Synthesis of Organic Nanomaterials

Patrick Theato

office: 625 phone: 02-880-7071 emaíl: theato@uní-maínz.de

Expectation from the class?

topics:

what will be covered:

* liposomes and micelles * MOFs * supramolecular chemistry * dyes * líquíd crystals * from oligomers to polymers * semiconducting organic nanomaterials

Why NANO?

TABLE 1.1: Landmarks in the History of Nanotechnology Reproduced with permission from *Modeling MEMS and NEMS*, Pelesko and Bernstein [99].

- 1940s Radar drives the development of pure semiconductors.
- 1959 Richard P. Feynman's famou "There's plenty of room at the bottom" becture.
- 1960 Planar batch-fabrication process invented.
- 1964 H.C. Nathanson and team at Westinghouse produce the resonant gate transistor, the first batch-fabricated MEMS device.
- 1970 The microprocessor is invented, oriving the demand for integrated circuits ever higher.
- 1979 The first micromachined accelerometer is developed at Stanford University.
- 1981 K. Eric Drexler's article, Molecular Engineering: An Approach to the Development of General Capabilities for Molecular Manipulation, is published in the Proceedings of the National Academy of Sciences. This is arguably the first journal article on molecular nanotechnology to appear.
- 1982 The scanning tunneling microscope is invented.
- 1984 The polysilicon surface micromachining process is developed at the University of California, Berkeley. MEMS and integrated circuits can be fabricated together for the first time.
- 1985 Tee "Buckyball" is discovered.
- 1986 (the atomic force microscope is invested.
- 1991 (The carbon nanotube is discovered)
- 1996 Richard Smalley develops a technique for producing carbon nanotubes of uniform diameter.
- 2000s The number of MEMS devices and applications continually increases. National attention is focused on funding nanotechnology research and education.

TABLE 1.2: Landmarks in Self-Assembly

1930s	Alan Turing develops the theory of universal computation.
1950s	John von Neumann develops theory of automata replication.
1953	James D. Watson and Francis Crick discover the structure of DNA.
1955	H. Fraenkel-Conrat and R.C. Williar s self-assemble the tobacco mosaic virus
	in a test tube.
1957	Penrose and Penrose construct a simple self-replicating system.
1961	Hao Wang develops "Wang Tiles" demonstrating the equivalence of tiling prob- lems and computation.
1991	Nadrian C. Seeman and Junghuei Gren self-assemble a cube from DNA.
1994	Leonard Adleman launches the field of DNA computation by using DNA to solve a Hamiltonian path problem.
1996	Kazuo Hosokawa's group demonstrates microscale self-assembly using surface tension.
2000	George M. Whitesides's group self-assembles electrical networks from millime- ter scale polyhedra.
2004	William Shih adapts the methods of Seeman to self-assemble a DNA octahedron.
2004	Eric Winfree and Paul Rothemund self-assemble a Sierpinski triangle from DNA demonstrating that self-assembly may be used for computation.
2000s	Self-assembly research explodes drawing the interest of researchers from every imaginable field.

definitions of self-assembly

Víruses and bacteríal flagella are constructed automatically out of proteín subunits. This phenomenon is called self-assembly, which is a powerful technique applicable to microfabrication To achieve self-assembly, the following conditions must be met:

generating bonding forces, bonding selectively, and moving the parts randomly so that they come together by chance.

Spontaneous assembly, often called "self-assembly," refers to aggregation of particles into an organized structure without external assistance.

Self-assembly is the ubiquitous process by which objects autonomously assemble into complexes.

Self-assembly is a process in which small objects autonomously associate with each other to form larger complexes.

what is NOT self-assembly?

- Self-assembly refers to the spontaneous formation of organized structures through a stochastic process that involves pre-existing components, is reversible, and can be controlled by proper design of the components, the environment, and the driving force.
- **Static self-assembly** refers to that subclass of self-assembly processes that leads to structures in local or global equilibrium.
- **Dynamic self-assembly** refers to that subclass of self-assembly processes that leads to stable non-equilibrium structures. These structures persist only so long as the system is dissipating energy.
- **Programmed or programmable self-assembly** refers to that subclass of self-assembly processes where the particles of the system carry information about the final desired structure or its function.

(A) Aggregation occurs when there is a net attraction and an equilibrium separation between the components

THE nanomaterial

 $size: \mathcal{F} A = \mathcal{F} \cdot 10^{-10} m = 0.\mathcal{F} nm$

cell membrane structure: The Fluid Mosaic Model

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

cell membrane

The cell membrane's function is to form a barrier between the cell's inner and outer environment. It is selectively permeable meaning that it allows certain materials to pass through and prevents the movement of other through it. It is <u>composed of a phospholipid bilayer</u> with protein molecules (intergral proteins) embedded within in the bilayer. Some of these proteins pass completely through both layers of phospholipids. There are also other types of molecules such as cholesterol and carbohydrates that are associated with the cell membrane's outer surface.

The phospholipids and proteins are not in a static state, but have the ability to move from one location to another or change positions within the bilayer. Therefore the molecules which make up the membrane are described as being in a fluid state. The structure of the membrane as described by cytologist today is called the "fluid-mosaic model." The membrane is literally a mosaic of molecules that have the ability to move from area to area on the surface of the membrane.

oríginal observation (Charles Overton)- lípid soluble molecules could freely enter and exit cells of plant roots (1890's) → defined lipophilic: lipid loving, able to easily pass cell membranes

decade later, Inving <u>Langmuir</u> dissolved phospholipids in benzene and layered the solution on water and waited for benzene to dissolve phospholipids formed a monolayer over the water,

-> reasoned the polar head faced the water, hydrophobic end pointed away

Insoluble monolayers may be compressed by barriers sweeping the interface, allowing p to be easily manipulated

phase transition isotherms

Molecular Area (Å²/molecule)

isotherm of DMPC

1925- Gorter and Grendel lípíd bílayer model
ínterested in red blood cells and figuring out how many lípíds are there
took red blood cells and extracted the lípíds, then spread them on water
based on síze of cells and area of lípíd coverage, developed 2 layer ídea
(estimated síze of lípíd layer and cells wrong, errors cancelled out)
→ they suggested the polar headgroups are on both sídes, hydrophobíc in
between to avoid water

Lípíd bílayer model couldn't explaín solute permeabílíty of some molecules, nor hígher surface tensíon of purífied lípíds. K+ íons pass cell membranes ín seconds, artíficíal membranes ín days.

Davson-Danelli Model (1935)- core bilayered lipid membrane with proteins coating both sides-- explained surface tension results modified in 1950's to suggest some proteins could pass through the membrane and allow ions to pass through to deal with permeability Robertson-- electron microscopy in 1950's all cell membranes are alike strong support for the Davson-Danelli model of lipid bilayers

1972-- <u>Singer</u> and <u>Nicolson</u>-- mosaic of proteins in a fluid lipid bilayer 2 key features of the fluid mosaic model: 1) lipids are fluid -- individual lipids can move around in the plane of the membrane unless they are linked to something (like the cytoskeleton) 2) proteins are embedded individually or as complexes into the membrane itself and are not necessarily evenly distributed, ie. think of buoys in a lake-- floating

índependent entíties unevenly distributed (and having particular functions)

natural membrane lipids

several major classes of lípids in membranes exist:

- 1) phospholipids
- 2) glycolípíds
- з) steroids
- 4) "strange" lípíds

all lípíds are based on varíous fatty acíds:

Biologisch relevante Fettsäuren

Symbol	Trivialname	Struktur	Schmelz-
Gesättigte	Fettsäuren		punkt/ C
12:0	Laurinsäure	CH ₃ (CH ₂) ₁₀ COOH	44.0
14:0	Myristinsäure	CH ₃ (CH ₂) ₁₂ COOH	54.4
16:0	Palmitinsäure	CH ₃ (CH ₂) ₁₄ COOH	62.9
18:0	Stearinsäure	CH ₃ (CH ₂) ₁₆ COOH	69.6
20:0	Arachinsäure	CH ₃ (CH ₂) ₁₈ COOH	75.4
22:0	Behensäure	CH ₃ (CH ₂) ₂₀ COOH	80.0

Ungesättigte Fettsäuren

16:1, Δ ⁹	Palmitoleinsäure	CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₇ COOH	0.5
18:1, Δ ⁹	Ölsäure	CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COOH	13.4
18:2, Δ ^{9,12}	Linolsäure	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₂ (CH ₂) ₆ COOH	- 5
18:3, Δ ^{9,12,15}	α-Linolensäure	CH ₃ CH ₂ (CH=CHCH ₂) ₃ (CH ₂) ₆ COOH	- 11
18:3, Δ ^{6,9,12}	γ-Linolensäure	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₃ (CH ₂) ₃ COOH	- 18
20:4, ^{5,8,11,14}	Arachidonsäure	CH ₃ (CH ₂) ₄ (CH=CHCH ₂) ₄ (CH ₂) ₂ COOH	- 49.5

phospholipids

Four major phospholipids are found in mammalian plasma membranes.

Animal membranes contain glycolipids. Sugars constitute the polar head group. Gangliosides are common in nerve cells where they influence the electrical properties of cell membranes.

G_{MI}

Cholesterol and derivatives provide stiffness to membrane, mediate fluidity

"strange" lipids

Cholesterol and derivatives provide stiffness to membrane, mediate fluidity

lipid dimensions

Schematic illustrations of the dimensions of lipid molecules:

- a) DSPE
- b) DSPC
- c) SOPC

lipid dimensions

The homologous family of di-acyl PC lipids with two identical saturated chains

<u>lípíds = a class of amphiphílíc</u> <u>molecules</u>

the hydrophobic effect determines the structure of amphiphilic molecules in water. Above a critical concentration (crtical micelle concentration, CMC) amphiphilic molecules form aggregates, e.g.

SDS → mícelles

4 nm

DPPC -> lipid bilayers

low molecular weight amphiphiles

polymeric amphiphiles

surfactant

lipids

bola-Amphiphile

polymer-surfactant

lipo-polymer

of and a start

- structural diversity
- HLB (hydrophilic-lipophilic balance

type of amphiphiles

from Membrane Transport

Table 2 Detergents used in the solubilization of membrane proteins

Biological detergent	Formula	Molecular weight (g/mol)	CMC (mM)	Aggregation number
Anionic		seems.	The second se	
Cholic acid, sodium salt	C24H39O5Na	430.6	9.5 (pH 9.0), 14 (pH 7.5)	2-4
Deoxycholic acid, sodium salt	C24H39O4Na	414.6	5	4-10
Lauryl sulfate, sodium salt (sodium dodecyl sulfate, SDS)	C ₁₂ H ₂₅ NaSO ₄	288.4	2.6 (pH 7.5), 8.27 (H ₂ 0)	60-100
Taurocholic acid, sodium salt	C26H44NNaO7S	537.7	3–11 (0.05 M NaCl)	4
Taurodeoxycholic acid, sodium salt	C ₂₆ H ₄₄ NNaO ₆ S	521.7	1-4 (0.05 M NaCl)	6
Cationic Cetvitrimethylammonium bromide	C ₁₀ H ₄₀ NBr	364.5	1 2 42 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	169
(CTAB, Hexadecyltrimethylammonium bromide	Constant Constant	1356-31	a de la companya de la compa	8-19 101
Dodecyltrimethylammonium bromide	C ₁₅ H ₃₄ NBr	308.3	14	-
Zwitterionic				10
CHAPS	C32H58N2O7S	614.9	8 (H ₂ O)	10 (H ₂ O)
CHAPSO	C32H58N2O8S	630.9	8 (H ₂ O)	11 (H ₂ O)
DHPC (diheptanoylphosphatidylcholine)	C22H44NO8P	481	1 01-0100	-12
LDAO (lauryldimethylamine-N-oxide)	C14H31NO	229.4	1-2	76
Zwittergent 3-08 (3-(N,N-dimethyloctylammonio)- propansulfonate)	C ₁₃ H ₂₉ NO ₃ S	279.4	330	_
Zwittergent 3-10 (3-decyldimethylammonio)- propansulfonate)	C ₁₅ H ₃₃ NO ₃ S	307.5	25-40	41
Zwittergent 3-12 (3-(N,N-dimethyllaurylammonio)- propansulfonate) (lauryl sulfobetain, SB-12)	C ₁₇ H ₃₇ NO ₃ S	335.5	2-4	55
Zwittergent 3-14 (3-(N,N-dimethylmyristylammonio)- propansulfonate)	C ₁₉ H ₄₁ NO ₃ S	363.6	0.1–0.4	83
Zwittergent 3-16 (3-(N,N-dimethylpalmitylammonio)- propansulfonate)	C ₂₁ H ₄₅ NO ₃ S	391.7	0.01-0.06	155

type of amphiphiles

Biological detergent	Formula	Molecular weight (g/mol)	CMC (mM)	Aggregation number
Non-Ionic				
BIGCHAP	C42H75N3O16	878.1	3.4	10
Deoxy-BIGCHAP	C42H75N3O15	862.1	1.1-1.4	8-16
Brij 35 (polyethyleneglycol-dodecylether, C12E23)			0.05-0.1	40
Digitonin	C56H92O29	1229.3	_	5-6
n-Decyl-β-o-glucopyranoside	C16H32O6	320.4	2.2 (H ₂ 0), 2.3 (0.01 M PBS)	—
n-Decyl-hexaethyleneglycolether (C10E6)	C22H46O7	422.6	0.9 (0.05 M NaCl)	
n-Decyl-β-p-maltopyranoside (DM)	C22H42O11	482.6	1.8 (0.15 M NaCl)	
n-Dodecyl-nonaethyleneglycolether (C12E9)	C30H62O10	582.8	0.046 (0.01-0.2 M NaCl)	
n-Dodecyl-β-p-glucopyranoside	C18H36O6	348.5	0.19 (H ₂ 0), 0.13 (0.05 M NaCl)	
n-Dodecyl-hexaethyleneglycolether (C12E6)	C24H50O7	450.6	0.087 (0.05 M NaCl)	
n-Dodecyl-octaethyleneglycolether (C12E8)	C28H58O9	538.8	0.05-0.1 (0.1-0.2 M NaCI)	120-127
n-Dodecyl-B-n-maltopyranoside (lauryl maltoside, DDM)	C24H46O11	510.6	0.17 (H ₂ 0)	98
HECAMEG (methyl-6-O-(N)-heptyl-carbamoyl)-α-D- glucopyranoside	C ₁₅ H ₂₉ NO ₇	335.4	19.5	
n-Heptyl-β-D-glucopyranoside	C13H26O6	278.3	79	C.metation
n-Heptyl-β-p-thioglucopyranoside (HTG)	C13H2605S	294.4	30	_
Lubrol (C12E9-10)	-	582	0.1 (0-0.05 M NaCl)	110 (0-0.1 M NaCl)
Mega-8 (N-octanoyl-N-methylglucamine)	C15H31NO6	321.4	79 (H ₂ O). 58 (0.05 M NaCl)	- 2.35
Mega-9 (N-nonanoyl-N-methylglucamine)	C16H33NO6	335.5	25 (H ₂ 0)	
Mega-10 (N-decanoyl-N-methylglucamine)	C17H35NO6	349.5	6–7 (H ₂ O)	—
n-Nonyl-β-α-glucopyranoside (NG)	C15H30O6	306.4	6.2–6.5 (0.15 M NaCI), 3.5 (1 M NaCIO	-
Nonidet P-40 (NP-40) (Octylphenoxypolyethoxyethanol)	_	603.0	0.05-0.3	—
n-Octyl-β-D-glucopyranoside (OG)	C14H28O6	292.4	24.4 (H ₂ O), 23.4 (0.1 M NaCl)	_
n-Octyl-β-D-thioglucopyranoside (OTG)	C14H28O6S	308.4	9 (H ₂ O)	-
Octyl polydisperse oligooxyethylene (8-POE) (C ₈ E _{3-11, mean n = 5})	-	-	6.6	-
Octyl tetraoxyethylene (C ₈ E ₄)	C16H34O5	306.45	6	-
Tween-20 (polyoxyethylene (20) sorbitan monolaurate	_	1227.54	0.059	_
Tween-80 (polyoxyethylene (80) sorbitan monolaurate	_	1309.68	0.012	- 4
Triton X-100 (polyethylene glyco-p-isooctylphenyl ether)	_	625	0.3 (H ₂ 0), 0.29 (0.1 M NaCl)	100-155
Triton X-100 hydrogenated		631	0.25 (0.05 M NaCl)	_
Triton X-114 (cloud point 22°C)	-	537	0.2	_

Critical micelle concentration

lipid

lipid

Amphipilic molecules pack so as to minimize the interaction between water and the nonpolar part of the molecule. micelle The two hydrocarbon tails give phospholipids a cylindrical shape that causes the molecules to pack as a bílayer ín water. bilayer

ENERGETICALLY UNFAVORABLE

Minimum contact between water and the hydrocarbon chains is achieved by forming the bilayer into a closed compartment.

sealed compartment formed by phospholipid bilayer

planar phospholipid bilayer with edges exposed to water

ENERGETICALLY FAVORABLE

surfactant packing parameter

association number: ratio of micelle volume to volume per molecule V

 $p = \frac{\frac{4}{3}\pi R_{mic}^3}{V} \qquad \qquad R_{mic}: \text{ micelle radius}$

association number: ratio of micellar area to cross-sectional area per molecule a

 R_{mic} cannot exceed length of fully extended chain l

 $\frac{V}{al} \le \frac{1}{3}$

 \Rightarrow $N_s = \frac{V}{a!}$ N_s : surfactant (critical) packing parameter

prediction of assembly

Lipid	Critical packing parameter v/a ₀ / _c	Critical packing shape	Structures formed
Single-chained lipids (surfactants) with large head-group areas: SDS in low salt	< 1/3	Cone	Spherical micelles
Single-chained lipids with small head-group areas: SDS and CTAB in high salt, nonionic lipids	1/3-1/2	Truncated cone	Cylindrical micelles
		Truncated cone	Flexible bilayers, vesicles
Double-chained lipids with large head-group areas, fluid chains: Phosphatidyl choline (lecithin), phosphatidyl serine, phosphatidyl glycerol, phosphatidic acid, sphingomyelin, DGDG*, dihexadecyl phosphate, dialkyl dimethyl ammonium salts	1/2-1		
Double-chained lipids with small head-group areas, anionic lipids in high salt, saturated frozen chains: phosphatidy! ethanolamine, phosphatidy! serine + Ca ²⁺	~1	Cylinder	Planar bilayers
Double-chained lipids with small head-group areas, nonionic lipids, poly (cis) unsaturated chains, high T: unsat. phosphatidyl ethanolamine, cardiolipin + Ca ²⁺ phosphatidic acid + Ca ²⁺ cholesterol, MGDG ^b	>1	Inverted truncated cone or wedge	Inverted micelles

"crítical packing parameter"

V/aolo

v = volume of amphiphile $a_o = area of head group$ $l_c = length of head group$

can be approximated as the angle of the amphiphile cone or inverse cone

vesicle vs. soap bubble

models of biomembranes

models of biomembranes

Langmuir films

planar lipid membranes

liposomes

monolayer

unilamellar

multilamellar

LB multilayer

supported bilayer

membrane stabilization

membrane stabilization

