy 

- design of aircraft and cars, the study of blood flow, the design of power stations, the 

analysis of pollution, 

- exact solution - one of the seven most important open problems in mathematics 

 

• New problems in modern times 

- Dispersion of man's wastes in lakes, rivers, and oceans 

→ Environmental Hydraulics → www.ehlab.re.kr 
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1.3 Physical Characteristics of the Fluid State 

• state:   solid 

   liquid   increasing spacing  increasing inter 

  fluid gaseous  and latitude of   molecular cohesive  

   plasma   particle motion   force  

 

• fluid – continuum → no voids or holes 

 

• Classification of states by stress-strain relationships 

stress 
strain 

solid fluid 

tension 

elastic deformation 
 

→ permanent distortion 
 

unable to support tension  
(surface tension) 

compression 
elastic deformation  
(compressible fluid) 

shear (tangential 
forces) 

permanent distortion or flow 
(change shape) to infinitesimal 

shear stress 

 

* Fluid does not resist any small shearing stress → "Flow occurs" 
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• Comparison between real fluid and ideal fluid 

stress 
real fluid (viscous fluid) 

ideal fluid (non-
viscous fluid)

in motion at rest 
at rest /  

in motion 

compression (pressure) ○ ○ ○ 

shear ○ × × 

 

• Comparison between compressible fluid and incompressible fluid 

incompressible fluid compressible fluid 

① Compressibility is of small important. ① Compressibility is predominant. 

② Liquids and gases may be treated similarly.
② Behavior of liquids and gases is quite 

dissimilar. 

③ Fluid problems may be solved with the 
principles of mechanics. 

③ Thermodynamics and heat transfer 
concepts must be used as well as principles of 

mechanics. 
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• Properties of pressure (compression) 

① Pressure must be transmitted to solid boundaries normal to those boundaries. → Fig. 1.1 

② At a point, pressure has the same magnitude in all directions. → Fig. 1.2  

③ Pressure is a scalar quantity. 

 

Fig. 1.2 

 

 

[Pf] 

Apply Newton's law for static equilibrium 

 1 3 sin 0xF p dz p ds          (a) 

 2 3/ 2 cos 0zF p dx gdxdz p ds         (b)  

 

Substitute following relations into Eq. (a) & (b) 

sindz ds   

cosdx ds   

1 3 1 3( ) : sin sin 0a p ds p ds p p       

0F 

Weight 
.W Vol
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        2 3( ) : cos cos cos 0
2

dz
b p ds g ds p ds       

 
2 3

1

2
p p gdz  

 

    As 0dz   then 2 3p p  

 1 2 3p p p    at a point ( 0)dx dz   
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1.4 Units, Density, Weight Density, Specific Volume, and Specific Gravity 

• SI units - SI system – metric system 

• Basic dimensions and units 

Dimension SI unit English system (FSS) 

Length (L) metre (m) feet (ft) 

Mass (M) kilogram (kg) slug (-) 

Time (t) second (s) second (s) 

Temp. (T) kelvin (K) degree Rankine (°R) 

 

- Frequency ( f ):   hertz (HZ = s-1) 

 

• Force, F  

→ introduce Newton's 2nd law of motion 

 F ma  

 Force = mass × acceleration 

 
2/ /a v t L t   2Lt     (m/s2) 

 /v L t   1Lt     (m/s) 

 
21kg m/s 1N( )F Newton     

 

• Energy, E  (work) 

 
2 2kg m /s ( )E FL J Joule       

 

 

U.S. customary 
system 
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• Power, P  

 2 3/ / kg m sP E t J s     

 

• Pressure, p ;   Stress, ,   

 
2 2/ N/m Pa (pascal) kg/m sp F A      

 

• Temperature, T :   degree Celsius (°C)  

 

• Density,   

= mass per unit volume 

~ depends on the number of molecules per unit of volume 

~ decreases with increasing temperature 

 

3kg/m
M

V
    

 

• Specific weight (weight density),   

= weight (force) per unit volume 

 

3 2 2N/m kg/m s
W

V
      

 

[Re] 

 W Mg  (Newton’s 2nd law of motion) 

 g  = acceleration due to gravity 

 g             (1.1) 
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• Specific volume=volume per unit mass=1 /   

• Specific gravity, s.g. , ~ r. d. (relative density) 

= ratio of density of a substance to the density of water at a specified temperature and 

pressure 

. . f f

w w

s g
 
 

   

[Re]  s.g. of sea water = 1.03 

 s.g. of soil = 2.65 

 s.g. of mercury = 13.6 

 

• For water at 5 °C (p. 694, App. 2)  

SI English system 

  1,000 kg/m3 1.94 slugs/ft3 

  9,806 N/m3 62.4 lb/ft3 

g  9.81 m/s2 32.2 ft/s2 

 

 

• Advantage of SI system and English FSS system 

 I① t distinguishes between force F  and mass M . 

 It has no ambiguous definitions.②  
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• Greek Alphabet 

  Alpha   angle 

  Beta [beitə]  angle 

,   Gamma   specific weight, circulation 

,   Delta   thickness of boundary layer 

  Epsilon   eddy viscosity, height of surface roughness 

  Zeta 

  Eta 

,   Theta 

  Iota [aioutə]  

  Kappa [kæpə] 

,   Lambda 

  Mu [mju:]  dynamic viscosity 

  Nu   kinematic viscosity 

  Xi [gzai, ksai]  vorticity 

  Omicron 

  Pi [pai] 

  Rho   mass density 

,   Sigma   Sigma Xi, Scientific Research Society, 1886 

    honor society for scientists & engineers 

  Tau   shear 

,   Upsilon 

,   Phi [fai]   Phi Beta Kappa  
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  Chi [kai] 

,   Psi [psai, sai]  stream function 

,   Omega   angular velocity 

 

• Prefixes 

E exa 1018 

P peta 1015 

T tera 1012 

G giga 109 

M mega 106 

k kilo 103 

h hecto 102 

da deca 101 

d deci 10-1 

c centi 10-2 

m milli 10-3 

  micro 10-6 

n nano 10-9 

p pico 10-12 

f femto 10-15 

a atto 10-18 
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1.5 Compressibility, Elasticity 

• Elastic behavior to compression 

 

Fig. 1.3 

 

• Compressibility ≡ change in volume due to change in pressure 

solid - modulus of elasticity, E (N/m2) 

fluid - bulk modulus  

 

• Stress strain curve (E↑, difficult to compress) → Fig. 1.3 (see Table 1-1) 

 
1

dV
dp

V


1

dV
dp E

V
    

 1

1

( , )
dp dp

E V const fn p T
dV dV
V

      → p E    

 
1

1 1dV
C

E V dp
    

 = modulus of compressibility (m2/N) 

[Re] large E/small C → less compressible 

Strain 
1

V

V
  

F
dp

A


dV  

Minus means that increase in  
pressure causes decrease in 
volume 
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• incompressible fluid (inelastic):  , 1E C    

→ constant density   =const. 

~ water  

 

• compressible fluid  

→ changes in density → variable density 

~ gas 

[Table 1.1] Bulk modulus of water, E  ( 610 N/m2) 

Pressure 
106 N/m2 

Temperature, °C 

0  20  50  100  150  

0.1 1950 2130 2210 2050 
 

10.0 2000 2200 2280 2130 1650 

30.0 2110 2320 2410 2250 1800 

100.0 2530 2730 2840 2700 2330 

 

- E  increases as pressure increases. 

- E  is maximum at about 50 °C. 

→ The water has minimum compressibility at about 50 °C. 

 

[Table A2-1] 

Compressibility Modulus of Elasticity, E  (kPa) 

steel 1/80 of water water 2,170,500 

mercury 1/12.5 of water sea water 2,300,000 

nitric acid 6 of water mercury 26,201,000 
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• For the case of a fixed mass of liquid at constant temperature 

 1

dp
E V

dV
   

 
1

V p

V E

 
   

 2 1 2 1

1

V V p p

V E

 
   

 

[Ex] For water; 62,200 10 PaE    @ 20˚C 

             6
2 1 7 10 Pap p    

 2 1 2 1

1

0.0032
V V p p

V E

 
      

 2 1(1 0.0032)V V    

   0.3%V   decrease 

 → water is incompressible 
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1.6 Viscosity 

• Two types of fluid motion (real fluid) 

1) laminar flow:  

   - viscosity plays a dominant role 

   - fluid elements or particles slide over each other in layers (laminar) 

   - molecular diffusion 

[Ex] flow in a very small tube, a very thin flow over the pavement, flow in the laminar flow 

table 

 

2) turbulent flow:  

  - random or chaotic motion, eddies of various sizes are seen 

  - common in nature (streams, rivers, pipes) 

  - large scale mixing between the layers 

[Ex] flows in the water supply pipe, flows in the storm sewer pipe, flows in the and canals 

and streams 

 

• Reynolds number 

 Re
Vd




 

where V = flow velocity; d = characteristic length; kinematic viscosity 

• Reynolds experiments

 

 

laminar flow:   Re < 2,100 

 transition: 2,100<Re < 4,000 

 
 turbulent flow:  Re > 4,000 

Diameter of pipe, 
Depth of stream 
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Primary 
flow 

Secondary 
flow

Spiral 
secondary 
flow 
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Laminar flow experiments

sink source 

cube 

streamline 
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Eddying 
motion 

Smooth 
surface 
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Round jet tests using PIV (Particle 
Image Velocimetry) 
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Symmetric shape, 
No separation 
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Separation, eddy 
formation 

Growth 
of eddy 
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Karman vortex street – periodic 
shedding of vortices in sinuous form 
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• laminar flow  

 

Fig 1.4  

 

• strain = relative displacement     [Cf] solid mechanics 

2 1d d dvdt dv
dt

dy dy dy


       yx

d
G

dy

   

       total angular displacement 

[Re] 
2 2 1 1

2 1 2 1

;

( )

d v dt d v dt

d d v v dt

 
  

 

• Experiment has shown that, in many fluids, shearing (frictional) stress per unit of contact 

area,   is proportional to the time rate of relative strain. 

 /
dv dv

dt dt
dy dy

   (velocity gradient) 

 
dv

dy
  Newton’s equation of viscosity    (1.12) 

 

where  = coefficient of viscosity  

    = dynamic (absolute) viscosity 

 

no velocity at the 
boundary (no slip) 

Large →sticky, 
difficult to flow 
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• viscosity = measure of fluid's resistance to shear or angular deformation  

= internal resistance of a fluid to motion (fluidity) 

 

[Re] Friction forces result from 

- cohesion for liquid 

- momentum interchange between molecules for gas 

 

[Re] angular deformation due to tangential stress 

 

 

•rate of angular deformation 

(i) displacement of AB relative to CD 

 
du du

u y t u t y t
dy dy

 
         
 

 

 

(ii) angular displacement of AC 

 /
du du

y t y t
dy dy

       

 

(iii) time rate of angular deformation 

x 

A 
B

C D

dy 
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 /
du du

t t
dy dy

     

• dynamic viscosity, 

 /F A   

 
  2 2 1 2 2/ kg/(m s ) PaMLT L ML T              

 

1
1dv LT

T
dy L


            

 

 
 

1 2
1 1 2

1
/ kg/m s N s / m Pa s

dv ML T
ML T

dy T
 

 
 



                    
 

 11 ( ) 10 Pa spoises Poiseuille    

 

• kinematic viscosity,   

 




         (1.13)

 

  
1 1

2 1 2
3

m /s
ML T

L T
ML


 




 
      

 
 

 1 m2/s = 104 stokes =106 centistokes  

 

• Remarks on Eq. (1.12) 

 ① ,   are independent of pressure.  [Cf] friction between two moving solids 

 Shear stress ②  (even smallest  ) will cause flow (velocity gradient). 

 Shearing stress in viscous fluids ③ at rest will be zero.   

 0 0
dv

dy
    regardless of   

dv

dy
 
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 At solid boundary, ④
dv

dy
   (     (no infinite shear)) 

→ Infinite shearing stress between fluid and solid is not possible. 

 ⑤ Eq. 1.12 is limited to laminar (non-turbulent) fluid motion in which viscous action is 

predominant. 

[Cf] turbulent flow 

  dv

dy
 

 

where  = eddy viscosity 

 

 Velocity at a solid boundary is zero.⑥  

→ No slip condition (continuum assumption) 

 

• Newtonian and non-Newtonian fluids 

i) Newtonian fluid ~ water 

ii) Non-Newtonian fluid ~ plastic, blood, suspensions, paints, polymer solutions → 

rheology  

 

 
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Fig. 1.5 

• Non-Newtonian fluid 

 1) 1

dv

dy
     plastic,   1  = threshold 

 2) 

n
dv

K
dy


 

  
 

 1n   Shear-thickening fluid 

    1n   Shear-thinning fluid 

 

• Couette flow:   laminar flow in which the shear stress is constant 

thin fluid film between two large flat plates 

thin fluid film between the surfaces of coaxial cylinders 

 

Fig. 1.7 

    
dv V

dy h


 
 ~ linear velocity gradient 

 
V

h
    ~ constant 

 

• Turbulent flow  

 ( )
dv

dy
     

  = eddy viscosity = viscosity due to turbulent factor 
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• Mechanism of viscosity for liquid and gas 

 
gas liquid 

main cause of  

viscosity 

exchange of molecule's momentum → 

interchange of molecules between  

the fluid layers of different velocities 

intermolecular cohesion 

effect of  
temperature 

variation 

temp↑ → molecular activity↑  

→ viscosity↑ → shearing stress↑ 

temp↑ → cohesion↓  

→ viscosity↓ → shear stress↓

 

[Re] Exchange of momentum 

 

fast-speed layer (FSL) 

molecules from FSL speed up molecules in LSL 

  molecules from LSL slow down molecules in FSL     

low-speed layer (LSL)         

 

       

1) exchange of momentum : exchange momentum in either direction from high to low or 

from low to high momentum due to random motion of 

molecules 

2) transport of momentum : transport of momentum from layers of high momentum  

     (high velocity, mv ) to layers of low momentum 

 

 

Two layers tend 
to stick together 
as if there is 
some viscosity 
between two. 
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1.7 Surface Tension, Capillarity 

• surface tension 

- occur when the liquid surfaces are in contact with another fluid (air) or solid 

- nf  (relative sizes of intermolecular cohesive and adhesive forces to another body) 

- as temp↑ → cohesion↓ →  ↓  ☞ Table A2.4b, p. 694 

 

• some important engineering problems related to surface tension 

- capillary rise of liquids in narrow spaces 

- mechanics of bubble formation 

- formation of liquid drops 

- small models of larger prototype → dam, river model 

 

• surface tension,   ( /F L , N/m) 

- force per unit length 

- force attracting molecules away from liquid 

 

Consider static equilibrium 

 0F   (forces normal to the element , , ,a b c d ) 

 0( ) 2 sin 2 sinip p dxdy dy dx       

where pi = pressure inside the curvature; po = pressure inside the curvature 

  
1

sin ,
2

dx

R
   

2

sin
2

dy

R
    12( sin )dx R   
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0
1 2

1 1
ip p

R R

 

    
 

        (1.15) 

 

Fig. 1.9  

 

• Cylindrical capillary tube 

- due to both cohesion and adhesion 

cohesion < adhesion → rise (water) 

cohesion > adhesion → depression (mercury) 

 

Fig. 1.10 

sindy 

sindx 

R 





                                                Ch. 1 Fundamentals 

1-34 

 

 

For a small tube, given conditions are as follows 

 1 2R R R   (liquid surface   section of sphere) ← Ch. 2 

 0p h   (hydrostatic pressure) 

 0ip   (atmospheric)  

 

Substitute above conditions into Eq. 1.15:  0
1 2

1 1
ip p

R R

 

   
 

  (1.15) 

 
2

h
R

    

By the way, cosr R   

 
2 2 cos

/ cos
h

r r

  


    

 
2 cos

h
r

 


         (1.16) 

in which h = capillary rise →  r ↑  → h ↓ 

   = angle of contact  

  r = radius of tube   2.5 mm for spherical form 

 

 [Ex] water and mercury → Fig. 1.11 

If 12r  mm, h  is negligible for water. 
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• Pressure measurement using tubes in hydraulic experiments → Ch.2 manometer 

~ capillarity problems can be avoided entirely by providing tubes large enough to render the 

capillarity correction negligible. 

 

• Fomation of curved surface, droplet 

- At free liquid surface contacting the air, cohesive forces at the outer layer are not 

balanced by a layer above. 

→The surface molecules are pulled tightly to the lower layer. 

→Free surface is curved. 

[Ex] Surface tension force supports small loads (water strider). 

   

cohesion > adhesion  
→ depression 
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[IP 1.10] For a droplet of water (20 °C), find diameter of droplet 

Given:   0 1.0ip p   kPa 

At 20°C, 0.0728   N/m ← App. 2 

[Sol] 

 0
1 2

1 1 2
ip p

R R R


 

    
 

      (1.15) 

   1×103 N/m2 = 2(0.0728)
1

R
  

 0.000146m 0.146mmR   0.292d  mm 

 

 

 

[IP 1.11]  Find height of capillary rise in a clean glass tube of 1 mm diameter if the water 

temperature is 10°C or 90°C. 

[Sol] 

From App. 2 Table A 2.4b; 

@ 10°C   =0.0742 N/m,  = 9.804 kN/m3 

@ 90°C   =0.0608 N/m,  = 9.466 kN/m3 

 

Use Eq. 1.16 

   
2 cos

h
r

 


        (1.16) 

For water, 0   
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 1̀0

2(0.0742)(1)
0.030m=30mm

9804(0.0005)
h                 

 90

2(0.0608)(1)
0.026m=26mm

9466(0.0005)
h               
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1.8 Vapor Pressure 

• vapor pressure = partial pressure exerted by ejected molecules of liquid 

→ Table A2.1 and A2.4b 

 

• liquids ~ tend to vaporize or evaporate due to molecular thermal vibrations (molecular 

activity) 

 → change from liquid to gaseous phase 

temperature↑ → molecular activity↑ → vaporization↑ → vapor pressure↑ 

 

• volatile liquids: 

~ easy to vaporize → high vapor pressure 

gasoline:  55.2 kPavp    at 20 °C  

water:  2.34 kPavp   at 20 °C  

mercury:  0.00017 kPavp   at 15.6 °C  

 

• mercury : low vapor pressure and high density = difficult to vaporize  

→ suitable for pressure-measuring devices 

 

• Cavitation:  App. 7 (p. 672) 

In a flow fluid wherever the local pressure falls to the vapor pressure of the liquid,  

local vaporization occurs. 

→ Cavities are formed in the low pressure regions. 

→ The cavity contains a swirling mass of droplets and vapor. 

→ Cavities are swept downstream into a region of high pressure. 

High velocity 
region 

In the interior and/or boundaries of 
a liquid system 
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→ Then, cavities are collapses suddenly. 

→ surrounding liquid rush into the void together 

→ it causes erosion (pitting) of solid boundary surfaces in machines, and vibration  

→ boundary wall receives a blow as from a tiny hammer 

 

 

• Prevention of cavitation  

~ cavitation is of great importance in the design of high-speed hydraulic machinery such as 

 turbines, pumps, in the overflow and underflow structures of high dams, and in high- 

speed motion of underwater bodies (submarines, hydrofoils). 

→ design improved forms of boundary surfaces 

→ predict and control the exact nature of cavitation → set limits 

 

Body 
cavitation 
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• Boiling: 

= rapid rate of vaporization caused by an increase in temperature  

= formation of vapor bubbles throughout the fluid mass 

~ occur (whatever the temperature) when the external absolute pressure imposed on the  

liquid is equal to or less than the vapor pressure of the liquid 

~ boiling point = f (imposed pressure, temp.) 

 atm vp p → boiling occurs 

 

[Ex] boiling point of water 

altitude 
(El. m) 

Temp. 
(°C) 

vp (kPa), 

absolute 
atmp (kPa), 

absolute 
boiling point 

(°C) 
remark 

m.s.l. 100 101.3 101.3 100 
 

12,000 60 19.9 19.4 60 undercooked 

 

 

Table 
A2.4b 

Table 
A2.5b
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• Evaporation:  When the space surrounding the liquid is too large, the liquid continues to  

vaporize until the liquid is gone and only vapor remains at a pressure less than or equal vp . 

 

[IP 1.12] For a vertical cylinder of diameter 300 mm, find min. force that will cause the water 

boil. 

F 

 

 

 

 

[Sol] From Table A2.4b;  vp =31.16 kPa at 70 °C 

For water to boil; '
vp p =31.16,  

' 100 31.16
F

p
A

     

    
2(0.3)

(100 31.16) 4.87 kN
4

F


   
 

 

  

 

Water @ 
70˚C

Patm=100 kpa 
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Homework Assignment # 1 

Due:  1 week from today 

 

 

Prob. 1.2 

Prob. 1.10 

Prob. 1.27 

Prob. 1.46 

Prob. 1.49 

Prob. 1.58 

Prob. 1.69 

Prob. 1.72 

Prob. 1.82 

 


