Enzyme Engineering

4. Enzyme Reaction Kinetics

4.1 Enzyme Reaction Kinetics & Reactor Design

4.2 Cofactor Regeneration

Enzyme Kinetics

It provides valuable information for enzyme mechanism

It gives an insight into the role of an enzyme under physiological conditions

It can help show how the enzyme activity is controlled and regulated

One Substrate Reactions

One substrate reactions

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

Equilibrium assumption

Second reaction is slower than first reverse reaction($k_{-1} >> k_2$)

$$V_0 = \frac{V_{\max}[S]}{K_s + [S]}$$
 Michaelis-Menten eqn

$$K_s = \frac{|E||S|}{[ES]}$$

$$V_{\max} = k_2 [E]_0$$

Parameter Estimation

Lineweaver-Burk equation

One Substrate Reactions

Significance of the result

1. k_{cat}/K_m is the substrate specificity

$$v_{S_i} = \left(\frac{k_{cat}}{K_m}\right)_{S_i} [E][S_i]$$

2. k_{cat}/K_m can be used for the applicability of equilibrium or steady state assumption

3. K_m is [S] where the rate is (1/2) V_{max}

- K_m may be the affinity of an enzyme to the substrate(not always)

Batch Kinetics

The time course of variation of [S] in a batch enzymatic reaction can be determined by integrating equation

$$v = \frac{-d[S]}{dt} = \frac{V_m[S]}{K_m + [S]}$$

integration

$$V_m t = [S_0] - [S] + K_m \ln \frac{[S_0]}{[S]}$$

Or,
$$V_m - \frac{[S_0] - [S]}{t} = \frac{K_m}{t} \ln \frac{[S_0]}{[S]}$$

A plot of 1/t([ln[S₀]/[S]) versus {[S₀]-[S]}/t results in a line of slope -1/K_m with a y-intercept of V_m/K_m

Inhibition

inhibition

inhibition

Inhibition of enzyme activity

Competitive inhibition

V_{tim} = V_{tim}

1/2 V.

1/2 VIII = 1/2 VI

- Binding into active site
- Non-competitive inhibition
- Binding outside active site

K K

K

Inhibition

Competitive inhibition

+Ι $\int_{K_I} K_I$ EI

Non-competitive inhibition

Substrate Inhibition

Substrate inhibition

High substrate concentrations may cause inhibition in some enzymatic reactions

Substrate Inhibition

Substrate inhibition

At low [S], $[S]^2/K_{S_1} <<1$, no inhibition

Effect of Temperature

Effect of temperature

Effect on enzyme structure

- -Denaturation(unfolding)
- -Structural change in active site

Effect on enzyme catalysis

- Catalytic rate generally increase with temperature

Effect of pH

Effect of pH

pH optimum and specific range of activity

Parameter Estimation

Bioreactor Design Eqn

4.2 Cofactor Regeneration

Biocatalysis cycle

Common cofactors required for biotransformation and their representative *in situ* regeneration methods

Cofactor	Enzyme	Reaction type	Representative regeneration method
NAD+/NADH	Oxidoreductase	Removal or addition hydrogen	Glutamate dehydrogenase with α-ketoglutarate/ Formate dehydrogenase with formate
NADP*/NADPH	Oxidoreductase	Removal or addition hydrogen	Glutamate dehydrogenase with α-ketoglutarate/ Glucose dehydrogenase with glucose
ATP	Kinease, synthase	Phosphorylation	Acetate kinase with acetyl phosphate
Sugar nucleotides	Kinease, synthase	Glycosyl transfer	Bacterial coupling
Acetyl CoA	Dehydrogenase, Transferase, Synthase	Acyl transfer (C2-alkylation)	Phosphotransacetylase with acyl phosphate
PAPS	Transferase	Sulfuryl transfer	Aryl sulfotransferase IV with p-nitrophenyl sulfate
SAM	Dehydrogenase, Transferase, Synthase	Methyl transfer (C1-alkylation)	No demonstrated method
Flavins ^[a]	Oxygenase, hydroxylase	Oxygenation	Self-regeneration
Pyridoxal phosphate	Transaminase	Transamination	Self-regeneration
Biotin	Carboxylase, Decarboxylase	Carboxylation	Self-regeneration
Metal porphyrin complexes ^[a]	Monooxygenase, Peroxidase, Mutase	Peroxydation, oxygenation	Self-regeneration

^[a]Many flavin- and metal porphyrin complexes dependent mono- or dioxygenases require additional NAD(P)H as an indirect reducing agent.

Biotransformations in Organic Chemistry, 2004 Current Opinion in Biotechnology, 2003,14(6), 583-589

Oxidoreductase

- Oxidoreductases are valuable enzymes which have potential in synthesizing many kinds of chemicals used in pharmaceutical applications, food additives, etc. (amino acids, chiral alcohols, ketones, steroids, etc.)
- Especially, enzymatic oxidation by oxidoreductase is attractive due to myriad of applications for the organic synthesis as well as analytical purpose including clinical diagnosis and fuel generation.

Structure of nicotinamide cofactors

X = H : NAD(H) $X = PO_3^{2-} : NADP(H)$

Necessity of cofactor regeneration

Table. Cost of nicotinamide cofactor.

	Cost (US dollar) / g	Cost (US dollar) /
	56	27 150
NAD	50	57,150
NADH	97	68,599
NADP ⁺	344	263,298
NADPH	1,080	900,018

http://www.sigmaaldrich.com (2009)

Strategies for cofactor regeneration

Method	Advantage	Disadvantage
Enzymatic method	High selectivityCompatibility	 High enzyme cost Enzyme instability Complexity of product isolation
Electrochemical method	 Low cost of electricity No stoichiometric regenerating reagent Easy product isolation Clean process 	 Complex apparatus and procedure Requirement in many systems for mediating redox agent
Chemical method	 Commercially available reagents No requirement for added enzyme 	 Incompatibility Complexity of product isolation Low product yield Low TTN
Photochemical method	 No stoichiometric regenerating reagent in some systems No requirement for added enzymes 	 Complex apparatus Incompatibility Limited stability Requirement for photosensitizer and redox dyes

Strategies for cofactor regeneration

Method	Advantage	Disadvantage
Enzymatic method	High selectivityCompatibility	 High enzyme cost Enzyme instability Complexity of product isolation
Electrochemical method	 Low cost of electricity No stoichiometric regenerating reagent Easy product isolation Clean process 	 Complex apparatus and procedure Requirement in many systems for mediating redox agent
Chemical method	 Commercially available reagents No requirement for added enzyme 	 Incompatibility Complexity of product isolation Low product yield Low TTN
Photochemical method	 No stoichiometric regenerating reagent in some systems No requirement for added enzymes 	 Complex apparatus Incompatibility Limited stability Requirement for photosensitizer and redox dyes

Electrochemical regeneration of NAD⁺

Direct oxidation of NADH

- •Cofactors to be regenerate itself on the electrode surface
- •Requires high overpotential
- •Lead to undesired side-reactions

Mediated oxidation of NADH

- Low overpotential
- •Redox mediators catalyzing the electron transfer
- •Used as soluble mediators as well as immobilized on the electrode surface

Indirect electroenzymatic oxidation of NADH

•Accelerate electron transfer kinetics from NAD(P)H to the oxidized mediator by enzymatic catalysis

Electroenzymatic synthesis

Enzyme (cofactor)	Mediator/enzyme	Substrate	Product	Electrode	E _{appl}	Remarks	Reference
Mediator-free system							
NAD ⁺ -glucose dehydrogenase		glucose	gluconate	Cylinder type of RVC	+0.8 V vs. SCE	TTN _{cof} >10 000 TOF _{cof} =225±7 h ⁻¹ Yield=99.99%	Bonnefoy et al., 1988
NAD ⁺ -lactate dehydrogenase	-	L-lactate	D-lactate	Carbon felt (anode) Mercury (cathode)	+0.5 V vs. SCE (anode) -1.75 V vs. SCE (cathode)	97 % conversion	Biade et al., 1992
NAD(P) ⁺ -glucose dehydrogenase	-	glucose	gluconate	Graphite felt	+0.7 V vs. Ag/AgCl	Maximum substrate consumption rate (r _s) r _s =32 µmol min ⁻¹ (w/o PEI) r.=59 µmol min ⁻¹ (w/ PEI)	Obón et al., 1997
NAD⁺-alanine dehydrogenase	-	L-alanine	D-alannine	Carbon felt (anode) Hg pool (cathode)	+0.5 V vs. SCE (anode) -1.350 V vs. SCE (cathode)	100% conversion (140 h)	Anne et al., 1999
NADP ⁺ -alcohol dehydrogenase	-	2-propanol	Acetone	Anodic tin oxide	-0.5 V vs. Ag/AgCl	91% conversion (51 h)	Kim et al., 2009
NAD ⁺ -alcohol dehydrogenase	-	(rac)-2-pentanol	(R)-2-pentanol	Anodic tin oxide	-0.5 V vs. Ag/AgCl	50% conversion (9 h) ee>99% Productivity = 0.03 g l ⁻¹ h ⁻¹ Max. productivity = 0.16 g l ⁻¹ h ⁻¹	Kim and Yoo, 209
Mediated system							
NAD*-alcohol dehydrogenase	Fe(tmphen) ₃ ²⁺	2-hexen-1-ol	2-hexenal	Graphite felt	+0.63 V vs. Ag/AgCl	C_{prod} =1.77 mM (60 min) TTN _{cof} =18 ¹ TTN _{med} =36 Current efficiency=90%	Komoschinsk and Steckhan, 1988
NADP ⁺ -alcohol dehydrogenase	Fe(tmphen) ₃ ²⁺	2-butanol	2-butanone	Graphite felt	+0.63 V vs. Ag/AgCl	C _{prod} =4.1 mM (150 min) TTN _{cof} =41 TTN _{med} =82 Current efficiency=95%	Komoschinsk and Steckhan, 1988
NAD ⁺ -alcohol dehydrogenase	Tris(1,10-phenanthroline- 5,6-dione) ruthenium (II) perchlorate	cyclohexanol	cyclohexanone	Carbon foil	+0.1 V vs. Ag/AgCl	TOF=35 h ⁻¹ (aerobic, 60 min) TOF=28 h ⁻¹ (anaerobic)	Hilt and Steckhan, 1993
NAD ⁺ -alcohol dehydrogenase	[Co(tren)(phendi)](BF ₄) ₂	cyclohexanol	cyclohexanone	Carbon foil	+0.1 V vs. Ag/AgCl	TOF=81 h ⁻¹ (aerobic, 60 min)	Hilt and Steckhan, 1993
NAD ⁺ -alcohol dehydrogenase	ABTS ²⁻	meso-3,4- dihydroxymethylcyclo hex-1-ene	(3a <i>R</i> ,7a <i>S</i>)-3a4,7,a- tetrahydro 3H- isobenzofurane-1-one	Carbon felt	+0.585 V vs. Ag/AgCl	ee>99.5% 93.5 % conversion (46.5 h) Productivity=3.24 g l ⁻¹ d ⁻¹ TTN _{med} =30.4	Schröder et al., 2003
NAD ⁺ -glycerol dehydrogenase	ABTS ²⁻	1-phenyl-1,2- ethanediol	(S)- 1-phenyl-1,2- ethanediol	Carbon felt	+0.585 V vs. Ag/AgCl	-	Degenring et al., 2004
Electroenzymatic system							
NADP ⁺ -isocitrate dehydrogenase	CAV/AMAPOR	(rac)-isocitrate	(2S, 3S)-isocitrate	graphite	-0.2 V vs. SCE	Productivity number=13 000 mmol kg ⁻¹ h ⁻¹ (3.8 h) ee>99 %	Schulz et al., 1995
NADP+-isocitrate dehydrogenase	AQ-S/AMAPOR	(rac)-isocitrate	(2S, 3S)-isocitrate	graphite	-0.2 V vs. SCE	Productivity number=14 000 mmol kg ⁻¹ h ⁻¹ (3.6 h) ee>99 %	Schulz et al., 1995
NADP ⁺ -6-phosphogluconate dehydrogenase	CAV /AMAPOR	6-phosphogluconate	ribose 5-phosphate	graphite	-0.2 V vs. SCE	80% conversion (2.3 h) (crude extract AMAPOR) 98% conversion (2.5 h) (partially enriched AMAPOR)	Schulz et al., 1995

Current problems of electrochemical regeneration system

- Enzymes can be easily deactivated on the electrode surface.
- The overall reaction is often limited by the cofactor regenerate rate which is usually much slower than the enzymatic reaction rate.
- Used materials for mediator are often toxic to enzyme causing enzyme deactivation.
- The stability of the mediator is affecting the performance and stability of the process.

Enzyme and Microbial Technology, 2009, 44(3), 129-134

Figure. FE-SEM image of tin oxide

Cyclic voltammogram of metal oxide

(d)

(h)

-17

п'2

(f)

Q.,

-Se--

24.3

≲ o

(m)

(e)

2x 10 1x 10³ Š -1x 104 -2x 10 -3x 10¹ -oz

E /V us Ag/AgC

Figure. Cyclic voltammogram of metal oxide/carbon black electrode without (----) and with cofactor (- -): (a) Fe_2O_3 (carbon black, ---), (b) ZnO, (c) Cu_2O , (d) NiO, (e) Mn_3O_4 , (f) Cr₂O₃, (g) Co₃O₄, (h)MoO₃, (i)RuO₂, (j)IrO₂, (k)V₂O₅, and (l)TiO₂. (m)SnO₂Conditions: scan range = $+0.5 \sim -1.0$ V vs Ag/AgCl, scan rate = 50 mV sec⁻¹, C_{NADH} = 1 mM, T = 25°C, V = 5 mL, 100 mM potassium phosphate buffer, pH 7.5.

oz. 0.4

-0.4 -0.2 0.0

E /V ur Agragel

-02 -0.6

Comparison of NAD⁺ and NADP⁺ regeneration according to metal oxide electrode

			NAD ⁺ regeneration			NADP ⁺ regeneration			
Metal oxide	Applied potential [V vs. Ag/AgCl]	Reaction rate ^[a] [µM min ⁻¹]	Current efficiency [%]	Relative activity ^[b] [%]	Reaction rate ^[a] [µM min ⁻¹]	Current efficiency [%]	Relative activity ^[c] [%]		
IrO ₂	-0.15	5.7	54	99.29±1.14	10.6	54	109.93±0.69		
Mn ₃ O ₄	-0.05	3.6	66	96.93±3.94	3.7	64	100.54±1.10		
Fe_2O_3	+0.05	3.1	>99	98.80±0.14	1.3	>99	97.45±7.03		
ZnO	+0.30	5.6	81	95.39±2.16	9.2	74	96.88±2.98		
Cr_2O_3	+0.30	7.1	84	99.28±4.18	7.8	77	100.46±0.66		
SnO ₂	+0.30	3.6	71	97.24±1.58	4.6	85	96.72±4.46		
Cu ₂ O	+0.43	6.3	42	102.23±3.10	7.5	27	97.40±1.09		

^[a] initial reaction rate (R²>0.995)

^[b] relative activity of regenerated cofactor to NAD⁺-dependent glutamate dehydrogenase ^[c] relative activity of regenerated cofactor to NADP⁺-dependent alcohol dehydrogenase

Mechanism of NADH oxidation

Electroenzymatic oxidation of (*rac*)-2-pentanol

Figure. (a) Kinetic resolution of low concentration of (*rac*)-2-pentanol by electroenzymatic oxidation: •, 2-pentanone; \bigcirc , (*R*)-2-pentanol; \blacktriangledown , (*S*)-2-pentanol. (b) Conversion and enantiomeric excess of electroenzymatic kinetic resolution: •, enantiomeric excess; \blacktriangledown , conversion. *Reaction conditions*: 100 mM potassium phosphate buffer, pH 8.2, T=50°C, V=15 mL, applied potential: -0.5 V vs Ag/AgCl, electrode surface area=4 cm², C_{TADH}=2 U mL⁻¹, C_{NAD}⁺=0.5 mM, C_{(*rac*)-2-pentanol}=7.3 mM.}

Electroenzymatic deamination of L-glutamate

Figure. Continuous synthesis of α -ketoglutarate using electrochemical bioreactor. Conditions: 100mM CHES buffer (pH 9.0), C_{gluDH} = 3.87 U ml⁻¹, C_{PEG-NAD+} = 0.33 mM, C_{MSG} = 5 mM, flow rate = 1 ml min⁻¹, T = 60°C.

Molecular

material

recognizing

 Measuring NADH is very important because NAD(P)⁺ is used as a cofactor for about 250 NAD⁺-dependent and 150 NADP⁺-dependent dehydrogenases.

Signal

transducer

Electrical

signal

• It can be applied to analytical detection, fermentation, clinical practices, food industry, and dairy industry.

Analyte	Enzyme	Electrode	Electrode modified material or mediator	E _{appl}	LOD (S/N=3) [µM]	Linear range [µM]	Sensitivity	Reference
Mediated system								
Ethanol	Alcohol dehydrogenase	Pt	Phenazine methosulphate (PMS ⁺)	+0.314 V vs.	0.3	-500	810nA mol-1	Malinauskas and
D,L-lactate	Lactate dehydrogenase			Ayrayol	-	-1500	14nA mol ⁻¹	Kulys, 1977
L-glutamate	Glutamate dehydrogenase				-	-100000	50 nA mol ⁻¹	
Ethanol	Alcohol dehydrogenase	Carbon paste	Meldola blue adsorbed on silica gel modified with niobium oxide (SNMB)	+0.00 V vs.	8	100-10000	2.3 µA cm-2 mM ⁻¹	Santos et al., 2003
Lactate	Lactate dehydrogenase			UUL	6.5	100-14000	2.4 µA cm ⁻² mM ⁻¹	Pereia et al.,
Ethanol	Alcohol dehydrogenase	Carbon	Meldola blue adsorbed on multiwall carbon	+0.00 V vs.	5	50-10000	4.75 µA cm ⁻² mM ⁻	Santos et al.,
		nanotube paste	nanotube (MWCT-MB)	SCE			1	2006
L-lactate	Lactate dehydrogenase	GC	Meldola blue (MB)	+0.25 V vs.	1.5	-	1.47 µM mM ⁻¹	Lin et al., 2007
Ethanol	Alcohol dehydrogenase	GC	Methylene green (MG)	+0.05 V vs.	12	20-350	-	Dai et al., 2008
				SCE		100 10000		
Lactate	Lactate dehydrogenase	graphite	Meldola blue coimmobilized on multi-wall carbon nanotube (MB-MWCNT)	+0.00 V vs. SCE	-	100-10000	3.46 µA cm⁻² mM⁻ ¹	Pereira et al., 2007
Mediator-free system								
Lactate	Lactate dehydrogenase	GC	Poly(aniline)-poly(acrylate) film	+0.05 V vs.	-	-	-	Halliwell et al.,
Ethanol	Alcohol dehydrogenase	Composite	Poly(aniline)-poly(vinyl sulfonate) film	SCE	47	0.01-1.00	_	2002 Manso et al
	Alcohor denydrogenase	electrode	MWCNT-Teflon)	Ag/AgCl	4.7	0.01-1.00	-	2007
Glucose	Glucose dehydrogenase	ITO	Thionine bridged carbon nanotubes and gold	+0.2 V vs.	5.0	10-2560	7.8 µA mM ⁻¹ (w/o	Deng et al., 2008
			nanoparticles multilayer (MWNTs/thionine/AuNPs)	Ag/AgCl	0.7	1-3250	light) 18.5 µA mM ⁻¹ (w/	
					0.7	1 0200	light)	
Ethanol	Alcohol dehydrogenase	ITO	Gold nanoparticles loaded poly(3,4-	+0.04 V vs.	-	-	97 mA M ⁻¹ cm ⁻²	Manesh et al.,
			ethylenedioxythiophene)-poly(styrene sulfonic acid)	SCE				2008
Ethanol	Alcohol dehvdrogenase	ITO	Au nanoparticle	Potential step -	-	_	-	Shlvahovsky et
				0.2 V-0.1 V vs.				al., 2005
Ethanol		<u> </u>	Poly(viny) clockel) multivalled carbon panetuke	SCE		- 1500	106 nA mM-1	Tagi at al 2007
Ethanoi	Alcohol denydrogenase	GC	(PVA-MWCNT)	Aq/AqCl	-	~1500	190 HA HIM	1 Sal et al., 2007
Lactate	Lactate dehydrogenase	Au	Gold nanoparticle (AuNP)	-0.065 V vs.	0.1	0-800	0.446 nA nM ⁻¹	Jena and Raj,
Ethanol	Alcohol dehydrogenase	GC	Soluble carbon panofiber	Ag/AgCl +0.06 V vs	3.0	10-435		2007 Wulet al 2007
	Alcohor denydrogenase	00		SCE	5.0	10-400	-	Wu et al., 2007
Glucose	Glucose dehydrogenase	GC	Carbon nanotube-chitosan film (CNT-CHIT)	+0.3 V vs.	3	5-300	80 mA M ⁻¹ cm ⁻²	Zhang et al.,
Formaldehvde	Formaldehvde dehvdrogenase	Carbon cloth	-	+0.1 V vs. SCE	2	20-250	-	2004 Campbell and
				0	_	20 200		Roshpon, 2000
Sorbitol	Sorbitol dehydrogenase	F. 0. (0D			2	6.5-200	-	
Ethanol	Alconol denydrogenase	Fe ₂ O ₃ /CB	-	+0.00 V Vs. Aa/AaCl	-	0-1500	0.06 µA mm ⁻¹	Kim et al., 2009
Ethanol	Alcohol dehydrogenase	GC	Titanium containing MCM-41 (Ti-MCM 41)	+0.28 V vs.	10	25-1000	-	Dai et al., 2007
Chucoso		<u> </u>	Highly ordered measurements arrhon (MOCa)	SCE		500 15000	0.052 pA uM-1	Zhou et al 2009
Glucose	Glucose denydrogenase	GC	Fighty ordered mesoporous carbon (MOCS)	Aa/AaCl	-	500-15000	0.055 HA µM	21100 et al., 2006
Ethanol	Alcohol dehydrogenase	Au	Self-assembled monolayers (SAMs) of thiocytosine	+0.00 V-+0.70	-	-	3.435±0.04 µA	Raj and Behera,
			(Au-TC)	V vs. Ag/AgCl			cm ⁻² mM ⁻¹	2005
			sell-assembled monolayers (SAMs) of mercaptopyrimidine (Au-MPM)		+++++		3.24 ± 0.03 μA cm ⁻² mM ⁻¹	
			Self-assembled monolayers (SAMs) of 4-amino-2-	+0.00 V-+0.8 V			1.307±0.04 µA	Behera and Raj.
			mercaptopyrimidine (Au-AMP)	vs. Ag/AgCl			cm ⁻² mM ⁻¹	2007

NADH biosensor

Figure. (a), (b) Amperometric response of the carbon black-iron oxide electrode with different NADH concentration at 0.00V.

Figure. Calibration curve for NADH oxidation at (a)carbon blackiron oxide electrode, (b) glassy carbon, and (c) carbon black at 0.00V.

- ✓ Linear range 10µM-1000µM (R²=0.993)
- ✓ Limit of detection (LOD) 10μ M (S/N=3)
- ✓ Sensitivity 2.54 µA mM⁻¹
- ✓ Km=3.04mM

Ethanol biosensor

Figure. Calibration curve for ethanol at carbon black-iron oxide electrode at 0.00V ($C_{ADH}=2mg/5ml$, $C_{NAD}=10mM$).

Enzyme fuel cell

Fuel	Anode	Cathode	Open circuit voltage [V]	Current density [µA cm ⁻²]	Power density [µW cm²]	Reference
Glucose (80 mM)/O ₂	D-glucose dehydrogenase (NAD ⁺) Meldola Blue (MB ⁺) modified graphite disc (A=16 cm ²) 0.25 M phosphate buffer (pH 7.0)	Pt gauze 0.37 M phosphate buffer (pH 7.0)	+0.8	200	-	Persson et al., 1985
Methanol (100 mM)/O ₂	Alcohol dehydrogenase/ aldehyde dehydrogenase/formate dehydrogenase (NAD ⁺) Benzyl Viologen (BV ²⁺)/diaphorase Graphite plate (A=2 cm ²) 1 M LiCl in 0.1 M tris buffer (pH 7.5)	Pt gauze (3 cm²) 1 M LiCl in 0.1 M tris buffer (pH 7.5)	+0.8	-	680 (at 490 mV)	Palmore et al., 1998
Lactate (20 mM)/O ₂	Lactate dehydrogenase (NAD ⁺) Integrated LDH/NAD ⁺ /PQQ immobilized on gold (A=0.2 cm ²) 0.01 M CaCl ₂ in 0.1 M Tris buffer (pH 7.0)	Cytochrome c/cytochrome oxidase linked to the gold (A=0.2 cm^2)	-	-	4.1 (w/o magnetic field) 12.4 (w/ magnetic field)	Katz et al., 2005
Glucose (40 mM) /O ₂ Ethanol (60 mM)/O ₂	Glucose dehydrogenase (NADP ⁺) Alcohol dehydrogenase (NAD ⁺) GDH/NADP ⁺ /Nile Blue/SWCNTs on glassy carbon (ϕ =3 mm) 0.1 M phosphate buffer (pH 7.0)	Bilirubin oxidase BOD/SWCNTs on glassy carbon (φ=3 mm) 0.1 M phosphate buffer (pH 7.0)	-	-	23 (glucose/O ₂) 48 (EtOH/O ₂)	Yan et al., 2007
Ethanol (1 mM) /O ₂ Methanol (1 mM)/O ₂	Alcohol dehydrogenase (NAD ⁺) Aldehyde dehydrogenase (NAD ⁺) Formaldehyde dehydrogenase (NAD ⁺) Formate dehydrogenase (NAD ⁺) Poly(methylene green) modified carbon felt (A=1 cm ²) Phosphate buffer (pH 7.15)	ELAT (gas diffusion electrode, 1 mg cm ⁻² Pt loading) Phosphate buffer (pH 7.15)	0.60-0.62 (ADH; EtOH) 0.82 (ADH/AIDH; EtOH) 0.71 (ADH/FaIDH/FDH; MeOH)	-	1160 (ADH; EtOH) 2040 (ADH/AIDH; EtOH) 1550 (ADH/FaIDH/FDH; MeOH)	Akers et al., 2005
Ethanol (1 mM) /O ₂	Alcohol dehydrogenase (NAD ⁺) Aldehyde dehydrogenase (NAD ⁺) Poly(methylene green) modified glassy carbon (φ=3 mm)	Bilirubin oxidase BOD/Ru(bpy) ₃ ²⁺ Carbon fiber paper (A=1 cm ²)	0.68±0.1 (Nafion [®]) 0.51±0.11 (membraneless)	-	830 ± 160 (Nafion®) 390 ± 60 (membraneless)	Topcagic and Minteer, 2006
Lactate (20 mM)/H ₂ O ₂	Lactate dehydrogenase (NAD ⁺) LDH/PQQ immobilized on gold (φ=2 mm) 20 mM CaCl ₂ in 0.1 M Tris buffer (pH 7.0)	Microperoxidase ABTs/MP-11 immobilized on gold (φ=2 mm) 20 mM CaCl ₂ in 0.1 M Tris buffer (pH 7.0)	-	-	142	Lee et al., 2008
+++++++++++++++++++++++++++++++++++++++						