Advanced Soil Mechanics I

- Initial modulus, E for <u>large strain. (> 10⁻¹ %)</u>
 - Can be important for soft clays (E_u).
 - Is evaluated from static laboratory tests

(Triaxial tests).

i) Consolidation stress.

$$E_u = f(\boldsymbol{\sigma}_c')$$

$$\rightarrow \frac{E_u}{\sigma_c}$$
 (or $\frac{E_u}{s_u}$) = constant.

$$\rightarrow$$
 Janbu, $E = KP_a (\frac{\sigma_3}{P_a})^n$, (n \approx 0.5 for sands.)

Fig. 19 Normalized Young's modulus vs stress level from CK_OU direct simple shear tests on seven normally consolidated soils.

*See Mitchell (1976) for a review of methods of fabric measurement and typical results.

SNU Geotechnical and Geoenvironmental Engineering Lab.

ii) Sample disturbance.

Disturbance \rightarrow underestimates E_u ($E_{field} = (2 \sim 10)E_{lab}$).

- a) use a modulus during a second cycle of loading.
- b) use the undisturbed block sample.

c) SHANSEP.

iii) Rate of loading. (or strain rate.)

 $E_{fast} > E_{slow}$.

 $(E_{dynamic} \approx (1.5 \sim 2.0) E_{static}).$

iv) Load cycle.

 $E_{initial loading} < E_{subsequent cycle}$.

- v) Initial stress condition.
 - \rightarrow Initial shear stress (depending on OCR).
 - \rightarrow Isotropic consolidation vs. K₀ consolidation.

vi) Stress path for loading.

Figure 4-8 Normalized Undrained Moduli

(estimated at 0.1% axial strain)

SNU Geotechnical and Geoenvironmental Engineering Lab.

vii) Aging.

Aging \rightarrow increase density \rightarrow increase E.

Recommendation for testing

 \rightarrow Allow at least 1(log t) cycle of creep at $\sigma_{c'}$ prior to starting the shearing phase of the test.

viii) Strain (or stress) level.

- Ways to estimate E_u.
 - 1. Correlations, $E_u = (200 \sim 2000)S_u$.
 - 2. Run CIU/CKoU triaxial tests based on recompression approach, obtain E_u from σ - ϵ plot and multiply result by (2 to 5).
 - 3. To reduce sample disturbance effect, run triaxial test based on SHANSEP.
 - 4. Stress path method. (same as 2 or 3, but run test according to stress path method principles.)