Advanced Oxidation Processes (AOP)

For Water and Wastewater Treatment

Contents

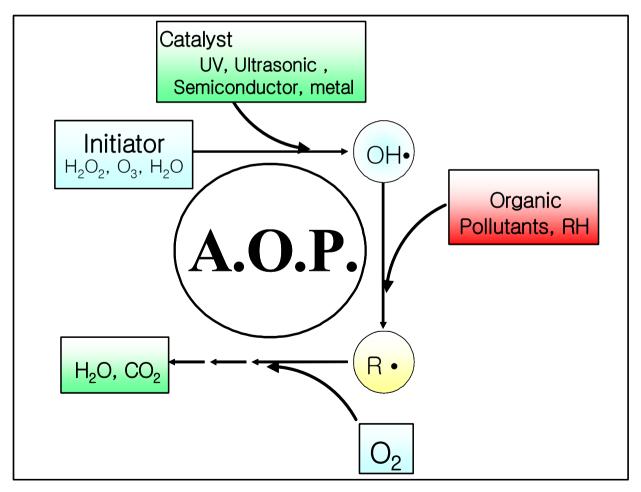
1. AOP: Advanced OxidationTechnology

2. OH radical Analysis; qualitative vs. quantiative

3. Ozone Process

- * Ozone/Hydrogen Peroxide
- * Ozone/UV
- 4. Fenton Process
 - * Fenton Chemistry
 - * Photo & Electro Fenton Chemistry
 - * Application

Contents


- 5. AOP using photochemical reactions
 - 5-1. TiO₂ photocatalyst
 - 5-2. UV technology (Oxidation & Disinfection)

6. others

- * Electrochemical method for water treatment
- * Corona discharge process
- * Ferrate oxidation
- 7. Prospective for AOPs

Advanced Oxidation Processes (AOPs)

AOPs: involves the *in-situ* generation of highly potent chemical oxidants such as the hydroxyl radical (•OH) for accelerating the oxidation and hence destruction of a wide range of organic contaminants in polluted water and air

Reactivity of hydroxyl radical (•OH)

- High redox potential (2.80 V)
- nonslectively very reactive, and rapid reaction with various organic substrates (diffusion controlled rate)
- eletrophilic

Redox Potentials of selected oxidants (V vs NHE)

•OH	2.80
O ₃	2.07
H ₂ O ₂	1.78
HO ₂ ·	1.70
	1.57
HOCI	1.49
Cl ₂	1.36

Rate constants for selected reactions of •OH in aqueous solution (M⁻¹ s⁻¹)

•OH + MeOH \rightarrow	1×10 ⁹
• OH + EtOH \rightarrow	2×10 ⁹
• OH + Phenol \rightarrow	6.6×10 ⁹
• OH + 2,4-D →	3×10 ⁹
• OH + Prolline \rightarrow	3.1×10 ⁸
•••	

Reactivity of hydroxyl radical (•OH)

~ at high pH (>12, pKa ($^{\circ}$ OH = 11.8), it deprotonates.

 \sim an important difference between OH radical and O $\ \ \, \ \,$ is their reactivity toward to O_2

Three types of reactions

(1) Addition to C-C and C-N doubles bonds

~ not with C-O double bonds (which is electron deficient carbon)

~ regioselective largely due to its electrophilic nature

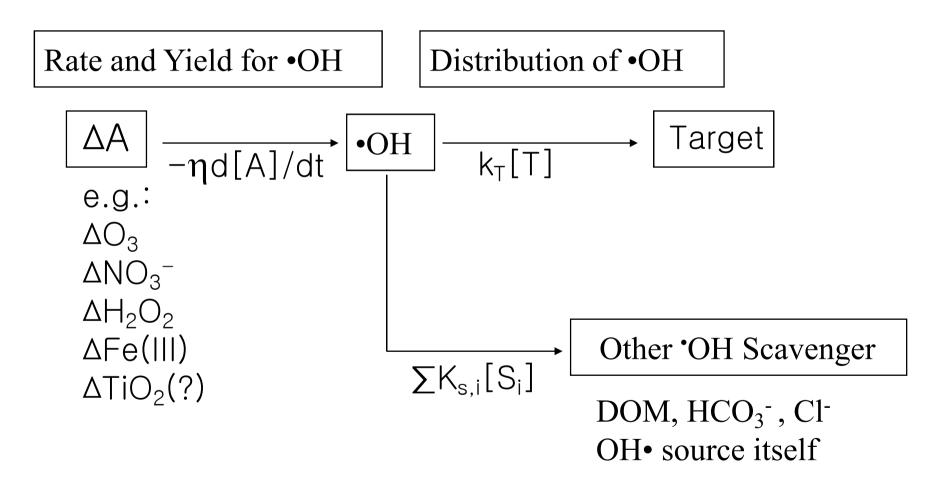
(2) H-abstraction

- $\sim~a$ considerable driving force for H-abstraction reactions by *OH
- \sim primary hydrogens (-CH_3) are less likely abstracted than secondary (-CH2-) and tertiary (-CH-) ones
- \sim neighboring substituents stabilizing the resulting radical

(3) Electron transfer

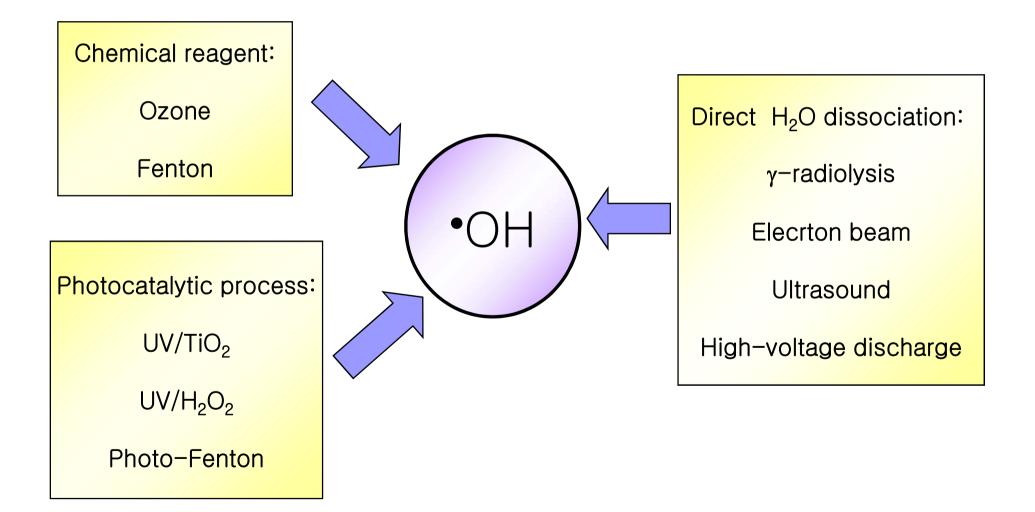
 $\sim\,$ direct ET is rarely observed in • OH-reactions

Mineralization of organic pollutant in AOP

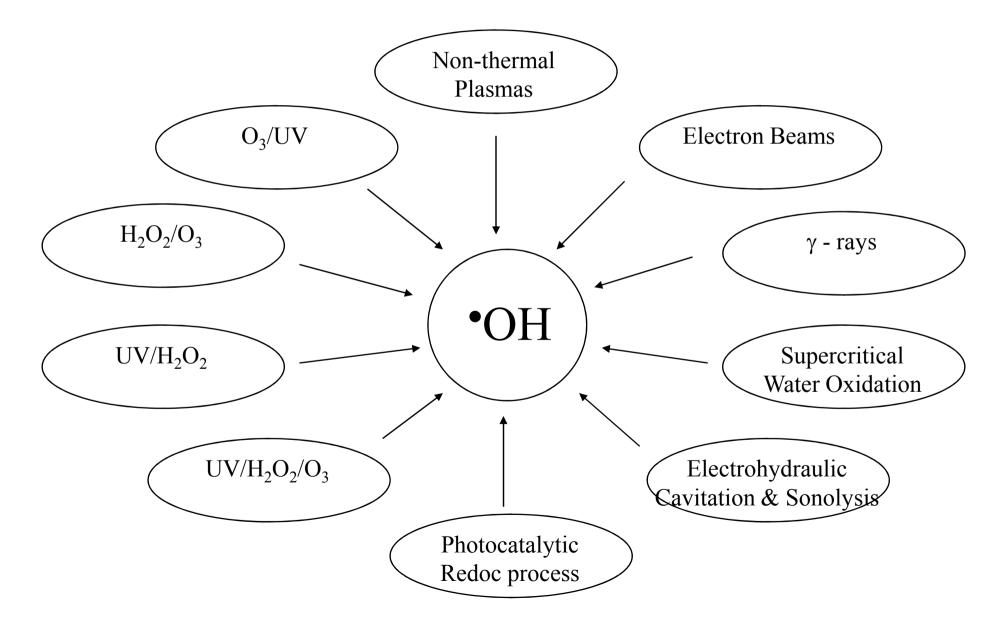

 $RH + \bullet OH \rightarrow R^{\bullet} + H_2O$ Hydrogen atom abstraction

 $R^{\bullet} + O_2 \rightarrow RO_2^{\bullet}$

 $RO_2^{\bullet} + RO_2^{\bullet} \rightarrow [RO_4R] \rightarrow ROH + R'COR' + R'COH$


$$+ \bullet OH \downarrow \\ O_2 \downarrow \\ + \bullet OH / O_2 \\ CO_2 + H_2O \quad \leftarrow \leftarrow \quad R``COOH$$

Key parameters in AOP



Classification of AOP

Depending upon the way of generating hydroxyl radical: •OH

Advanced Oxidation Technologies

