
- Stress path method (Lambe 1964, 1967)
- Settlement estimation based on realistic deformation characteristics measured from stress path tests which **duplicate field stress paths and probable deformation modes** of soil elements.
- A rational experimental approach to more exact estimation of field settlement.

-Typical stress path of saturated clay deposits under foundation loading

- \rightarrow Not K_{o} stress condition
- $\Delta \sigma_h \neq K_o \Delta \sigma_v$
- → Not 1D deformation mode
- $\varepsilon_h \neq 0$ (lateral strain occurs)

* Stress state in p'-q diagram

1: K_0 initial state $(\frac{\sigma_{vi} + \sigma_{hi}}{2}, \frac{\sigma_{vi} - \sigma_{hi}}{2})$

U: Immediately after loading $\left(\frac{\sigma_{vi} + \sigma_{hi}}{2} + \frac{\Delta\sigma_{v} + \Delta\sigma_{h}}{2} - \Delta u_{e}, \frac{\sigma_{vi} - \sigma_{hi}}{2} + \frac{\Delta\sigma_{v} - \Delta\sigma_{h}}{2}\right)$

C: After consolidation $\left(\frac{\sigma_{vi}^{'}+\sigma_{hi}^{'}}{2}+\frac{\Delta\sigma_{v}+\Delta\sigma_{h}}{2},\frac{\sigma_{vi}^{'}-\sigma_{hi}^{'}}{2}+\frac{\Delta\sigma_{v}-\Delta\sigma_{h}}{2}\right)$

IU: Undrained path \rightarrow immediate strain $(\varepsilon_{vu}) \rightarrow$ immediate settlement (s_i)

UC : Consolidation path \rightarrow consolidation strain $(\varepsilon_{vc}) \rightarrow$ consolidation settlement (s_c)

- 1D oedometer test

U'C': Consolidation path of oedometer test.

- \rightarrow 1D consolidation strain (\mathcal{E}_{vc-1D}) with no lateral strain
- \rightarrow 1D consolidation settlement (S_{c-1D})

- Skempton and Bjerrum modification
 - → 1D deformation mode of oedometer test
 - ightarrow Governing stress increment : not $\Delta \sigma_{v}$ but Δu_{e} .
 - \rightarrow S&B consolidation strain : $\mathcal{E}_{vc-SB} = \mathcal{E}_{vc-1D} \times \frac{\Delta u_e}{\Delta \sigma_v}$
 - \rightarrow S&B consolidation settlement (S_{c-SB})

- Methods that are commonly used to predict field settlement $(S_t = S_t + S_c)$
 - ① 1D consolidation settlement (s_{c-1D}).
 - ② Immediate settlement + 1D consolidation settlement $(s_i + s_{c-1D})$.
 - ③ Immediate settlement + S & B consolidation settlement $(S_i + S_{c-SB})$.
 - \Rightarrow Unrealistic $\kappa_{\scriptscriptstyle o}$ stress path and 1D deformation mode are assumed.
 - ⇒ Can be expected to give an erratic approximation of field settlement

- Stress path method
 - Lambe (1964, 1967)
 - Settlement estimation based on realistic deformation characteristics measured from stress path tests which duplicate field stress paths and probable deformation modes of soil elements.
 - A rational experimental approach to more exact estimation of field settlement.

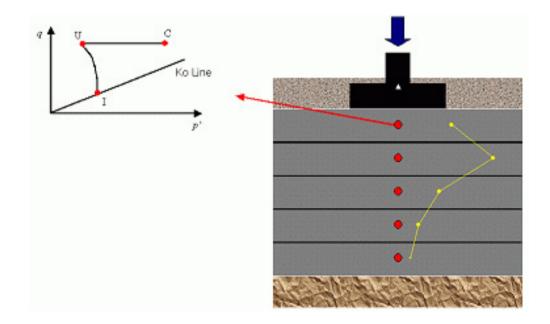
- i) Procedures: For a given structure,
 - 1) Divide subsoils into several layers and select average point of each layer.
 - 2 Determine field stress paths of the average points.
 - $\rightarrow K_0$ initial state $(\sigma_{v_i}, \sigma_{h_i})$.
 - \rightarrow Stress increment $(\Delta \sigma_{v}, \Delta \sigma_{h}) \Leftrightarrow$ the elastic theory.

3 Duplicate the field stress paths in the laboratory.

- → Undisturbed samples.
- → TX tests for axisymmetric deformation mode (circular or square footing).
- → PS tests for plane strain deformation mode (strip footing, embankment).
- \rightarrow Measure vertical strains (ε_{vu} , ε_{vc}).

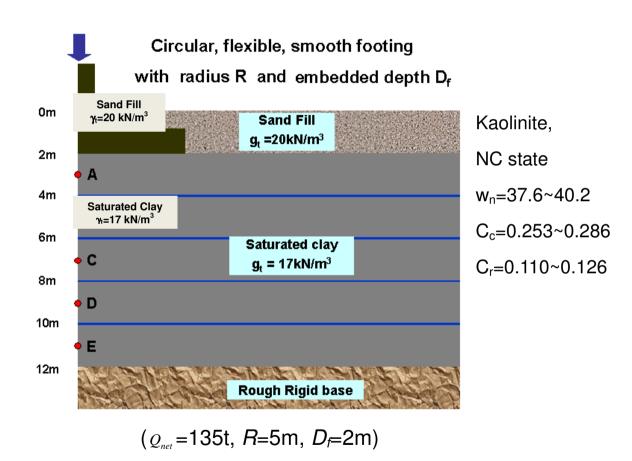
Instantaneous loading \rightarrow possibility to break soil structure.

(misleading deformation mode)


but providing \mathcal{E}_{vu} and \mathcal{E}_{vc} , separately.

Stress rate loading \rightarrow not breaking soil structure.

but not providing \mathcal{E}_{vu} and \mathcal{E}_{vc} , separately.

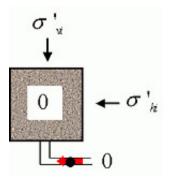

4 Estimate settlements by integrating the vertical strains with depth.

$$S_{i} = \int \varepsilon_{vu} dz = \sum \varepsilon_{vu} \Delta z \qquad S_{c} = \int \varepsilon_{vc} dz = \sum \varepsilon_{vc} \Delta z \qquad S_{t} = S_{i} + S_{c}$$

SNU Geotechnical and Geoenvironmental Engineering Lab.

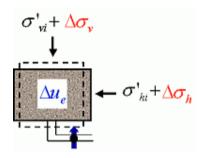
ii) Application example

1) Divide subsoils into several layers and select average point of each layer.

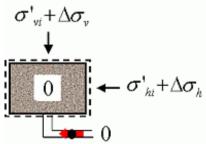

2 Determine field stress paths of the average points.

	Initial state		Stress increments		
	σ_{vi}^{\cdot} (kPa)	σ˙, (kPa)	$\Delta\sigma_{\nu}$ (kPa)	$\Delta\sigma_{\scriptscriptstyle h}$ (kPa)	
Α	47.20	23.60	16.86	10.03	
В	61.60	30.80	15.19	4.30	
С	76.00	38.00	12.24	2.40	
D	90.40	45.20	9.89	2.74	
Е	104.80	52.40	8.14	4.83	

- 3 Duplicate the field stress paths in the laboratory (stress path test).
 - 1st step: back pressure saturation → saturation of test specimen.
 - 2nd step: K_0 consolidation \rightarrow duplication of K_0 initial state (I).
 - ightarrow Slowly increase vertical stress up to σ_{vi} with $\mathcal{E}_h=0$ condition by controlling cell pressure


or

 \rightarrow Slowly Increase vertical and horizontal stresses up to σ_{vi} and $\sigma_{h} = K_0 \sigma_{vi}$.



SNU Geotechnical and Geoenvironmental Engineering Lab.

- 3rd step: undrained loading → duplication of undrained path (IU).
 - \rightarrow Increase vertical and horizontal stresses by $\Delta \sigma_{\nu}$ and $\Delta \sigma_{h}$ under undrained condition.
 - ightarrowMeasure immediate strains \mathcal{E}_{vu} , \mathcal{E}_{hu} and excess pore pressure Δu_e .

- 4th step: consolidation → duplication of consolidation path (UC).
 - \rightarrow Dissipate Δu_e by opening drainage value.
 - ightarrow Measure consolidation strains \mathcal{E}_{vc} and \mathcal{E}_{hc} .

hnical and Geoenvironmental Engineering Lab.

Test results

	ε _{νи} (%)	$\varepsilon_{\scriptscriptstyle hu}$ (%)	Δu_e (kPa)	
Α	1.118	-0.559	13.70	
В	3.465	-1.733	13.75	
С	0.771	-0.386	6.85	
D	0.286	-0.143	4.84	
Е	0.088	-0.044	5.55	

ε_{vc} (%)	$\varepsilon_{\scriptscriptstyle hc}$ (%)
0.428	0.252
0.317	0.175
0.123	0.070
0.092	0.045
0.099	0.053

E _{vt} (%)	$\varepsilon_{\scriptscriptstyle ht}$ (%)
1.546	-0.307
3.782	-1.558
0.894	-0.316
0.378	-0.098
0.187	0.009

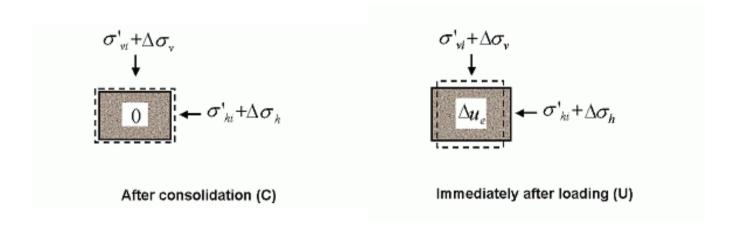
4 Estimate settlements by integrating the vertical strains with depth.

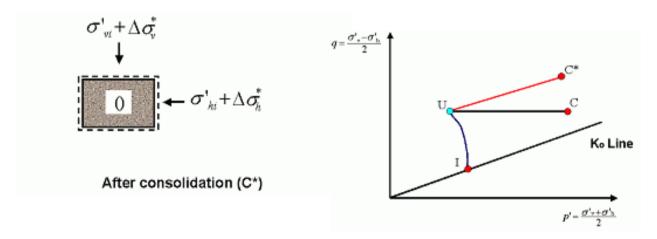
$$S_i = \int \varepsilon_{vu} dz = (1.118 + 3.465 + 0.771 + 0.286 + 0.088)/100 \times 2000 = 114.56$$
mm
 $S_c = \int \varepsilon_{vc} dz = (0.428 + 0.317 + 0.123 + 0.092 + 0.099)/100 \times 2000 = 21.18$ mm

$$S_t = S_i + S_c = 135.74$$
mm

iii) Comparison with conventional methods

	Stress path method			Oedometer	S&B
	ε_{vu} (%)	ε _{νc} (%)	$\varepsilon_{_{vt}}$ (%)	$arepsilon_{\scriptscriptstyle vc-1D}$ (%)	$arepsilon_{\scriptscriptstyle vc-SB}$ (%)
Α	1.118	0.428	1.546	1.292	1.050
В	3.465	0.317	3.782	0.877	0.794
С	0.771	0.123	0.894	0.548	0.307
D	0.286	0.092	0.378	0.367	0.180
Е	0.088	0.099	0.187	0.259	0.177
	$S_i = 114.56$ mm	$S_c = 21.18$ mm	$S_t = 135.4 \text{mm}$	S_{c-1D} =66.86mm	$S_{c-SB} = 50.16$ mm

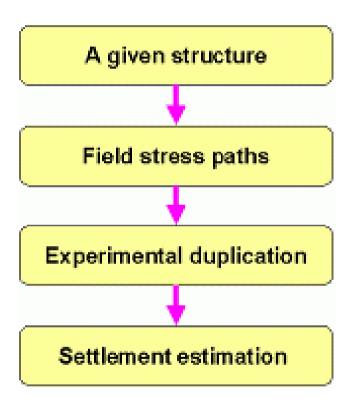

If field conditions are far from being 1D,

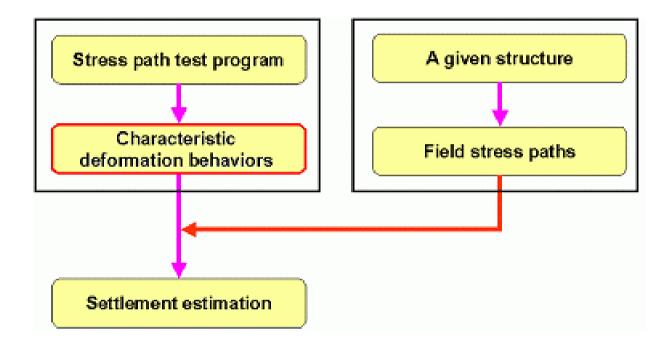

- $S_{c-1D} < S_t \leftarrow$ Based on total settlement
 - : $S_{c-1D} \rightarrow \text{Underestimation of field total settlement.}$
- $S_{c-1D} > S_{c-SB} > S_c \leftarrow$ Based on consolidation settlement
 - \therefore $S_i + S_{c-1D} \rightarrow \text{Overestimation of field total settlement.}$
 - \therefore $S_i + S_{c-SB} \rightarrow$ Overestimation of field total settlement.
 - \rightarrow But closer to field total settlement than $S_i + S_{c-1D}$.

iv) Limitations of stress path method

- 1 Applicability of the elastic theory.
 - Soils do not behave as linear elastic materials.
 - $\Delta \sigma_{v}$ and $\Delta \sigma_{h}$ estimated based on the elastic theory may be erratic.
 - ightarrow Overestimation of $\Delta\sigma_{\nu}$ and high underestimation of $\Delta\sigma_{h}$
 - → Harr (1977) proposed an alternative approach using probabilistic theory.
 - → However, no other way

2 Change of stress increments during consolidation.




- Decrease of Poisson's ratio $(v_u = 0.5 \rightarrow v_d = 0.1 \sim 0.4) \rightarrow \text{Decrease of } \Delta \sigma_h$
- Realistic inclined consolidation path UC^{*} can not be duplicated using the conventional stress path testing scheme. (Why?)
 - An efficient stress path testing scheme was newly devised by Kim (2004).
 - → Back pressure equalization followed by actively-controlled consolidation.
 - → Any arbitrary consolidation path can be duplicated.
 - → Exact Deformations of a tested consolidation path can be continuously measured.
 (One path by One test)

- ③ Too excessive experimental work.
 - A number of laborious tests are required for every structure.
 - Different types of structures require mostly different series of tests.
 - Various design alternatives can not be easily examined.
 - Modification of design factors during construction can not be readily reflected.

* Conventional Stress Path Method

• A more practical approach of stress path method was proposed by Kim (2004).

→ Characteristic behaviors of deformation which can cover all probable field stress paths are evaluated in advance by an economically-designed experimental program.

- → Settlements of various structures or design alternatives can be routinely estimated without additional tests by simply substituting their corresponding field stress paths into the characteristic behaviors.
- → Practicality of the proposed approach was maximized in the manner of minimizing experimental effort required to establish the characteristic behaviors of deformation.