(2) Undrained Strength

• Sophistication for selecting s_u.

• Triaxial or field tests.

 \ast s_{u} varies with depth and stress history.

For truly N.C. clays,

$$s_u / p_o = s_u / \sigma_{vc} = s_u / p_c = \text{const.}$$

Vertical consolidation stress

$$\rightarrow$$
 For the same OCR, $\frac{s_u}{p_o} = \text{const.}$

• To determine
$$\frac{s_u}{p_o} = \frac{s_u}{\sigma_{vc}}$$
 (\rightarrow Determining s_u).

1) Based on w_n , LL or PL.

For example, if $w_n \approx LL \rightarrow NC$.

$$\therefore \frac{s_u}{p_o} = \text{const.}$$
 is valid.

$$\rightarrow$$
 Skempton, $\frac{s_u}{p_o} = 0.11 + 0.0037(PI)$

2) Run consolidation tests.

Ladd,
$$\frac{s_u}{p_o} = (0.23 \pm 0.04)(OCR)^{0.8}$$

Mesri, $\frac{s_u}{p_c} = 0.22$

4) Run a series of CU (CIU or CK_0U) tests.

 \rightarrow Directly get s_u / σ_{vc} .

- Considerations required for Lab Testing on Undrained Shearing Behavior of Clays.
 - Representing the in-situ field conditions before shearing and during shearing.
 - 1) In-situ field conditions before shearing.
 - a) Sample disturbance.
 - → Changes in stresses and strains during sampling, transportation, extrusion, and trimming.

* Perfect sample (No change in water content and volume)

- Based on pore pressure parameters suggested by Skempton,

 $\Delta u = B\Delta \sigma_3 + D(\Delta \sigma_1 - \Delta \sigma_3)$

Assumption. \rightarrow starting with good sample.

no change in w_n as a saturated sample (no change in volume) \rightarrow undrained condition.

$$\Delta u = \Delta \sigma_3 + A(\Delta \sigma_1 - \Delta \sigma_3) \leftarrow (\mathsf{B}=1)$$

$$\Delta u = -K_0 p_0' - u_0 + A_u (-p_0' - u_0 + K_0 p_0' + u_0)$$

$$= -K_0 p_0' - u_0 - A_u (p_0' - K_0 p_0')$$

$$u_{ps} = u_0 + \Delta u$$

$$\therefore \sigma'_{ps} = -u_{ps} = -u_0 - \Delta u$$

$$= K_0 p'_0 + A_u (p'_0 - K_0 p'_0)$$

$$= \{K_0 + A_u (1 - K_0)\} p'_0$$

If soil is elastic and isotropic,

$$K_0 = \frac{v}{1 - v} = 1$$

$$k_0 = 0.5$$

$$\sigma'_{ps} = p'_0$$

In real soils, typical values:
$$\begin{bmatrix} K_0 = 0.5 \\ A_u = 0.1 \end{bmatrix} \sigma_{ps} = 0.55 p_0$$

* e-log p' relation on NC clays, based on recompression approach

- Even in the condition of perfect sampling, volume change occurs during consolidation.

 \rightarrow Increase of undrained strength (For N.C. or lightly overconsolidated clays, $\frac{\Delta V}{V} = 2 \sim 8\%$)

- To improve quality of results: The lower the $\frac{\Delta V}{V}$ (or Δe) that occurs as loading to $(p_0)_{field}$, the "better" the sample.

* Two ways to get high quality results.

- 1. Be careful (minimize disturbance).
- 2. Normalized Strength Concept (especially, N.C. clay)

① Consolidate samples to σ'_{vc} larger than p'_{c} (= p'_{0}).

2 Run shear tests to get s_u.

(4) Back calculate s_u for any p'_0 by $\frac{s_u}{\sigma_{vc}} \times p_0 = s_u$.