Enzyme Engineering

3. Thermodynamics and Stability of Enzymes

3.1 Protein Stability

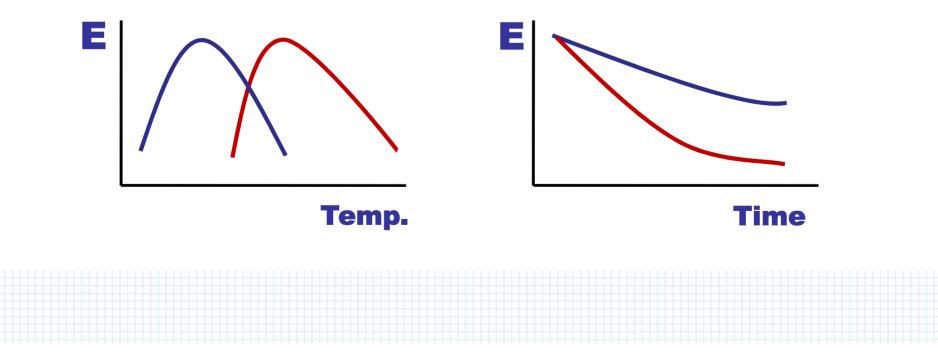
3.2 Case Study 1: Enzyme Stabilization

3.1 Protein stability

Potentials & Bottlenecks of Enzymes

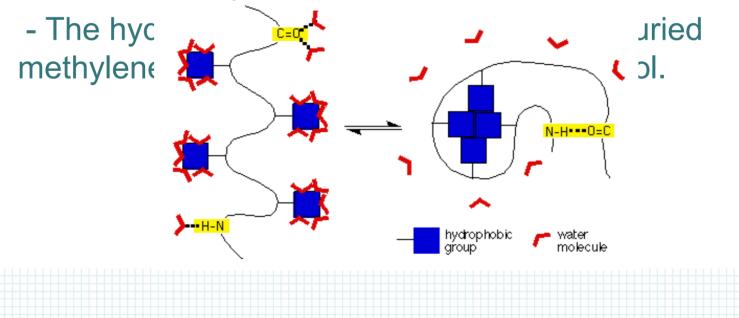
O Bottlenecks

- Enzyme cost
- Instability
- * Enzymes are adapted to their particular function in living cells and they are therefore poorly suited for industrial applications (extremes of pH, temperature and salinity).
- **O** Potentials
 - Substrate specificity
 - Mild reaction conditions


$N \leftrightarrow U \rightarrow I$ Unfolding Inactivation

O Stability

- Thermodynamic (Conformational, Structural) stability
- Operational (Kinetic) stability

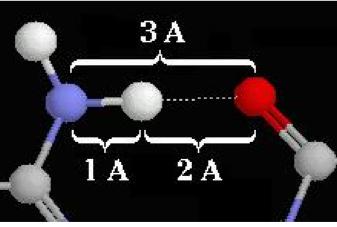


- **O** Hydrophobic interaction
- O Hydrogen bond
- O Conformational entropy of unfolding
- Electrostatic interaction (salt bridge)
- **O** Aromatic-aromatic interaction
- O Disulfide bond
- 0...

O Hydrophobic interaction

- The hydrophobic effect is considered to be the major driving force for the folding of globular proteins.

- It results in the burial of the hydrophobic residues in the core of the protein.


O Hydrogen bond

- A hydrogen bond occurs when two electronegative atoms, such as nitrogen and oxygen, interact with the same hydrogen.

- The hydrogen is normally covalently attached to one atom, the donor, but interacts electrostatically with the

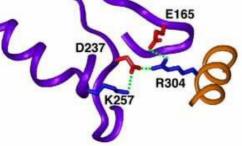
other, the accep

- The strength c kcal/mol

ween 2 and 10

O Conformational entropy of unfolding

- The factor that makes the greatest contribution to stabilization of the unfolded state is its conformational entropy.


- It has been proposed that decreasing the conformational flexibility of the unfolded chain (by substitution with proline, or by replacement of glycine) should lead to an increase in the stability of the folded relative to the unfolded protein.

O Electrostatic interaction (salt bridge)

- Salt bridges or ion-pairs are a special form of particularly strong hydrogen bonds made up of the interaction between positively charged residues (His, Arg, Lys) and negatively charged residues (Asp, Glu).

- Salt bridges is a discriminating stabilization factor between thermophilic protein and mesophilic protein and especially surface salt bridges have strong stabilization effect to protein rather than buried salt bridges.

O Disulfide bond

- Disulphide bonds are formed by the oxidation of two cysteine residues to form a covalent sulphur-sulphur bond which can be intra or intermolecular bridges.
- Calculations suggest that a disulphide bond should give rise to 2.5 3.5 kcal/mol of stabilization

O Aromatic-aromatic interaction

- Stabilizing interactions between two aromatic amino acids
- The optimal geometry is perpendicular, such that the partially positively charged hydrogens on the edge of one ring can interact favorably with the pi electrons and partially negatively charged carbons of the other
- About 60% of the aromatic side chains (Phe, Tyr, and Trp), found in proteins are involved in aromatic pairings.

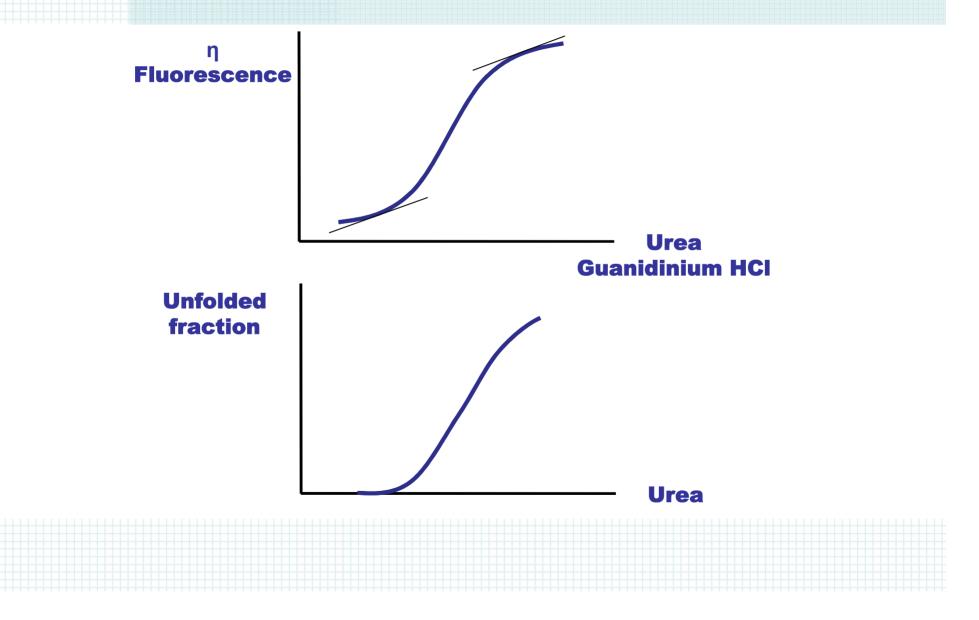
Enzyme Stability: Exterior Factors

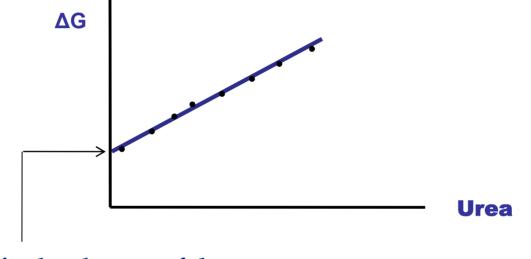
O Heat

O Organic solvents

 $O \, pH$

Oetc




$\mathbf{N} \leftrightarrow \mathbf{U}$

$$\mathbf{K} = \frac{\mathbf{U}}{\mathbf{N}} = \frac{\mathbf{F}_{\mathbf{N}}}{\mathbf{1} - \mathbf{F}_{\mathbf{N}}}$$

$\Delta \mathbf{G} = -\mathbf{RT} \ln \mathbf{K}$

 ΔG in the absence of denaturant

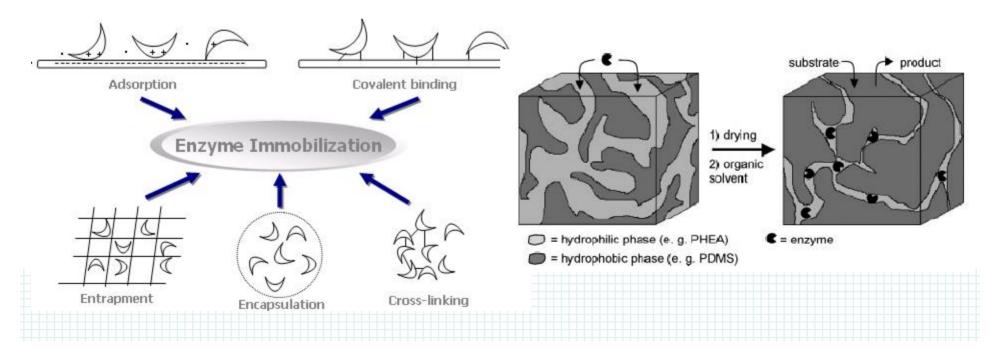
• Tm : half unfolded melting temperature

* Differential scanning calorimetry (DSC)

- O Screening for novel enzymes
- Additives
- O Immobilization
- Chemical modification
- Solvent engineering
- Protein engineering
 - Directed evolution
 - Rational design
 - Computational protein design

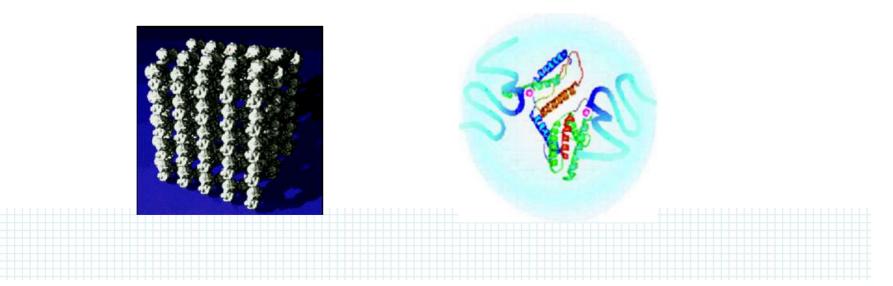
O Screening for novel enzymes

- Screen microorganism from extreme environments (high temperature, high pH, high pressure, ...)
- Extremophiles have excellent functions and stability.
- Lipase, xylanase, protease, α-amylase and DNA polymerase, ... are used in industry.

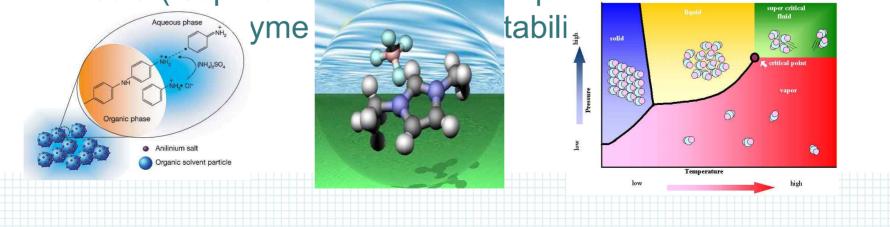


O Additives

- Small molecules are added for stabilizing protein
- A range of low-molecular weight additives exert stabilizing effects by inducing preferential hydration of proteins
- Protein, amino acid, lipid, fatty acid, surfactant, metal, polyols


O Immobilization

- To preserve protein stability and activity, protein is immobilized into support materials.
- Immobilization method has long history and still remains effective tool to increase protein stability.


O Chemical modification

- Chemical modification of amino acid residues R- groups remains useful for stabilizing enzymes
- Crosslinked enzyme crystals, Covalent attachment polymers such as PEG, Combined site-directed mutagenesis and chemical modification approach,...

O Solvent engineering

- Organic solvents as reaction media have many advantages and it has been widely investigated in academic and industrial field.
- But organic solvents decrease protein stability and activity, solvent engineering such as control of organic solvent concentration, water activity, and selection of alternative media (supercritical fluid. ionic liquid _____) is needed to

O Protein engineering

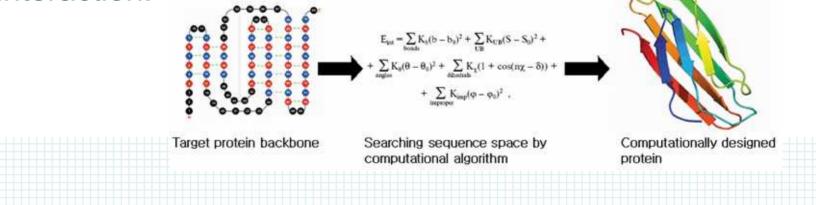
- Most powerful tool to increase enzyme stability

① Directed evolution

② Rational design

③ Computational protein design

O Directed evolution


- Directed evolution involves the recombination of beneficial point mutations with selection for furtherimproved properties.
- The process can be repeated through successive cycles, leading to noteworthy alterations/improvements to the properties of the baseline protein.
- No knowledge or modeling of the target protein's molecular structure is required.
- But it is difficult to analyze the result and it needs good high throughput screening system.

O Rational design

- Rational design method is to redesign of protein based on the understanding of relationship between structure and function.
- Rational design needs knowledge of the target protein's molecular structure.
- Successfully established rational design method can be applied to increase stability of other proteins.

O Computational protein design

- Computational protein design method is to investigate the sequence space of protein using scoring function and to find out most stable sequence of given protein backbone structure.
- Computational protein design method is applied not only to protein stabilization but also to membrane protein solubilization, novel enzyme design, and protein-protein interaction.

Case study 1: Protein Stabilization

(1) Structure–based pattern analysis for protein stability

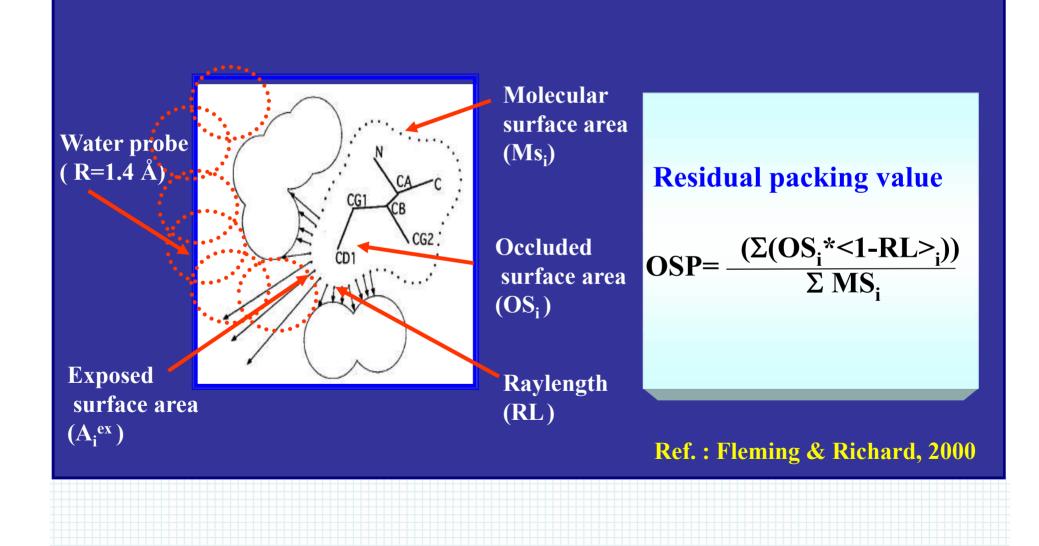
(2) Increasing thermostability of Lipase A using rational design + computational design method

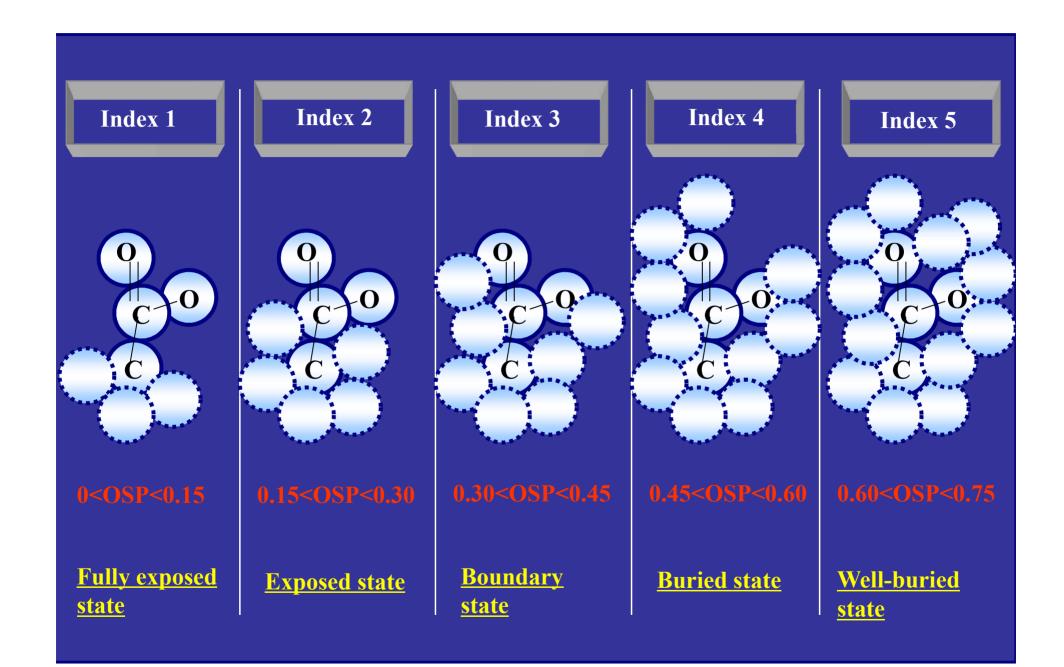
Understanding of protein thermostability

O Factors affecting to stability of proteins :

- Hydrophobic interaction
- Electrostatic interaction (e.g. salt bridge)
- Conformational flexibility
- Disulphide bond
- Hydrogen bond
- Aromatic interaction
- Metal binding

➡ How to apply for the design?


Comparative study for protein thermostability


O Conventional approaches

- : Simple investigation such as one-dimensional difference of amino acid sequence, comparison of residual properties
- **Our approach :** Structure-based systematic analysis
- : Investigation of the characteristic properties of model protein group in residual structure according to their conformational states

Development of rules & methods for thermostable protein design

Residual Packing Value

20 Set of Thermophilic and Mesophilic Proteins

	Thermophilic proteins			Mesophilic proteins		
Protein name	PDB code	Organism	Temp	PDB code	Organism	Temp
Adenylate kinase	1zin	Bacillus stearothermopilus	45-65	1aky	Sacchromyces cerevisae	25-30
Che Y	1tmy	Thermotoga maritima	80	3 chy	Escherichia	37
Cirate synthase	1aj8	Pyrococcus furiosus	100	1 csh	Chicken herat	37
Triose phosphate	1btm	Bacillus stearothermophilus	40-65	1ypi	Saccharomyces cerevisiae	25-30
Dimerization domain of EF- TS and EF-TU- TS complex	1tfe	Thermus thermophilus	70-75	1efu_b	Escherichia coli	37
Endo-1.4-b Xylanase	1yna	Thermomyces lanuginosus	50	1xnb	Bacillus circulans	30-40
Glutamate dehydrogenase	1gtm	Pyreoeus furiosus	75-100	1hrd	Clostridium symbiosum	30-37
Inorganic pyrophosphatase	2prd	Thermus thermophilus	70-75	1ino	Escherichia coli	37
Lactate dehydrogenase	1ldn	Bacillus stearothermophlic	40-65	1ldg	Plasmodium falciparum	37
Ribonuclease H	1ril	Thermus therimophilus	70-75	2rn2	E. coli	70-75

	Thermophilic proteins			Mesophilic proteins		
Protein name	PDB	Organism	Temp	PDB	Organism	Temp
	code			code		
Malate	1bdm	Thermus flavus	70-75	4mdh	Porcine	37
dehydrogenase						
Manganese	3mds	Thermus	70-75	1qmn	Homo sapiens	37
superoxide		therimophilus				
Methionine	1xgs	Pyrococcus furiosus	100	1mat	Escherichia	37
aminopeptidase					coli	
Phsophofructokinase	3pfk	Bacillus	40-65	2pfk	Escherichia	37
		stearothermophilus			coli	
3-Phosphoglycerate	1php	Balcillus	40-65	1qpg	Saccharomyces	25-30
kinase		stearothermophilus			cerevisiae	
Rubredoxin	1caa	Pyrococcus furiosus	100	8rxn	Desulfovibrio	34-37
					vulgaris	
Thermolysin and	1lnf	Bacillus	52.5	1npc	Bacillus cereus	30
neutral protease		thermoproteolyticus				
Glyceraldehyde-3-	1hdg	Thermotoga	80-85	1gad	Escherichia	37
phosphate		maritima			coli	
dehydrogenase						
Reductase	1ebd	Bacillus	40-65	1lp f	Pseudomonas	25-30
		stearothermophilus			fluorescens	
Subtilisin	1thm	Thermoactinomyces	55-65	1st3	Bacillus lentus	30
		vulgaris				

Analyzed residual properties

O Packing pattern

O Residual structural properties

: hydrogen bond, salt bridge, cation pi interaction, disulfide bond, inner, outer, flexible, rigid residue

- **O** Amino acid preference
 - : 20 amino acid
- **O** Secondary structure
 - : extended beta, beta strand, helix, 3/10 helix, turn

Statistical analysis of residual properties

T-test : Quantitative evaluation of difference between X_{i-Th} and \overline{X}_{i-Me}

t value ...
$$t_i = (X_{i-Th} - X_{i-Me}) / \sqrt{(S_{i-Th}^2/N_{Th} + S_{i-Me}^2/N_{Me})}$$

 $df = N_{Th} + N_{Me} - 2 = 38$

Df	t _{0.1}	t 0.05	t 0.025	t 0.01	t 0.005	
Inf (>30)	1.282	1.645	1.960	2.326	2.576	

Under 10% level of significance (t $_{0.01} = 1.282$) If t is over 1.282, the probability that X_{i-Th} is greater than X_{i-Me} is 90%. If t is under -1.282, the probability that X_{i-Th} is less than X_{i-Me} is 90%.

Important Structural Patterns Related with Thermostability

Frequency

Structure	Packing						
index	Thermo		Meso	T-test			
1	3.9948	±0.0869	4.6387	±0.0871	-1.1698		
2	24.4497	±0.2211	25.9943	±0.2779	-0.9725		
3	34.2689	±0.1499	33.6561	±0.1613	0.6224		
4	32.9906	±0.2891	32.5293	±0.2720	0.2599		
5	4.2959	±0.1297	3.1816	±0.0934	•1.3586		
	1	1		1	******		

Thermophilic protein

... higher frequency of residues in well-buried state

※ Guideline : more packing in well-buried state location

Important Structural Patterns Related with Thermostability

[Residual structural properties]

Characteristics

Location

- 1. Higher frequency of salt-bridge
- 2. Lower frequency of flexible residue
- 3. Higher frequency of flexible residue
- 4. Higher frequency of hydrogen bonds
- 5. Higher frequency of inner residue

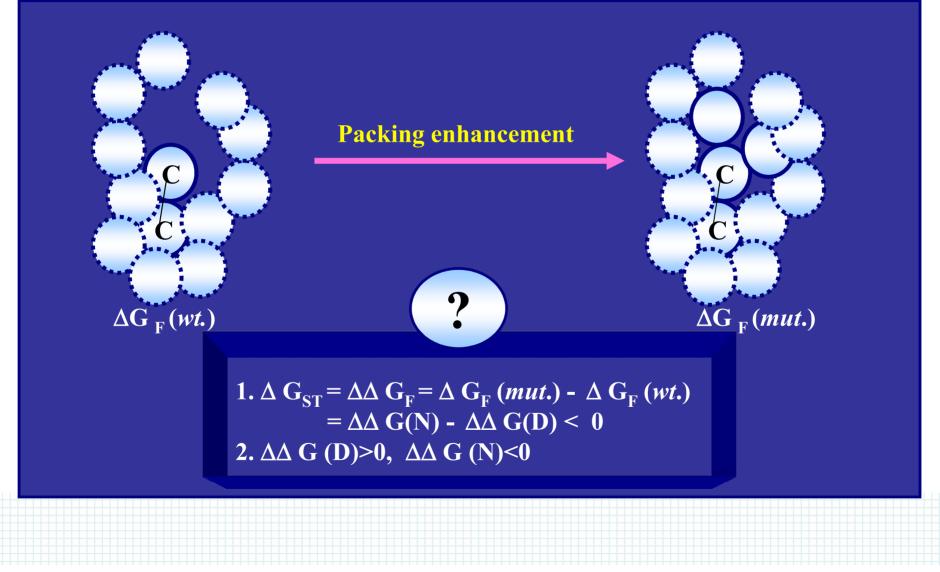
Exposed state (index2) Fully-exposed state (index1) Boundary state (index3) Well-buried state (index5) Well-buried state (index5)

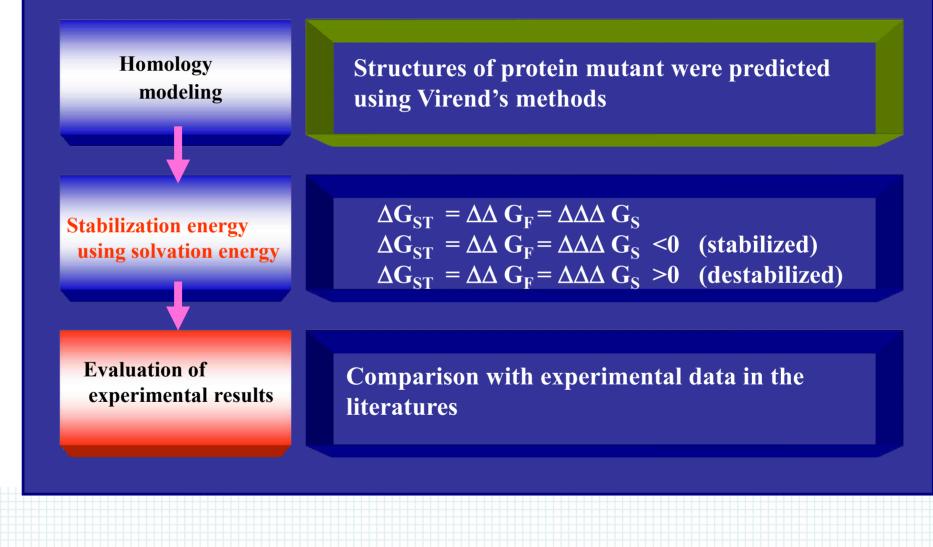
※ Guideline : ex) more salt bridges at exposed state location

Important Structural Patterns Related with Thermostability [Amino acid preference]


Characteristics	Location
1. Lower frequency of SER	Boundary state (index 3)
2. Lower frequency of ALA	Exposed state (index2)
3. Higher frequency of ALA	Well-buried state (index5)
4. Higher frequency of GLU	Buried state (index4)
5. Higher frequency of ARG	Exposed state (index2)

Case study (II)


• Increasing thermostability of Lip A using rational + computational design method


Criteria for Stable Protein

Packing Enhancement for Protein Stability

Prediction and Evaluation of Packing Effect

Model Proteins

PDB ID	2LZM	1STN	2RN2	4LYZ	2WSY	1BNI
Name	Lysozyme	Staphylococcal Nuclease	Ribonuclease HI	Lysozyme	Tryptophan Synthase	Barnase
EC number	3.2.1.17	3.1.31.3	3.1.26.4	3.2.1.17	4.2.1.20	3.1.27
Family	Hydrolase (o-glycosyl)	Hydrolase (phosphoric diester)	Hydrolase (endoribonucle ase)	Hydrolase (o-glycosyl)	Lyase	Microbial ribonuclease
Source	Bacteriophage T4	Staphylococcus aureus	Escherichia coli	Hen egg white	Salmonella typhimurium	Bacillus amyloliquefacien
Resoultion	1.73	1.70	1.48	2.00	2.30	2.10
R-factor	0.193	0.162	0.196	Not reported	0.197	0.179
Mutants	G77A	G88A	G23A,A52N A52D,A52Q A52E,A52I A52L,A52V	A31I A31L A31V	A18V	I51A, I51V I76A, I76V V10A

Structural Properties of Target Residues

Target residues are inner residues (below 5% exposure ratio) Their structural states are the buried-state (below 0.65 packing value)

Model Protein	Residues	Exposure ratio (%)	Packing value	No. of methyl or methylene
2LZM	GLY77	4.5	0.550	0
1STN	GLY88	0.1	0.554	0
2RN2	GLY23	0.0	0.597	0
	ALA52	0.5	0.482	1
4LYZ	ALA31	0.0	0.486	1
2WSY	ALA18	0.5	0.525	1
1BNI	VAL10	0.0	0.616	3
	ILE51	0.1	0.519	4
	ILE76	0.0	0.641	4

For prediction of stabilization effect

For prediction of destabilization effect

Stabilization Effect of Packing Enhancement

Comparison of predicted and experimental $\Delta\Delta$ G_F of mutant variants

		Prediction ($\Delta\Delta G_F$)			Experimen	ts ($\Delta\Delta G_F$)
Mu	tant	Em86	Schl	Sch2	This work	∆∆G _F	ΔTm
2LZM	G77A	-1.29	-1.37	-1.05	-2.20	-0.40	0.90
1STN	G88V	-3.60	-3.85	-3.35	-3.62	-0.60	848
2RN2	G23A	-1.83	-1.97	-1.72	-2.36	-0.70	2.3
		<u>.</u>					

 $\Delta \mathbf{G}_{\mathrm{ST}} = \Delta \Delta \mathbf{G}_{\mathrm{F}} = \Delta \mathbf{G}_{\mathrm{F}} (mut.) - \Delta \mathbf{G}_{\mathrm{F}} (wt.) < \mathbf{0}$

Stabilization effect of GLY to ALA or VAL could be explained

Comparison of predicted and experimental $\Delta\Delta$ G_F of mutant variants

		Prediction (∆∆G _F)			Experimen	ts $(\Delta\Delta G_F)$
Mı	utant	Em86	Schl	Sch2	This work	∆∆ G _F	∆Tm
2RN2	A52N	0.999	0.820	1.211	1.047	1.80	-5.90
	A52D	1.482	2.031	5.197	1.571	1.90	-6.10
	A52Q	0.607	0.361	0.880	0.710	1.20	-3.90
	A52E	1.090	1.629	5.163	1.249	1.50	-5.00
	A52I	-1.471	-1.736	-0.656	-1.901	-1.90	6.20
	A52L	-1.513	-1.790	-0.695	-1.972	-1.30	4.30
	A52V	-1.043	-1.259	-0.311	-1.547	-1.70	5.50
4LYZ	A31I	-2.37	-2.60	-2.17	-2.25	-1.4	3.6
	A31L	-2.42	-2.66	-2.21	-2.31	-1.8	4.7
	A31V	-1.95	-2.13	-1.83	-1.91	-1.2	3.1
2WSY	A18V	-0.76	-0.80	-0.75	-0.88	-0.8	5. 5.75

Stabilization effect of ALA to ILE, LEU or VAL could be explained

Destabilization Effect of Packing Decrease

Comparison of predicted and experimental $\Delta\Delta$ G_F of mutant variants

	Prediction (A A	(GF)			Experiments ($\Delta\Delta G_F$)
Mutant	Em86	Schl	Sch2	This work	∆∆G _f
I51A	1.58	1.67	1.30	1.95	4.71
I51V	0.77	0.73	0.66	1.23	1.80
I76A	1.57	1.65	1.32	2.19	1.89
176V	0.77	0.73	0.66	1.23	0.82
V10A	1.15	1.18	0.98	1.71	3.39

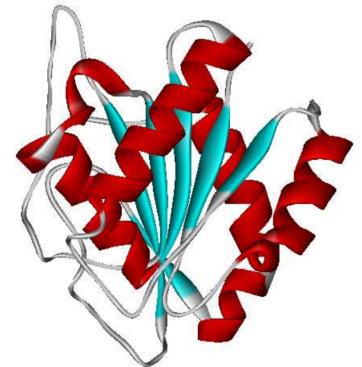
 $\Delta \mathbf{G}_{\mathrm{ST}} = \Delta \Delta \mathbf{G}_{\mathrm{F}} = \Delta \mathbf{G}_{\mathrm{F}} (mut.) - \Delta \mathbf{G}_{\mathrm{F}} (wt.) > 0$

Destabilization effect of ILE to ALA or VAL could be explained

Proposed Stabilized Strategy

Packing enhancement at well-buried state location for protein stabilization

 $\Delta G_{\rm F}(mut.)$


O Target residues

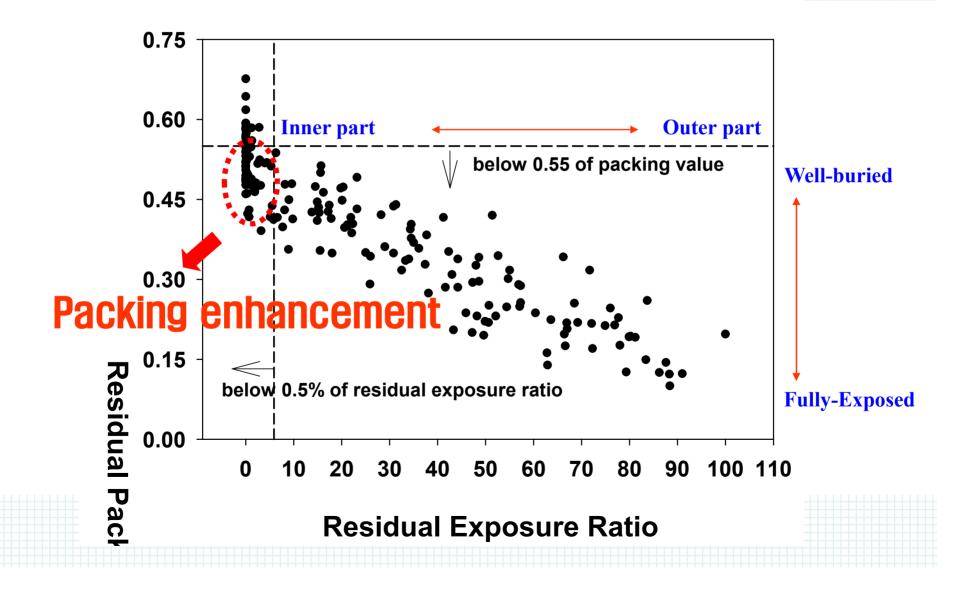
 $\Delta G_{\rm F}(wt.)$

: below 5% exposure ratio and below 0.55 packing value

Model Enzyme

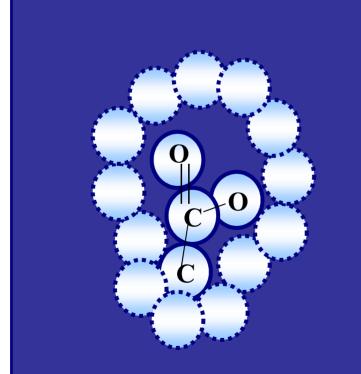
Lipase A from Bacillus subtilis

- Alkaline pH optima (10.0)
- Small size ... 179 a.a. , 19.3 kDa
- No lid
- Optimum Temp ... 35-40° C
- PDB code : 1i6w


Stabilization of Lipase A

O Rational + computational design of Lipase A

- The introduction of well-packed residues to inside of the protein could be considered as one of the stabilization strategies.
- How to design the inner packing of protein structure for protein thermostabilization?



Selection of Target Residues Based on Residual Packing Value and Exposure Ratio

Residues Which Need to Have More Packing

1st Criteria ... below 5% exposure ratio and below 0.55 packing value

43 residues were selected

PRO	5	VAL	74	THR	109
VAL	6	ALA	75	THR	126
VAL	7	HIS	76	SER	127
HIS	10	GLY	80	ILE	128
PHE	19	ASN	82	ASP	133
ILE	22	THR	83	SER	141
TRP	31	ILE	87	LEU	143
LEU	36	VAL	96	ALA	146
ALA	38	VAL	99	ILE	151
VAL	39	VAL	100	LEU	159
PHE	41	THR	101	LEU	160
VAL	62	LEU	102	ILE	169
ASP	72	GLY	103	GLY	172
ILE	73	ALA	105	LEU	173
				ASN	179

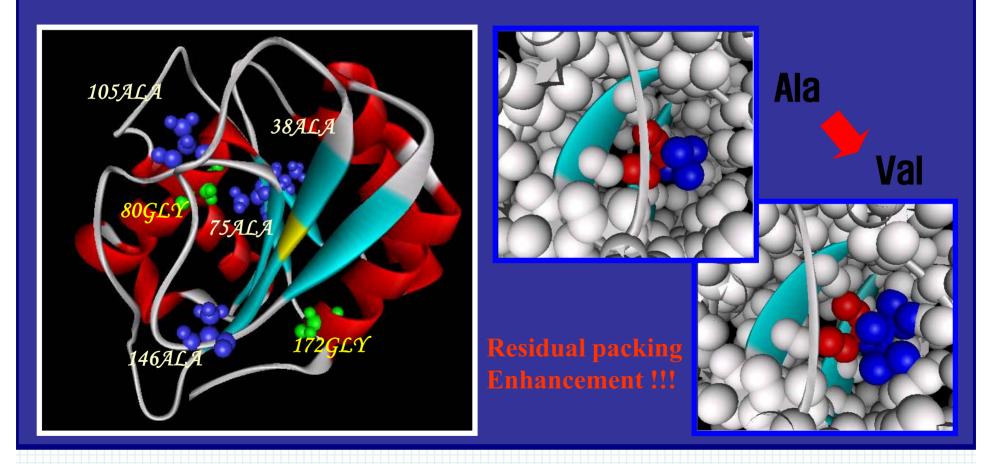
2nd criteria ... • Among 43 residues, GLY and ALA were considered .

(In terms of packing enhancement, small amino acid would be proper as target residues.)

• Gly to ALA, ALA to ILE, LEU or VAL

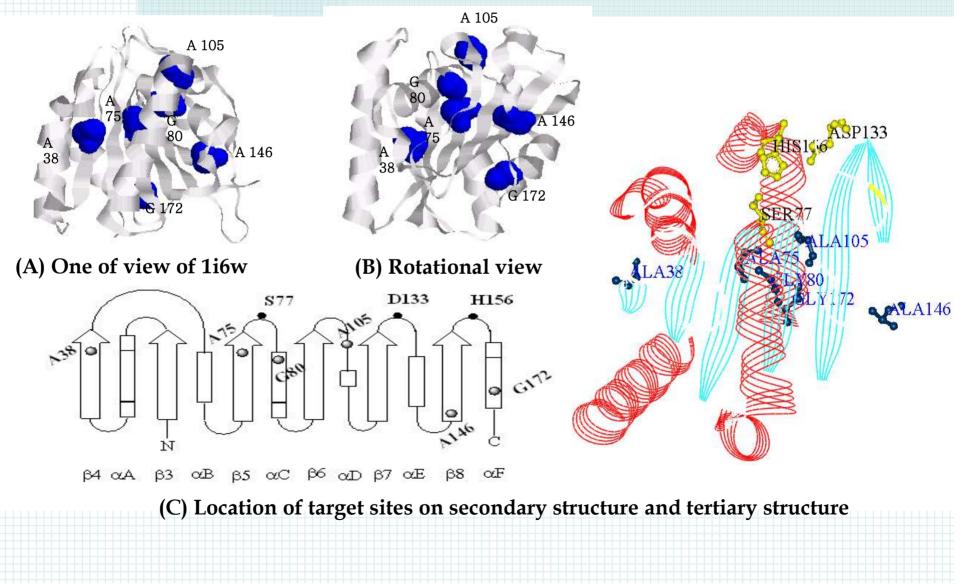
Amino acid Number Ratio Packing ALA 38 1.9 0.464 ALA 0 0.521 75 2.5 ALA 105 0.517 ALA |0|0.486 146

ALA to VAL


GLY

Amino acid	Number	Ratio	Packing
GLY	80	0	0.548
GLY	103	0.5	0.495
GLY	172	1	0.477

GLY to ALA


Selected Residues

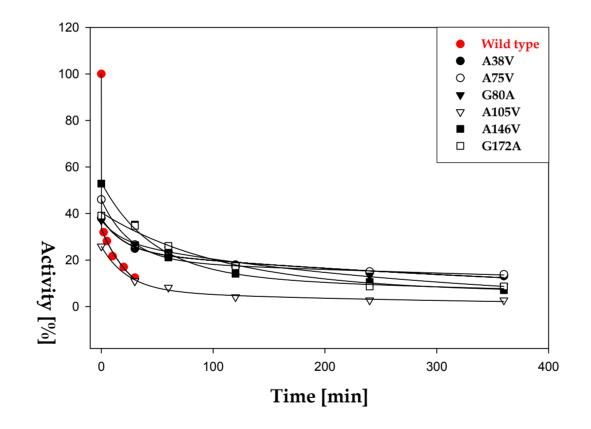
(Ex) 75 residue

Structural View of Mutational Target Sites in

B. subtilis Lipase A

Prediction of Packing Effect to Conformational Stability of Mutant Proteins

Mutant	$\Delta\Delta\Delta G_{f}$
A38V	-0.7433
A75V	-0.8076
A105V	-0.8869
A146V	-0.8736
G80A	-0.5368
G172A	-0.5553

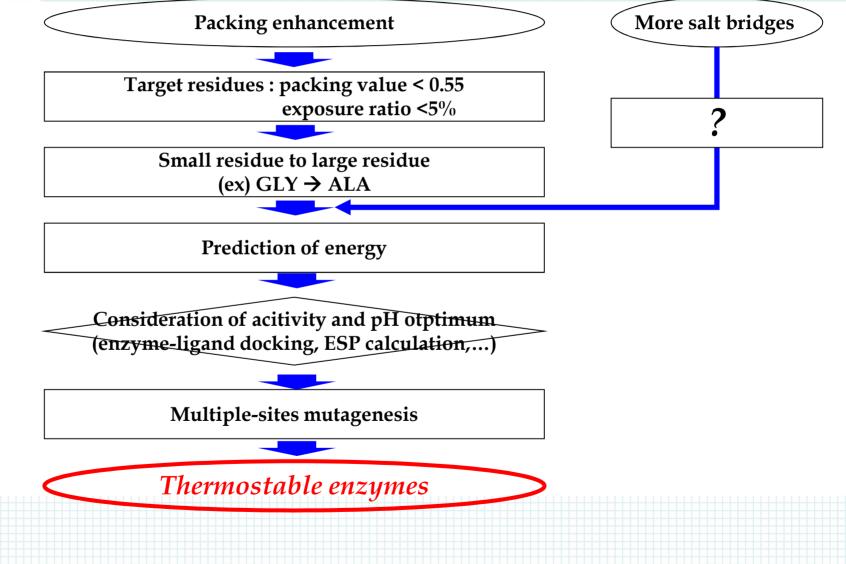

Through homology modeling and packing-considered investigation, 0.5 - 1.0 kcal/mol stabilization effect of packing was predicted.

The Kinetic Parameter, Specific Activity and

Thermostability (half-life (t1/2) in 50 °C , pH 5.5)

	Specific activity (U mg^{-1})	$t_{1/2}({\rm min})$
wild-type	3360.0	1.6
A38V	1178.0	107.5
A75V	195.5	47.5
G80A	985.8	113.8
A105V	857.4	26.5
A146V	950.0	48.5
G172A	863.4	102.5

Thermostability of Mutant at 50.0 ⁰C (pH 5.5)



The thermostability assay revealed that the **A38V** , **G80A** and **G172V** are promising among the mutants

Conformational Stability of Multiple-Site Mutants

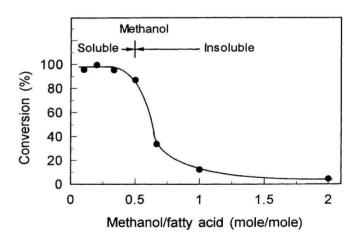
Single mutant	$\underline{\Delta\Delta\Delta}G_{f}$	Double mutant	$\Delta\Delta\Delta~G^{\rm f}$
A38V	-0.7433	A38V_A75V	-1.5509
A75V	-0.8076	A38V_A105V	-1.6302
A105V	-0.8869	A38V_A146V	-1.6169
A146V	-0.8736	A38V_G80A	-1.2873
G80A	-0.5368	A38V_G172A	-1.2986
G172A	-0.5553	A75V_A105V	-1.6945
		A75V_A146V	-1.6811
		A75V_G80A	-1.354
		A75V_G172A	-1.3629
		A105V_A146V	-1.7605
		A105V_G80A	-1.4229
		A105V_G172A	-1.4422
		A146V_G80A	-1.4104
		A146V_G172A	-1.4289
		G80A_G172A	-1.0921

Computational and Rational Design of Enzyme Thermostability

Critical Thinking

- 1. Think about the relationship between thermodynamic stability and kinetic stability
- 2. Search the difference between urea and guanidinium on enzyme unfolding

유기용매 안정성


메탄올과 같은 유기용매 하에서는 효소가 활성을 잃는다.

- Literature survey
 - The decrement of conversion rate by adding > ½ molar equivalent methanol

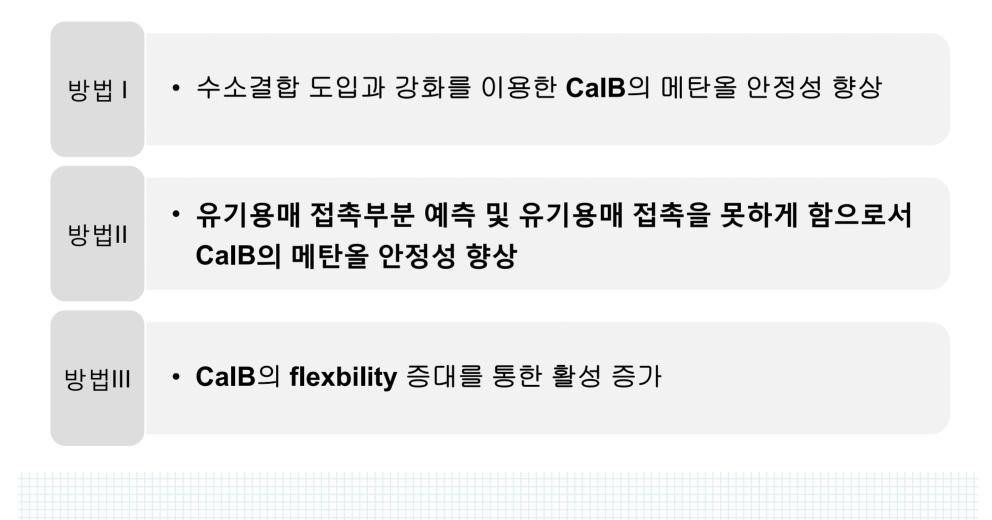
Yuji Shimada, Yomi Watanabe, Akio Sugihara, and Yoshio Tominaga, Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing, Journal of Molecular Catalysis B: Enzymatic 17 (2002) 133–142

- CalB deactivation by contact with methanol in hydrophobic oil
- No significant change of CalB structure in hydrophilic organic solvent like methanol

Peter Trodler and Jürgen Pleiss, Modeling structure and flexibility of *Candida antarctica* lipase B in organic solvents, BMC Structural Biology 2008, 8:9 doi:10.1186/1472-6807-8-9

Methanolysis of vegetable oil in various methanol/fatty acid molar ratio

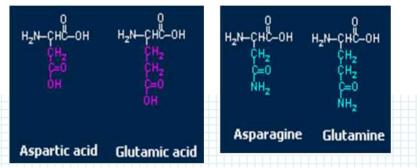
일반적인 효소개량 방법


- ▶ 유기용매 (solvent) engineering
- Directed evolution (random mutation)
- Rational approach

서울대의 효소개량 방법

Computational approaches : 분자 모델링에 기반
을 둔 이론적이고 논리적인 새로운 방법

Computational approaches for biocatalyst improvement : 3가지 방법 –세계최초의 독창적 방법



Strengthening of hydrogen bond network

방법 1. 수소결합 도입과 강화를 이용한 CalB의 메탄올 안정성 향상 연구

- Objective
 - Enhancing of methanol tolerance by introduction and strengthening of hydrogen bonding network between enzyme and water molecules in the hydration shell
- Methods
 - Selection of ASP and ASN at the loop to minimize 3D structure change of CalB
 - in silico mutations of ASP \rightarrow GLU, ASN \rightarrow GLN
 - Calculation of number and length of hydrogen bonding
 - Calculation of solvent accessible surface area of mutated sites
 - HBAT (Hydrogen Bond Analysis Tool)
 - Calculation of Aromatic-aromatic, Aromatic-sulphur interaction,

Ionic interaction, cation-pi interaction.

Strengthening of hydrogen bond network

WT, D223E, N97Q, N196Q, N206Q, N264Q, N292Q Ionic Interactions within 6 Angstroms

Ionic Interactions within 6 Angstroms

D265E

Ionic Interactions within 6 Angstroms

Position	Residue	Chain	Positior	n Residue	Chain		Position	Residue	Chain	Positior	n Residue	Chain
13	LYS	Α	17	ASP	Α	-	13	LYS	Α	17	ASP	Α
126	ASP	Α	127	ARG	Α		126	ASP	Α	127	ARG	Α
187	ASP	Α	224	HIS	Α		187	ASP	Α	224	HIS	Α
238	ARG	Α	257	ASP	Α		238	ARG	Α	257	ASP	Α
238	ARG	Α	265	ASP	Α		238	ARG	Α	265	GLU	Α
249	ARG	Α	252	ASP	Α		249	ARG	Α	252	ASP	Α
294	GLU	Α	308	LYS	Α		294	GLU	Α	308	LYS	Α
296	ASP	Α	302	ARG	Α	_	296	ASP	Α	302	ARG	Α

N96Q

13	LYS	Α	17	ASP	Α
126	ASP	Α	127	ARG	Α
187	ASP	Α	224	HIS	Α
238	ARG	Α	257	ASP	Α
238	ARG	Α	265	GLU	Α
249	ARG	Α	252	ASP	Α
294	GLU	Α	308	LYS	Α
296	ASP	Α	302	ARG	Α

D296E

Ionic Interactions within 6 Angstroms

Position	Residue	Chain	Position	Residue	Chain						
13	LYS	Α	17	ASP	Α	Position	n Residue	Chain	Position	Residue	Chain
98	LYS	Α	126	ASP	Α	13	LYS	Α	17	ASP	Α
126	ASP	Α	127	ARG	Α	126	ASP	Α	127	ARG	Α
187	ASP	Α	224	HIS	Α	187	ASP	Α	224	HIS	Α
238	ARG	Α	257	ASP	Α	238	ARG	Α	257	ASP	Α
238	ARG	Α	265	ASP	Α	238	ARG	Α	265	ASP	Α
249	ARG	Α	252	ASP	Α	249	ARG	Α	252	ASP	Α
294	GLU	Α	308	LYS	Α	294	GLU	Α	308	LYS	Α
296	GLU	Α	302	ARG	Α	296	GLU	Α	302	ARG	Α

Strengthening of hydrogen bond network

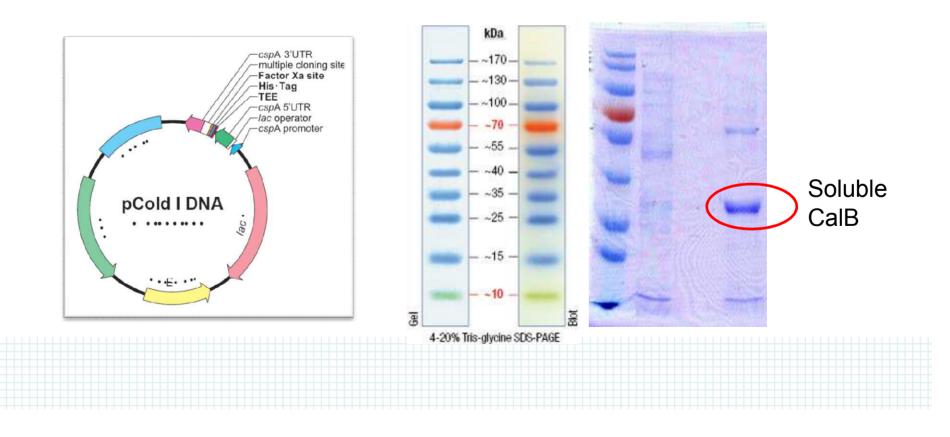
Wild type

D223E,N97Q,N206Q,N264Q,N292Q Cation-pi Interactions within 6 Angstroms

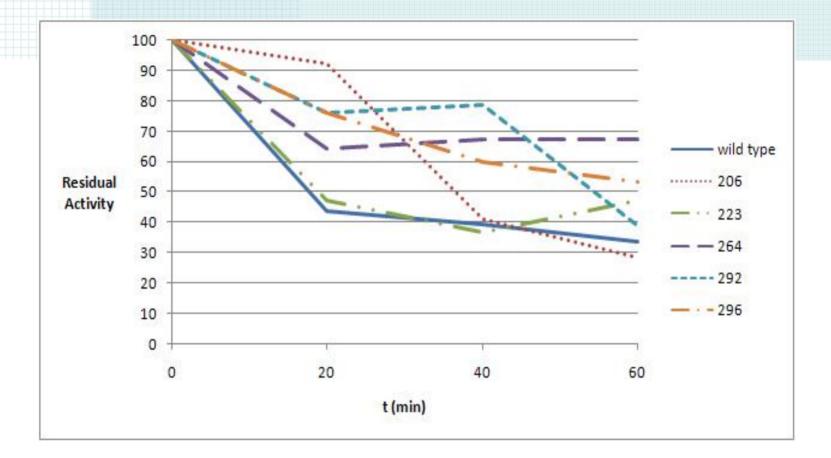
N196Q

Cation-pi Interactions within 6 Angstroms

Positior	n Residue	Chain	Position	Residue	Chain
61	TYR	Α	32	LYS	Α
91	TYR	Α	124	LYS	Α
234	TYR	Α	238	ARG	Α
253	TYR	Α	208	LYS	Α


Position	Residue	Chain	Position	Residue	Chain
61	TYR	Α	32	LYS	Α
91	TYR	Α	124	LYS	Α
234	TYR	Α	238	ARG	Α

- D223E,D265E,D296E,N97Q,N206Q,N264Q,N292Q showed same intra molecule interaction
- N96Q showed additional ionic interaction.
- N196Q showed missing cation-pi interaction. (deselect for *in vitro* mutation)
- Results
 - D223E, D265E, D296E, N96Q, N97Q, N206Q, N264Q, N292Q


In vitro Experiment

Protein screening system

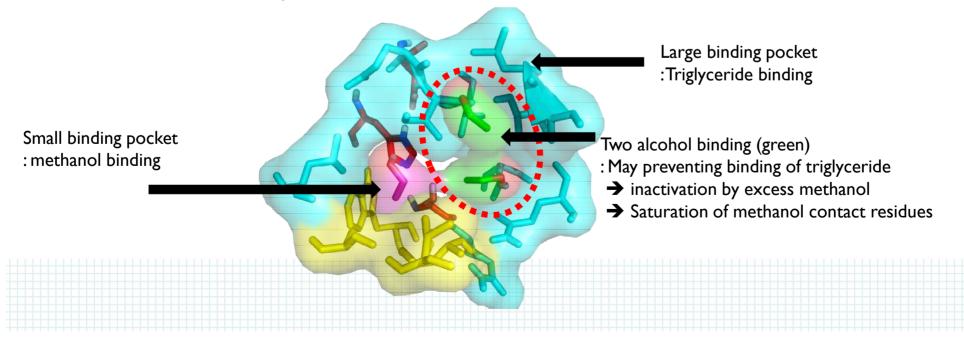
- Vector : pColdI
 - Cold shock promoter, N-terminal 6-His tag
- Cell : Origami 2(DE3)
- Expression condition : 15°C, 200rpm, 24hr

In vitro Experiment Results

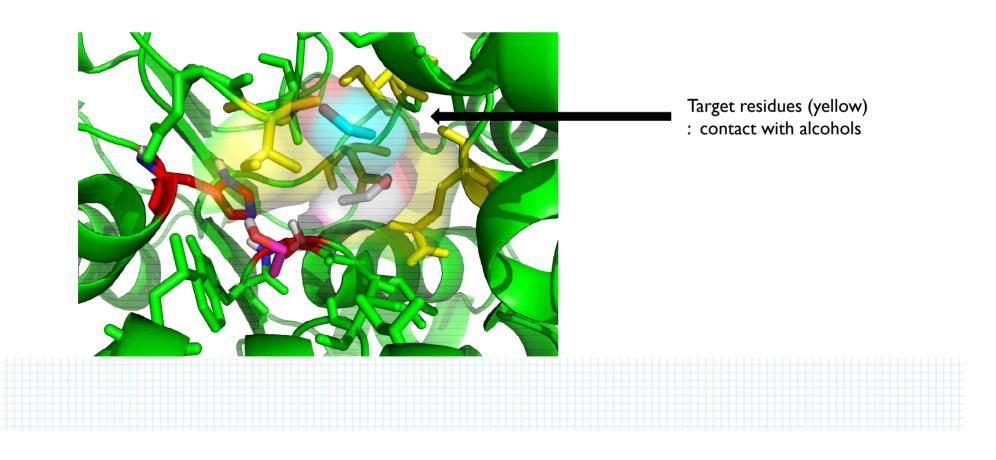
✤ <u>D223E, D296E, N264Q, N292Q</u> are more stable in methanol.

✤ Multiple site mutation 실험 예정.

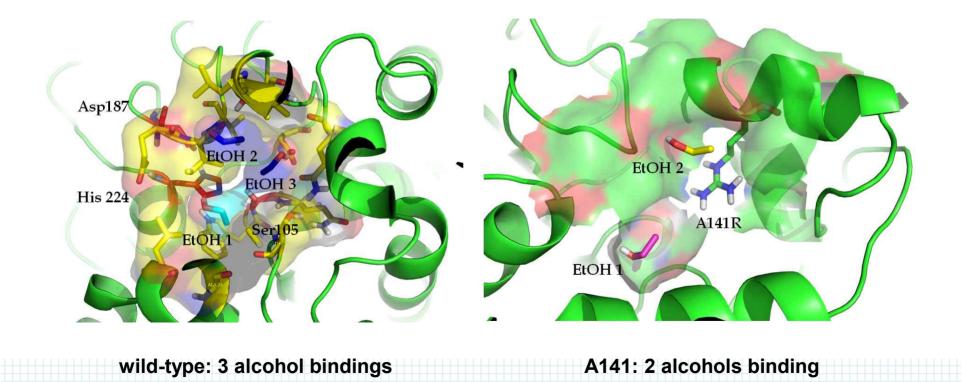
◆ 실제 FAME에 대한 실험 필요.


방법 2. 유기용매 접촉부분 예측 및 유기용매 접촉을 못하게 함으로서 CalB의 메탄올 안정성 향상 연구

- CalB has small and large binding pockets in active site
- Small pocket for methanol binding as substrates and large pocket for triglyceride binding
- Prevention of methanol binding to large binding pocket may reduce the inactivation by excess methanol(>1/2 molar equivalent methanol)
- Methods
 - Methanol binding site prediction by FT-map server (<u>http://ftmap.bu.edu/</u>)
 - Alcohol probe: Ethanol, isobutanol and isopropanol


Results

- Binding of three ethanols in active site
- One ethanol properly binds in small binding pocket (yellow) and two ethanols binds in large binding pocket (cyan).
- → Ethanol binding in large binding pocket can inhibit the binding of triglyceride, which may cause the inactivation of CalB at excess methanol in production of biodiesel.



Results

- Target residues: Interaction with two ethanols
- ► → Hydrophobic interactions:140Leu, 141Ala, 189lle, 190Val, 285lle
- ► → Hydrogen bonds: 134Glu, 138Thr, 157Gln

- Prediction of alcohol binding
- Strategy: EtOH1(catalytic alcohol), EtOH2, EtOH2(inhibition alcohol)
- ▶ Example: A141R mutants: Removal of EtOH3 binding → decreased inhibition

		D134	T138	L140	A141	Q157	l189	V190	1285
1	Ala	x	x	x	-	X	X	x	x
2	Cys	x	x	x	x	X	x	X	x
3	Asp	-	x	x	x	x	x	x	x
4	Glu	x	x	x	x	x	x	x	x
5	Phe	x	x	x	x	x	x	x	x
6	Gly	x	x	x	x	x	x	x	x
7	His	x	x	x	0	x	Ο	x	x
8	lle	x	x	x	x	0	-	x	-
9	Lys	x	Ο	x	0	0	x	x	x
10	Leu	x	x	-	x	x	x	x	x
11	Met	x	x	x	x	x	x	x	x
12	Asn	x	x	x	x	x	x	x	x
13	Pro	x	x	x	x	x	x	x	x
14	Gln	x	x	x	x	-	x	x	x
15	Arg	0	x	x	0	Ο	x	x	x
16	Ser	x	x	x	x	x	x	x	x
17	Thr	x	-	x	x	x	x	x	x
18	Val	x	x	x	x	x	x	-	x
19	Тгр	x	x	x	0	x	Ο	x	x
20	Tyr	x	x	x	x	x	0	x	x

O : inhibition을 줄이도록 예측된 mutants.

<u>Target mutants: D134R, T138K, A141H, A141K, A141R, A141W, Q157I, Q157K, Q157R, I189H, I189W, I189Y</u> 현재 in vitro mutation experiment 중

Flexibility control 방법 3. Spring model (서울대 제안 이론)을 통한 CalB의 flexbility 증대 연구

- Enhancement of CalB activity by modification of enzyme flexibility
- Mutations to hydrophilic residues to induce active enzyme motion in solvents
- Methods
 - Catalytic motion prediction of CalB by spring model

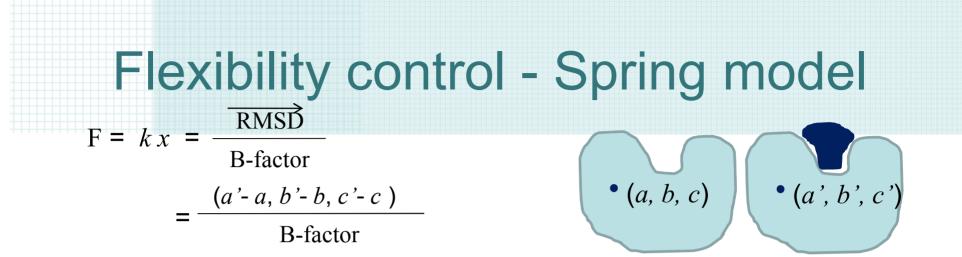
Flexibility control - Spring model

F = kx

 $k \propto$ (rigidity =1/flexibility)

```
= 1/ (B-factor)
```

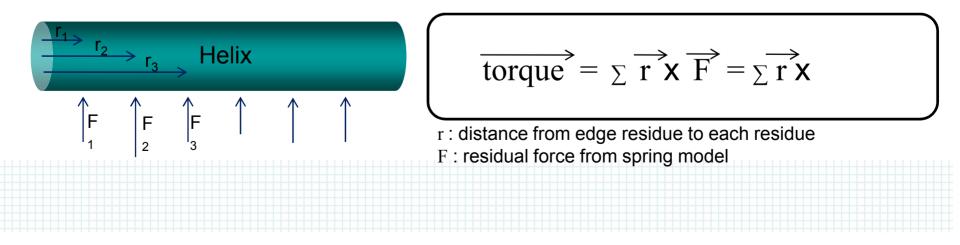
x = (deformation distance)


= (RMSD)

= (C_{α} atom of distance between apo form and substrate-bound form)

= (a' - a, b' - b, c' - c)

- This new model uses only data from x-ray crystallography and is simple to calculate flexibility.
- Using this model, each residual flexibility is expressed by residual force relatively.



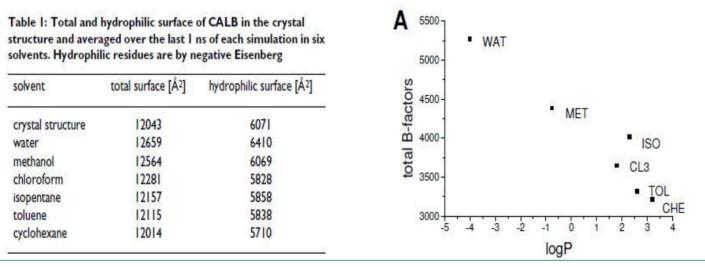
The pdb of free form and substrate bound form is superimposed using program DaliLite and RMSD is calculated.

Torque calculation at helix edges

The degree of distortion was obtained by summation of each residual force cross distance from helix edge to each residue

Flexibility control – Spring model

- RMSD was calculated using superimposition of 1TCA (pdb file of free form) and 1LBS (pdb file of substrate bound form).
- A287 has extraordinary high torque value. The circular permutation near A287 increased enzyme activity dramatically. In this case, activity of CalB was decreased. Qian, Z. & Lutz, S. (2007) ChemBioChem


Res.	Torque	Res.	Torque	Res.	Torque
#	value	#	value	#	value
13	0.3383899	106	1.7379546	207	0.512569
18	0.501267	117	0.564379	211	0.774318
20	0.2194913	119	0.2524794	212	0.3909227
22	0.090343	121	0.184276	216	0.34374
33	0.2779379	125	1.9418898	226	2.2019204
37	0.696462	131	1.32531	242	0.589852
44	1.2343368	139	0.5796522	250	0.1556807
57	0.19969	141	0.31437	252	0.166899
62	0.8462247	142	0.5903451	255	0.170104
66	0.462245	146	1.218033	257	0.134847
68	0.1538915	152	0.2610305	268	1.5984291
70	0.107256	156	0.654391	287	12.11521
76	3.9162477	162	1.1012568	302	0.2099593
93	1.807374	169	0.32644	304	0.176673
99	0.5582829	179	1.411592		
104	1.405437	183	0.279093		

- Spring model found the hot spot of *Candida antarctica* lipase B.
- A287 is not suitable site of mutation for the activity increase w/o stability loss.
- G93, V125, T76 were considered as important sites for the motion of catalysis. The helix edges far from these sites were selected as target sites.

Flexibility control – Hydrophilic residues

Objective

- The MD simulation of CalB showed the hydrophilic surface was decreased in organic solvents.
- As logP increased, total B-factor of CalB decreased. Trodler, P. & Pleiss, J. (2008) *BMC Structural Biology*

• The introduction of hydrophilic residues is needed for activity increase in organic solvents.

•Target sites from spring model were changed to hydrophilic residues. The change of volume of amino acid were minimized.

Flexibility control – Mutation

Result

> V139E, C216D and I255E showed increased activity.

	µg/ml	Unit/ml	specific activity (unit/mg)	% increase of activity	
Skp_CalB	44.994	0.471	10.469	100	Wild type
V139E	30.301	0.364	12.011	115	
C216D	4.774	0.058	12.240	117	
1255E	26.223	0.469	17.888	171	

◆ 활성이 좋은 3개의 변이주 <u>V139E,C216D,I255E</u> 를 얻음.
◆ 실제 FAME에 대한 실험 과 유기용매 안정성에 관한 실험 필요.