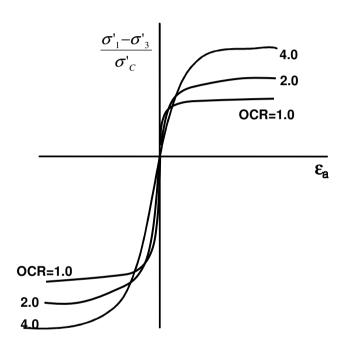

(3) <u>SHANSEP</u> (Charles C. Ladd (MIT))

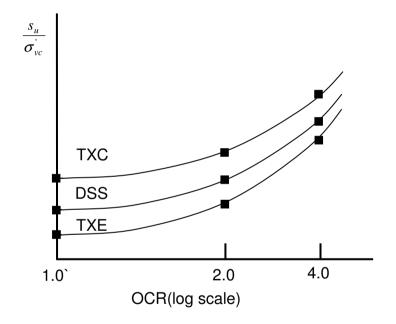
Stress History And Normalized Soil Engineering Properties.

 \Rightarrow Undrained shearing behaviors of clays can be represented by normalized strength concept. ($s_u / \sigma_{vc} = f(\text{soil type & OCR...})$

① Sample disturbance + consolidation stress state + stress history


- NC soils \rightarrow consolidate samples to 1.5 , 2.0 and 4.0 times larger than p'_c (maximum past pressure) with <u>K₀ state</u>.
- OC soils \rightarrow follow the same procedure as NC soils and then unload to a given value of OCR.

② Strain rate + anisotropy


 \Rightarrow shear samples with <u>0.5%/hr strain rate</u> for CK₀U <u>TXC</u> and <u>RTXE</u>, <u>DSS</u> conditions.

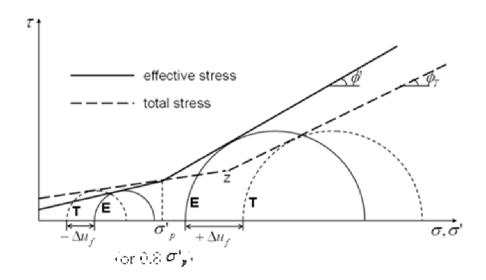
③ We get normalized results from step ②.

- + Normalized Pore
 - Pressure Response.

④ Combine the results.

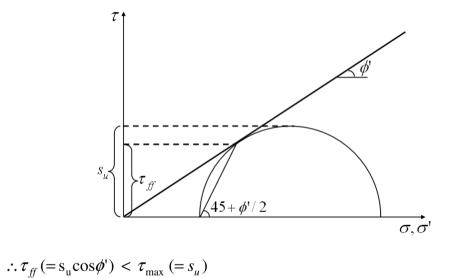
Problems with SHANSEP.

- 1. Determination of p'c (max. past pressure).
 - \rightarrow Sample disturbance obscures to obtain p'_c and lowers it.
 - \rightarrow Secondary compression can have a large influence on measured value of p'_c for highly compressible clays.
 - \rightarrow Knowledge of geologic history is very important.
- 2. Determination and duplication of stress systems (stress ratio of consolidation $(\sigma_h^{\cdot}/\sigma_v^{\cdot}) \rightarrow K_0$ value.)
 - \rightarrow Difficult to measure it and apply it for lab testing.


- 3. Difficult to get s_u for heavily overconsolidated clays. (*with high p'c*)
 - \rightarrow Practically difficult to reach 1.5 to 4.0 p'_c because of high p'_c and OCR.
 - \rightarrow Use recompression techniques.
- 4. Not acceptable for sensitive or structured clays.
- ← SHANSEP employs mechanical stress history approach.
- 5. In situ soil has some variations of water content even if we assume it is homogeneous. \rightarrow For more precise estimation of strength, we have to consider water content variation.

6. A lot of works are required.

Notes.


1. Mohr-Coulomb failure envelopes over a range of stress spanning the preconsolidation

stress, σ'_p .

Typical point $z \approx 2\sigma'_p$ (Hirschfeld, 1963)

2. s_u vs. τ_{ff} (shear stress on failure plane at failure.)

