

universidade de aveiro	ci ceco	centro de investigação em materiais cerâmicos e comp	DÓSITOS SEOUL NATIONAL UNIVERSITY
	Ele	ctron Spectroscopies	

universidade de aveiro CiCECO centro de investigação em materiais cerâmicos e compósitos
2. Surface "Sensitivity" or "Specificity"
Even though a technique is sensitive enough for detecting a signal from surface species, the major problem is to distinguish between the signal arising from the surface and the bulk of the sample.
This can be solved by ensuring that the signal due to the bulk is small compared to the signal due to the surface species.
The technique is: Surface Sensitive
Techniques that have such a property are for example the ones that make use of low energy electrons
 Auger Electron Spectroscopy (AES) X-ray Photoelectron Spectroscopy (XPS)

universidade de aveiro CiCECO centro de investigação em materiais cerâmicos e compósitos	UNIVERSIT
A surface sensitive technique is more sensitive to those atoms which are located at or near to the surface.	
Therefore, the intensity of the signal arising from the surface is more pronounced than the one arising from the bulk	
\longrightarrow I _{surface} / I _{bulk} >> 10 ⁻⁵	
The signal measured from a truly surface specific technique should be due to atoms in the "surface region".	
XPS as other electron spectroscopy techniques is not a truly surface specific due to the fact that even though the signal mainly arise from first few atomic layers a part of the signal comes from deeper regions.	
Why XPS is surface sensitive?	

niversidade de aveiro CiCECO centro de investigação em materiais cerâmicos e compósitos	SEOUL NATIONAL UNIVERSI
Why XPS and AES are surface sensitive?	
The X-rays employed in XPS and AES (aluminum K α 1486.7 eV) penerelatively deeply into the sample (~µm).	etrate
Therefore, it is not the excitation method that makes the XPS technique surface sensitive!	е
In the XPS spectrum the observed peaks are due to photoelectrons the generated in the immediate surface layer.	at are
Because the distance an electron can travel in a solid without suffering inelastic scattering is only few nm.	
This property of the electrons makes XPS surface sensitive	
The inelastic mean free path (IMFP) is a measure of the average distant travelled by an electron through a solid before it is inelastically scattered	nce ed

Universidade de aveiro bio ciceco centro de investigação em materiais cerâmicos e compositos
The equation of the kinetic energy does not take into account the interaction energies between the core holes in the final atomic state nor the inter- and extra-relaxation energies which come about as a result of the additional core screening needed
The calculation of the energy of Auger electron transitions is much more complicated that the simple relation given above
There is a simple and satisfactory empirical approach which consist in considering the energies of the atomic levels involved and those of the next element in the periodic table

$$E_{KL_1L_{2,3}}(Z) = E_K(Z) - \frac{1}{2} [E_{L_1}(Z) + E_{L_1}(Z+1)] - \frac{1}{2} [E_{L_{2,3}}(Z) + E_{L_{2,3}}(Z+1)]$$

NIVERSIT
,

universidade de aveiro CiCECO centro de investigação em materiais cerâmicos e compósito	26 SEOUL NATIONAL UNIVERSIT
Qualitative and quantitative analysis	
The relative intensity of the components of doublets formed by coupling is dependent upon their relative populations (degeneraci given by the expression (2j+1)	the spin orbit es) which are
Ex: for an electron from a p orbital, the relative intensities of the peaks are 1:2	he 1/2 and 3/2
The spacing between the components of the doublets depends up of the spin-orbit coupling	oon the strength
For a given value of both n and /the separation increases with the number of the atom	ne atomic
For a given atom, it decreases with both increasing n and $/$	

u	niversidade de aveiro CiCECO centro de investigação em materiais cerâmicos e compósitos
	Chemical shift
	In XPS the chemical shift refers to small changes in electron energy that are the results of the chemical environment of the emitting atom
	The XPS chemical shift is probably the most important feature of the technique
	Almost all elements in the periodic table exhibit a chemical shift, which can vary from a fraction of an electron volt up to several eVs.
	Data processing by fitting the high resolution XPS spectra is often required for extracting information on the different chemical environments of an atom
	The origin of the chemical shift is attributed to the charge of the atom prior to photoemission. It plays the major role in the determination of the magnitude of the chemical shift
	As a general rule, more the emitting atom forms bonds with electronegative species, greater is the positive XPS chemical shift
	Ex: Chemical shift for carbon species (e.g. in polymers)

universidade de aveiro CiCECO centro de investigação em materiais cerâmicos e compósitos	SEOUL NATIONAL UNIVERSIT
Deconvolution (peak fitting) of the XPS sig	gnals
In XPS it is possible to deconvolute the complex signal that is the result of the different environment of the emitting atom	rent chemical
Sadly, while central to XPS, peak fitting of line-shapes to spectra is far from simple	
The problem is that a good fit is always achieved by a sufficient number of Gaussian- when optimized without constraints	Lorentzian curves
Understanding the chemistry is important as it suggests the number of chemical stat number of peaks, introducing parameter constraints to restrict the peak widths and of the peaks force the peak model to obey the chemistry	tes and therefore relative intensities
Without these inputs any model designed purely on the spectral envelope would be a	cause for concern
When peak-fitting XPS spectra a further issue is the nature of the background signa the peaks must sit	al on top of which
Core level electrons ejected by x-rays appear in spectra with a variety of shapes. Th due to a combination of the physics involved in the ionization process and also distort measurement mechanism.	ese shapes arise tions due to the
An idealization of these influences is the specification of an observed peak as a conv Gaussian and Lorentzian function; where in principle the Gaussian described the meas (instrumental response, x-ray line-shape, Doppler and thermal broadening) while the the lifetime broadening (Natural broadening) due to the uncertainty principle relating energy of the ejected electrons.	olution of a surement process Lorentzian models g lifetime and
Ref: Manual of a fitting program that explain in detail the challenges in peak fitting in XPS and the various p taken into account: http://www.casaxps.com/help_manual/manual_updates/peak_fitting_in_xps.pdf	arameters that have to be

	AL UNIVERSITY
Quantification in XPS	
In order to quantify spectra in XPS one must convert peak areas to atomic concentrations	
Main factors affecting the quantification of XPS spectra:	
1 - Photoelectron cross section - probability of the emission of an electron du to the incoming X-ray photons	Je
2 - The kinetic energy of the photoelectrons (the mean free path is a functio of the kinetic energy)	n
3 - Spectrometer related factors such as transmission function of the spectrometer and the efficiency of the detector	
The intensity (I) of a photoelectron peak from an homogeneous solid is given	by:
$I = J\rho\sigma K\lambda$	
J is the photon flux, ρ is the concentration of the atom, σ is the cross sectio for photoelectron production, K is a term which covers the instrumental factor and λ is the mean free path.	n ors

universidade de aveiro CiCECO centro de investigação em materiais cerâmicos e d	compósitos seoul national universit
Spatial Resolution	
XPS is characterized by a poor spatial resolution.	
This is due to the fact that incident X-rays are difficult to scanned.	o be focused and
By using electrons as excitation source it is possible to ach resolution (e.g. under an electron microscope)	nieve a high spatial
Therefore, Auger electrons can be used for the chemical a with resolution at the nanoscale	analysis of surfaces
Scanning Auger Microscopy (SAM) enables images of the e surface layer of conducting samples to be acquired. SAM is techniques of SEM and AES. An electron beam is scanned of the electrons excited from the surface are energy analyze peaks. The intensity of the Auger peaks as a function of the electron beam provides an image of the element to which t corresponds. As for AES, the near surface layer typically r atomic layers of the surface.	elements in the near s a combination of the over the surface and ed to detect Auger he position of the the Auger peak means the first 2 or 3

	Appe Acces	ndi sib	x 2: le wit	Table h AlK	of x Ra	Bin	din atic	g E on	ne	rgi	es				
Is* 2s ₁₀ K L _j	$\begin{array}{ccc} 2p_{1/2} & 2p_{3/2} \\ L_{11} & L_{111} \end{array}$	$M_{f}^{3s_{1/2}}$	$\begin{array}{ccc} 3p_{1/2} & 3p_{3/2} \ M_{II} & M_{III} \end{array}$	$\begin{array}{ccc} 3d_{_{N2}} & 3d_{_{N2}}^{} \\ M_{_{IV}} & M_{_{V}}^{} \end{array}$	${{4s_{12}}\atop{N_I}}$	${{4p_{12}}\atop{N_{II}}}$	$\substack{4p_{\scriptscriptstyle M2}\\N_{\scriptscriptstyle HI}}$	${4d_{\scriptscriptstyle M2}\over N_{\scriptscriptstyle IV}}$	$\overset{4d_{52}}{N_V}$	$_{N_{VI}}^{4f_{52}}$	$\frac{4f_{7/2}^{*}}{N_{VII}} = 5$	$s_{1/2} = 5p_1$ $O_1 = O_2$	2 5p32 0 ₁₁₁	$\begin{array}{c} 5d_{32} \\ O_{IV} \end{array}$	5 (
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	5 7 9 7 18 32 52 52 52 52 52 52 52 52 52 52 52 52 52	$\begin{array}{c}1\\2\\8\\16\\6\\7\\8\\4\\7\\10\\12\\20\\20\\20\\20\\20\\20\\20\\20\\20\\20\\20\\20\\20$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 7 5 2 2 4 4 4 4 2 2 9 8 9 18 8 7 0 6 9 8 9 11 1 5 13 1 160 158 188 183 180 20 20 20 20 20 20 20 20 20 20 20 20 20	27 24 30 8 46 52 58 8 62 58	15	13365110 1459		82 Pb 83 Bi 84 Po 86 Rn 88 Ra 88 Ra 90 Th	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6p.2 6 Pn 1 1 3 5 8 8 11 11 19 9 49	p ₁₂ 6d ₁ m P _n	2 6d52 Pr		

	3s _{1/2} M ₁	3p1/2 MII	$3p_{3/2} M_{111}$	$\frac{3d_{3/2}}{M_{PV}}$	$\frac{3d_{52}}{M_V}^*$	451/2 N1	${4p_{1/2} \over N_{11}}$	${}^{4p_{32}}_{N_{111}}$	$\frac{4d_{3/2}}{N_{IV}}$	$\frac{4d_{52}}{N_V}$	$\frac{4f_{5:2}}{N_{y_I}}$	$\frac{4f_{h2}}{N_{vH}}^{*}$	5s12 01	$5p_{12} \\ O_{11}$	5p32 0m	$5d_{N2}$ O_{IV}	5d O _V	
44 80 44 82 44 84 45 84 45 84 45 84 45 94	585 627 717 717 836 836 944 1006 1072 1145 1145 1193 1193 1193 1193 1435	483 521 559 602 651 702 772 7812 870 931 1205 1273 1205 1273 1338 1403	461 496 531 571 667 667 766 875 766 875 786 875 997 997 997 997 997 997 997 997 997 9	284 312 349 349 451 451 451 457 635 740 685 740 685 740 685 740 685 740 685 740 1052 11000 1052 11218 1218 1232 1391 1453	279 307 367 367 404 4485 572 620 726 672 726 672 726 672 726 727 832 832 832 832 832 832 832 832 832 832	$\begin{array}{c} 7.5\\ 8.4\\ 8.4\\ 8.4\\ 8.4\\ 8.4\\ 8.4\\ 8.4\\ 8.4$	4 4 5 6 2 6 6 6 7 8 8 9 11 12 12 12 12 12 12 12 12 12 12 12 12	3 8 1 5 5 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9	79 93 11 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14	$\begin{array}{c} 2\\ 3\\ 3\\ 3\\ 7\\ 90\\ 99\\ 90\\ 99\\ 90\\ 90\\ 90\\ 90\\ 90\\ 90$	19 27 37 47 103 163 163 181 163 181 163 181 182 19 20 20 20 20 20 20 20 20 20 20 20 20 20	1 2 2 4 4 7 0 0 3 4 4 4 5 5 6 7 18 8 3 4 4 5 5 6 7 18 5 4 5 4 5 6 7 18 5 5 4 7 18 5 5 4 5 6 7 18 5 5 4 5 5 6 7 18 5 5 6 7 18 5 5 6 7 18 5 5 6 7 18 5 5 5 7 18 5 5 5 7 18 5 5 5 7 18 5 5 5 7 18 5 5 5 7 18 5 5 5 7 18 5 5 5 7 18 5 5 5 5 7 18 5 5 5 7 18 5 5 5 5 7 18 5 5 5 5 7 18 5 5 5 7 18 5 5 5 7 18 5 5 5 7 18 5 5 5 7 18 5 5 5 7 18 5 5 5 7 18 5 5 5 5 7 18 5 5 5 7 18 5 5 5 7 18 5 5 5 5 7 18 5 5 5 7 18 5 5 5 7 18 5 5 5 5 18 5 5 5 18 5 5 5 5 18 5 5 5 18 5 5 5 7 18 5 5 5 5 18 5 5 5 18 5 5 5 5 18 5 5 5 18 5 5 5 5	$\begin{array}{c}1\\7\\2&14\\8&33\\3&8\\3&3&8\\3&9&2\\3&6&6&3\\5&5&7&7\\1&8&3&4\\9&6&5&1&6&6\\1&1&1&1&1&1&1\\1&1&1&1&1&1&1\\1&1&1&1&$	13 17 12 22 22 22 22 22 22 22 22 22 22 22 22	2 1 1 2 2 3 3 7 12 15 5 5 5 0 3 2 2 5 5 5 0 3 2 2 2 2 2 1 1 6 6 6 6 0 9 9 2 2 3 3 8 8 311 337 355 46 6 51 1 54 46 51 51 551 551 551 551 551 551 551 551	16 22 27	5766640 2377130 110888	APPENDICES

Comparison of AES and XPS with other techniques										
			1 in the text							
	Incident radiation	Emitted radiation	Property monitored	Elements detectable	Depth of analysis	Spatial resolution	Information level E = clemental C = chemical	Quantification*	Applicability to inorganics*	Applicabili to organics
AES	e	e	Energy	Li on	3-10 nm	<12 nm	E (C)	×	0	v
EDX	e	X-ray	Energy	Be on	1 µm	1 µm	E	~	01	Xİ
EELS	e	e	Energy	Li on	Depends on foil thickness	10 nm	E	0	<i>×</i>	X
ISS	ions	ions	Energy	Li on	Outer atom layer	100 µm	Е	0	~	0
LAMMS	laser	ions	Mass	All	0.5 µm	1 µm	E. C	x	4	
ABS	ions	ions	Energy	Li on	1 µm	1 mm	E.	X	4	~
SIMS (static)	ions	ions	Mass	All	1.5 nm	1 μm	C (E)	X	v	~
sIMS (dynamic)	ions	ions	Mass	All	See text	50 µm	E	0	~	х
imaging)	ions	ions	Mass	All	See text	50 nm	C (E)	Х	0	0
(PS	X-rays	e-	Energy	He on	3-10 nm	STD 1 mm ² small area: 10 μm imaging XPS: <3 μm	Ε, C	~	~	×