Single molecule imaging of motor proteins

Michio Tomishige

Department of Applied Physics, University of Tokyo

"Walking" macro- and nano-machineries

Efficient (<70%)

Examples of Motor Proteins

Myosin

表 5.1 ATP が ADP と Pi に加水分解されるときの自由エネルギーの変化

観察される質量作用比 (<i>Γ</i>)	非平衡度 (Γ/K)	ΔG (kJ mol ⁻¹)	[ATP]/[ADP] ([Pi]=1 mM のとき)	
1010	I 0 ⁵	28. 5	I 0 ⁻¹³	
107	10 ²	11.4	10 ⁻¹⁰	
1 0 ⁵	1	0	10-8	$\Delta G = \Delta G^0 + RT \ln \frac{[ADP][Pi]}{[Pi]}$
1 0 ³	10-2	— I I. 4	10-6	
10	I 0 ⁻⁴	-22.8	10-4	
I	10-5	-28.5 ΔG	20 10-3	
0. I	10-6	-34.2	10 ⁻²	
10-3	10 ⁻⁸	- 45. 6	1 0°	
10 ⁻⁵	I 0 ⁻¹⁰	-57	10 ²	
$K = \frac{[ADP][Pi]}{[ATP]} = 10^5 \text{ M}$		AT.	P]/[ADP] ~ 1	$\overline{0^2}$ inside the cells

Kinesin's structure

Microtubule: track for kinesin

Microtubule organization inside the cells

composed of α-tubulin and β-tubulin Kinesin binds to β-tubulin subunit has polarity (plus- and minus-ends)

Single molecule imaging using total internal fluorescence microscopy

High-sensitivity camera (ICCD, EMCCD)

Reduce background fluorescence

 \rightarrow reduce the autofluorescence

→reduce the illumination volume

TIRFM

Widefield Fluorescence

Fluorescent Beads and Cheek Cell

Fluorescent Beads and Cheek Cell

Total internal reflection and evanescence field

 $n_1 \sin \theta_1 = n_2 \sin \theta_2 \qquad (n_1 > n_2)$

 $\theta_{a} = \sin^{-1}(n_{2}/n_{1})$

Single molecule fluorescence imaging of kinesin

TIRF (Total Internal Reflection Fluorescence) Microscopy

velocity: ~500 nm/s

Kinesin moves toward plus-end of the microtubule, processively for $\sim 1 \ \mu m$ (100 steps)

Kinesin is a directional and processive motor

Optical trap (Optical tweezers)

Focused laser beam (passed through the high NA objective lens) can be used to trap small object bear the focus

Dielectric particles (10 µm - 25 nm diameter) and cells (eg. bacteria, yeast) can be trapped

Optical trapping bead assays of kinesin

56 pN \cdot nm (max. work) \div 80 pN \cdot nm (ATP hydrolysis) = 70% efficiency

Energy conversion by molecular motors

input output Chemical energy --> Conformational change --> Mechanical work

ATP hydrolysis

Unidirectinal movement

Structural changes coupled to ATP hydrolysis produce directionality

Observe a moving part of kinesin (FIONA)

Protein engineering: essential tool for single molecule observation

Detect single fluorophore at nanometer precision

2D Gaussian

Fluorophores attached on one of the heads showed 16 nm steps

Single Molecule FRET

FRET: Fluorescence Resonance Energy Transfer

Probing the conformational changes in kinesin

Labeling for neck linker FRET

Neck linker FRET: dock-undock transitions were observed during the movement

Transitions occured once per ~8 nm step on average

Tomishige et al, Nature Struct. Mol. Biol. 13, 887 (2006)

Donor/acceptor labeling for head-head FRET

Front-to-rear FRET to distinguish one/two-headed states

At low ATP (where ATP-binding is rate-limiting), kinesin spent most of the time in one-head-bound state 90% D-Pi 1.0 1.0 **90%** E_{FRET} 0.5 0.5 30% 0.0 10% Displacement (nm) 30% 100 **ATP-waiting** 200 100 0 0 2 0 0 2 Time (s) Time (s) 17.4 nm per transition 300 C per transition 16 nm Displacement (nm) 0 00 200 0 30% ATP-00 100 waiting Ô 90% 0 10 15 0 5

Number of spikes

Mori et al, Nature 450, 750 (2007)

Why "single molecule"?

Advantages against bulk measurements

1) Detection of multiple states

Distribution

-useful if population is heterogeneous.

2) Transition between states

Time trajectory

-useful if the dynamics is not synchronizable

time

Active, MT bound doubly labeled motor

3) Select specific

4) Directly linking the function and structure

