

universidade de aveiro CiCECO centro de investigação em materiais cerâmicos e compósitos	SEQUE NATIONAL UNIVERSITY
Interaction Radiation-Matter	
As the characterization of a nanostructure is achieved by allowing so probe to interact with a particular specimen. At first we should (re) are the different interactions between the incident radiation (probe solid (specimen).	ome form of learn what e) with a
Electrons and X-rays are two types of "ionizing radiation", which is t term given to a radiation that is capable of removing one of the tigh inner-shell electrons from the attractive field of the nucleus.	he general tly bound
One of the properties of ionizing radiation is that it gives rise to a v secondary signals from the specimen. Many of these signals are used "analytical electron microscopy" and various spectroscopies.	vide range of 1 in

universidade de aveiro CiCECO centro de investigação em materiais cerâmicos e compósitos	SEOUL NATIONAL UNIVERSITY
Some Examples	
Energy dispersive X-ray spectroscopy (EDX or EDS)	
Interaction between incident electrons (e.g. in an electron microscope X-ray and protons, and a specimen.	e), but also
As in the case of XPS the incident radiation is used to promote ionizo	ation.
The relaxation process can lead to the emission of a photon of a given which is characteristic of the atom.	n energy,

The classical tree gnored at the er	ciceco centro o atment neglets r nergies used in e es greater than	e investigação em materi velativistic effe lectron microsci half the speed c	ais cerâmicos cts. Howe opy. Inde of light.	e compósitos ever, they c eed, the velo	seoul national unitional u
Comparaison of t	$\lambda = - \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\frac{h}{2m_0 eV \left(1 + \frac{eV}{2m_0 c^2}\right)}$	$\frac{1}{2}$	he kinetic e	enerov
Table 1.2.	Electron Propertie	s as a Function of	Accelerati	ng Voltage	iner gy
Accelerating voltage (kV)	Nonrelativistic wavelength (nm)	Relativistic wavelength (nm)	Mass $(\times m_0)$	Velocity (×10 ⁸ m/s)	
100	0.00386	0.00370	1.196	1.644	
100	0.00352	0.00335	1.235	1.759	
120	0.00273	0.00251	1.391	2.086	
100 120 200	0.00215		1.505	2 2 2 2	
100 120 200 300	0.00223	0.00197	1.587	2.330	
100 120 200 300 400	0.00223 0.00193	0.00197 0.00164	1.587	2.330 2.484	
100 120 200 300 400	0.00223 0.00193	0.00197 0.00164	1.587	2.330	

universidade	de aveiro CiCECO centro de investigação em materiais cerâmicos e compósitos seoul national universit
	Spectroscopic and X-Ray Notations
Differ molecu	ent ways to specify atomic ionization states as well as atomic and lar orbitals
Specti schem	'oscopist's notation: the atomic orbitals are labeled according to the e $n\!I_j$
<i>n</i> is th	e principal quantum number (integers 1,2,3)
/is the (intege	; quantum number describing the orbital angular momentum of the electron ers 0,1,2,3) but usually denoted by a letter (s,p,d,f,)
Becaus spin wi angula	e of the interaction between the electron angular momentum due to its th its orbital angular momentum (spin orbit coupling), orbitals whose r momentum quantum number are greater than 0 are usually split into two.
Each e s. (s co Ex: an	lectron has a quantum number associated with its spin angular momentum, in be +1/2 or -1/2). j is the quantum number taking the value j= +s . electron from a p orbital can have a j value of 1/2 and 3/2

universidade de aveir		cice	CO centr	ro de investigação	em materiais cerâmicos e o	
	S	Spec	trosc	opic and	X-Ray Nota	tions
X-ray notati	ion: the	e prin	cipal qu	iantum numl	bers are given le	tters K,L,M,N, etc.
The subscri	pt num	ber r	efer to	the /and j	values.	
	Qua	Quantum Numbers		X-rav	Spectroscopic	
	<u>n</u> 1	<i>ℓ</i> 0		K	1s _{1/2}	
	2	0	1/2	L ₁	2s _{1/2}	
	2	1	1/2	L,	2p _{1/2}	
	2	1	3/2	L	2pag	
	3	0	1/2	M	3510	
	3	1	1/2	Ma	30.0	
	3	1	3/2	Ma	3020	
	3	2	3/2	M	3 da a	
	2	2	5/2	M	2.4	
	3	2	5/2	M ₅	5 d _{5/2}	
Notations fo	or 4f o	rbita	ls ?			

universidade de aveiro	CICECO centro de investigação em mate	eriais cerâmicos e compósitos	SEOUL NATIONAL UNIVERSIT
E	Bremsstrahlung (brakii	ng radiation)	
If the incident ele can interact inelas	ctrons penetrate completely tically with the nucleus.	through the electroi	n shells they
If the electron is emits an X-ray.	decelerated by the Coulomb ((charge) field of the	nucleus, it
Since the electron strength of its int incident electron e	can suffer any amount of de eraction, then these X-rays c nergy.	celeration depending can have any energy (on the up to the
The bremsstrahlur	g radiation participate to the	e background signal i	n EDS

universidade de aveiro CiCECO centro de investigação em materiais cerâmicos e compósitos
-> the difference in the path length followed by the different beams will result in an interference pattern in the image plane (Phase contrast)
Electrons that are inelastically (forward) scattered in the TEM are used for chemical analysis of the specimen. Electron energy loss spectrometry (EELS)
The inelastic scattering process can promote:
1) The transition of an electron from an inner-shell (K,L,M) to an unoccupied energy level (i.e. above the Fermi level) or to the vacuum (ionization).
2) Transition of a valence electron across the energy gap (insulators and semiconductors) or excitation of a plasmon resonance (collective oscillation of free electrons)
The energy loss by the incident electrons is characteristic of the chemical properties of the specimen
In EELS we are interested in measuring the "number of electrons" that have lost a given amount of energy> this traduces the relative probability that a particular transition occurs
When a core electron is promoted to an unoccupied state, the density of these final states determines the relative probability of the transition

universidade de aveiro CiCECO centro de investigação em materiais cerâmicos e compósitos	SEOUL NATIONAL UNIVERSITY
Terminology of Scattering (electrons)	
We already used the most important terms: elastic and inelastic (loss scattering (in this case we tend to consider electrons as particles)	of energy)
However, we can also separate scattered electrons into coherent and -> which refers to their wave nature	incoherent
These distinctions are related, since elastically scattered electrons and coherent and inelastically scattered are usually incoherent	re usually
If we assume that the incident electron waves are coherent (e.g. the a are in phase with one another) and of a fixed wavelength. (i.e. in an ele microscope)	electrons ectron
Then coherently scattered electrons are those that remain in step and incoherently scattered electrons have no phase relationship after inte with the specimen	d eracting
The nature of the scattering can results in different angular distribut	tions.

universidade de aveiro	Ciceco cer	tro de investigação em materiais cerâmicos e compósitos	SEOUL NATIONAL UNIVERSIT		
The chance of a particular electron undergoing any kind of interaction with an atom is determined by an interaction cross section, which is well described by the following analogy:					
	If I throw a area, there r will break a bounce. In t dow, for a ba tegration (in an elastic cre	ball at a glass window one square foot in may be one chance in ten that the window nd nine chances in ten that the ball will just he physicist's language this particular win- all thrown in this particular way, has a disin- elastic!) cross section of 0.1 square feet and oss section of 0.9 square feet.			
The cross sect	ion (σ) has units	s of area			
We can define scattering cent	the cross secti ter, r	on (o) in terms of the effective radiu	s of the		
$\sigma=\pi r^2$					
Where r is a different value for each scattering processes					
Ex elastic scattering by the nucleus:	$r_{elastic} = rac{Ze}{V heta}$	V is the potential of the incoming electron charge (in Statcoulomb), θ the angle atomic number	ectron, e the c and Z the		

