2.7 Consolidation Test

2.7.1 General

- Consolidation can be defined as a dissipation process of excess pore pressure induced by applied load or change of boundary conditions.
- It is a time dependent behavior of soil deformation.
 - \Rightarrow Significant in saturated clayey soils.
 - \Rightarrow Factors on consolidation time
 - 1) Degree of saturation
 - 2) Coefficient of permeability of soil
 - 3) Viscosity and compressibility of the pore fluid
 - 4) Length of path the expelled pore fluid must take to find equilibrium.
 - 5) Compressibility of soils
- Consolidation test determines parameters for the time dependent behavior of soils.
 - The amount of deformation ⇒ (Primary) Consolidation settlement (+ Secondary compression settlement)
 - 2) Rate of consolidation (i.e. Consolidation time)

- Idealized stages in primary consolidation

(a) Piezometers have reached static equilibrium under some compressive load p.

(c) Relative positions of piezometers some time after application of Δp . With shorter flow path the upper piezometer loses head faster than the bottom one.

Figure 13-2 Stages in primary consolidation (idealized).

(b) On adding a load increment Δp the piezometers record a hydrostatic pressure increase of Δh as shown. There is often some finite time lag before Δh is fully developed but Δh is considered instantaneous in any idealization.

(d) At end of primary consolidation under pressure increment Δp both piezometers have returned to the initial position of "a." Secondary compression will continue under Δp for some additional time so that the final total settlement will be larger than the ΔH at the end of primary consolidation.

- Consolidation theory follows Darcy's law.

$$v = ki = k(\Delta h/L) \implies \Delta t = L/v = L/\{k(\Delta h/L)\} = L^2/(k\Delta h)$$

- \Rightarrow Doubling L requires 4 times for consolidation.
- \Rightarrow Consolidation rate is getting slower with decreasing Δh as time passes.

2.7.2 Consolidation Test

- Simulates 1-dimensional state (flow and deformation)

 \Rightarrow Using a circular metal ring (the fixed-ring type or floating-ring type) confining the sample.

 \Rightarrow Possible to measure the pore pressure during consolidation and to perform the permeability tests in the oedometer.

(c) Floating-ring consolidometer.

Figure 13-3

Select line details of a consolidation test.

SNU Geotechnical engineering lab.

- Sample size : 20 40 mm thickness(H) and 45 113 mm diameter(D).
 D/H > 2.5 and D < (Tube sample) 6mm.
 (Commonly used sample size : D = 63.5mm, H= 25.4mm)
- Ring-to-soil friction problems:
 - \Rightarrow Should be reduced by limiting sample thickness, spraying the inner ring wall

with tefron powder or using a tefron-lined ring.

- Equipment calibration
 - \Rightarrow Check the compressibility of load block and porous stones, if necessary.
- A loading sequence and measurements
 - 1) A loading sequence

* Applying loads with a load ratio $\Delta p/p = 1$ in general, such as (5, 10), 20, 40, 80, 160, 320, 640 ... etc., kPa with at least 1 <u>unload</u>-reload cycle (after reaching maximum past pressure, p_{max}) * Each load is sustained for one day (24 hrs) * The specimen is kept under water throughout the test. ($\frac{1}{2}p_{max}, \frac{1}{8}p_{max}$)

- 2) Measurements
 - * Measuring vertical deformation from dial gage or LVDT with time. (Vertical strain, volumetric strain, change of void ratio)

Dial gage reading \times Calibration factor = Vertical deformation (ΔH)

 \Rightarrow Vertical strain $\varepsilon_{vertical}$ (= volumetric strain, ε_{volume}) = $\Delta H/H_o$

- \Rightarrow Change of void ratio, $\Delta e = (1+e_o) \varepsilon_{vertical}$
- * Take a dial gage reading at time sequence for each load as below (example) 8sec, 15sec, 30sec, 1min, 2min, 4min, 8min, 15min, 30min, 1hr, 2hr...

2.7.3 Evaluating consolidation parameters from consolidation test

Typical plot of the test results

Fig. ΔH vs. t (log scale) for each load increment

Fig. e vs. $\sigma'(\log scale)$

- 1) Parameters for time dependent behavior.
- The coefficient of consolidation (c_v) and the secondary compression coefficient (c_α)
- From Terzaghi's 1-dimensional consolidation theory

$$T_i = \frac{c_v t_i}{H_d^2}$$
 and $c_v = \frac{T_i H_d^2}{t_i}$

where T_i = time factor given in Table 13.1

 t_i = corresponding time for T_i

 H_d = the longest drainage path

Table 18-1 Time factors for indicated pressured distribution

Pore-pressure distribution for case I usually assumed for case Ia.

U, %	Case I	Case II
0	0.000	0.000
10	0.008	0.048
20	0.031	0.090
30	0.071	0.115
40	0.126	0.207
50	0.197	0.281
60	0.287	0.371
70	0.403	0.488
80	0.567	0.652
90	0.848	0.933
100	8	00

i) Logarithm-of-time method

Fig. 5.37 Logarithm-of-time method for determination of C_v .

ii) Square-root-time method

- 2) Deformation parameters.
- The compressive index (C_c), the recompression (or swelling) index (C_r), and the preconsolidation pressure (or maximum past pressure) (p_{max})
- i) The preconsolidation pressure (p_{max})

Fig. 5.32 Graphical procedure for determination of preconsolidation pressure.

ii) The compressive index (C_c) , and the recompression (or swelling) index (C_r)

- $C_c = (1+e_o)C_c$ and $C_r = (1+e_o)C_r$
- Note : C_c ', C_r ' and c_{α} ' is related to dial reading or volumetric(vertical) strain.

 C_c , C_r and c_α is related to void ratio e.