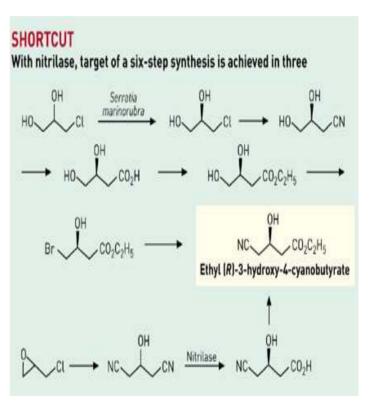
Enzyme Engineering

5. Immobilized Enzymes


Why Enzyme?

Selectivity and specificity

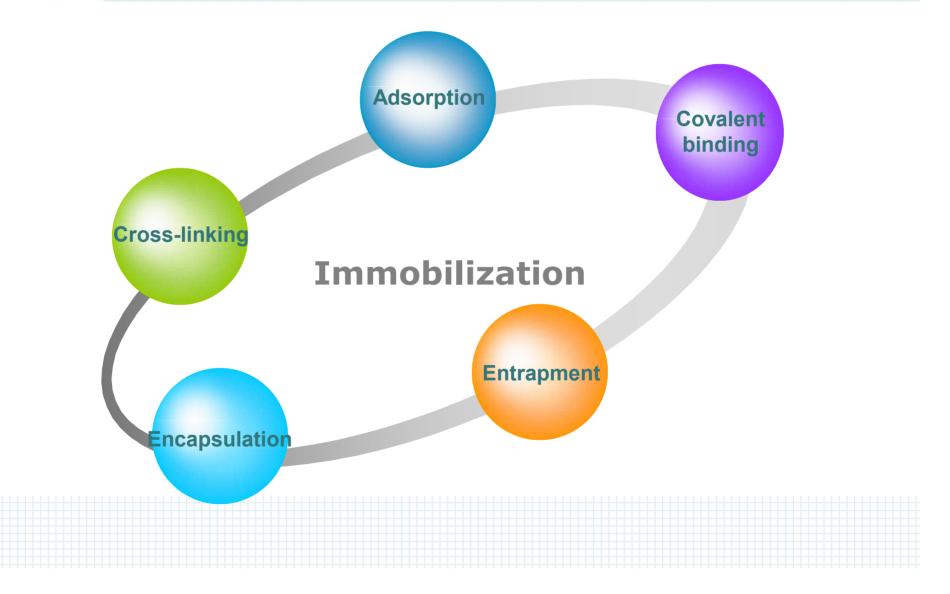
Reaction under mild conditions

Environmental aspects

Shortcut steps

Why immobilized enzymes?

Definition : Immobilization means that the biocatalysts are limited in moving due to chemically or physically treatment


Reasons

- Reuse of enzyme(reducing cost)
- Easy product separation
- Continuous processing
- Stabilization by immobilization

Limitations

- -Cost of carriers and immobilization
- -Changes in properties(selectivity)
- -Mass transfer limitations
- -Activity loss during immobilization

Conventional Immobilization Methods

Enzyme Immobilization ; Adsorption

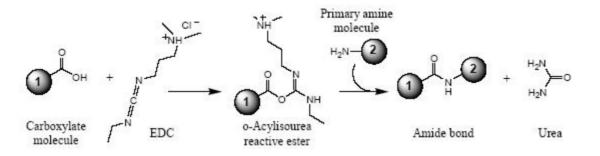
- DEAE-cellulose, activated carbon, etc.
- reversible electrostatic surface interaction
 - -Van der Waals, Hydrogen interaction

Advantage	 Little damage to enzyme Simple / cheap / quick No chemical change to support / enzyme Reversible to allow regeneration
Disadvantage	 Leakage of enzyme Non-specific binding Over-loading on the support

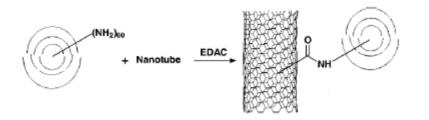
Enzyme Immobilization ; Covalent binding

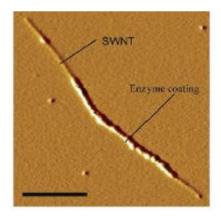
• Formation of covalent bond between enzyme and support

-NH₂ of lysine or arginine
 -COOH of aspartic acid or glutamic acid
 -OH of serine or threonine
 -SH of cystein


 Hydrophilicity is the most important factor for maintaining enzyme activity in a support environment.

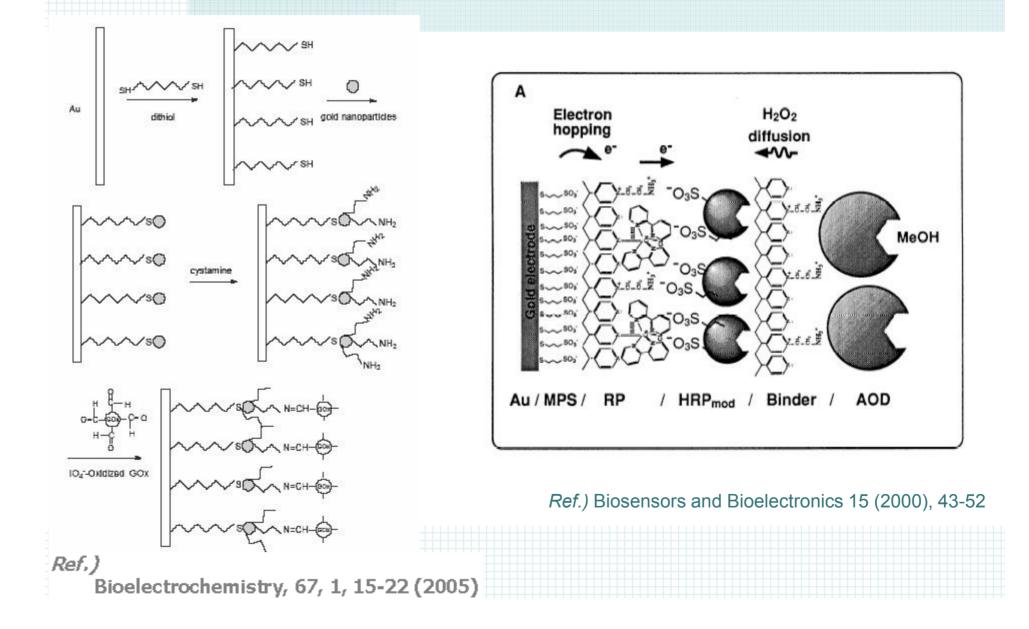
 \rightarrow polysaccharide polymers (-OH)



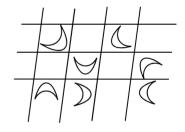

Enzyme Immobilization ; Covalent binding

EDC (1-Ethyl-3-(3dimythylaminopropyl)) activation

Nanotube – protein conjugate



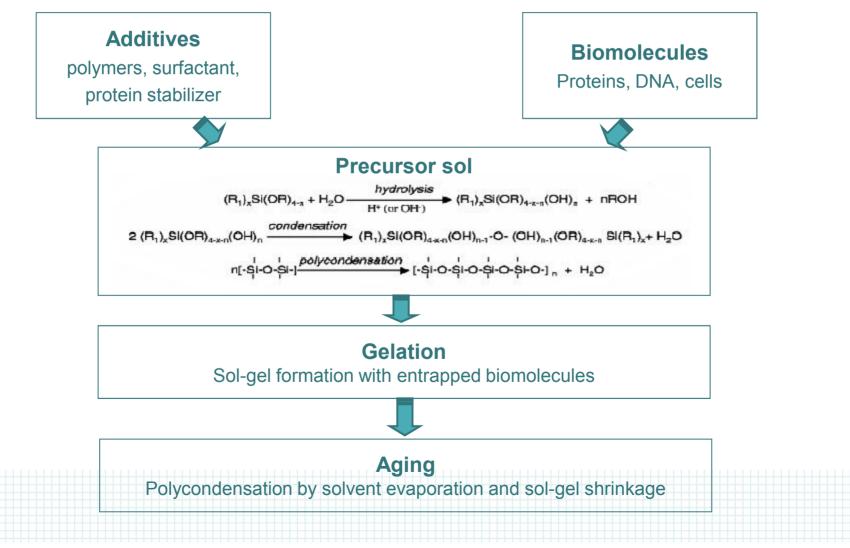
Ref.) JACS, 124 (2002) 12664 - 12665


Ref.) http://piercenet.com/files/0475as4.pdf

Enzyme Immobilization ; Covalent binding

Enzyme Immobilization ; Entrapment

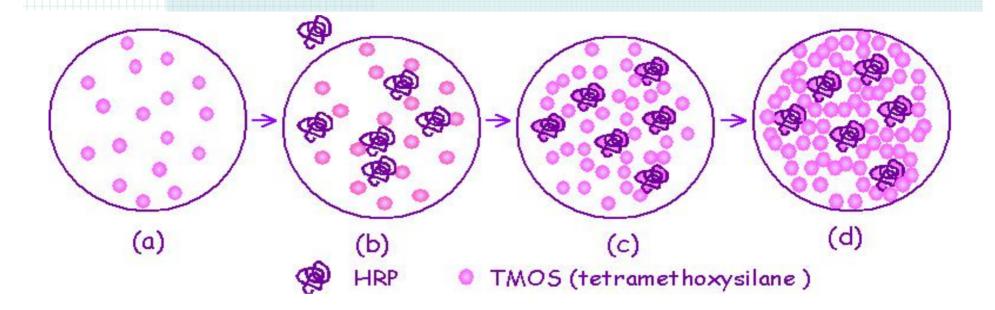
Entrapped enzymes into lattice by polymer structure
 synthetic polymer ; polyacrylamide, polyvinyl alcohol
 natural polymer ; *k*-carageenan, Ca-alginate


• Restricted in movement by lattice structure of gel

 The porosity of gel lattice is tight enough to prevent leakage of enzyme, yet the same time allow free movement of substrate and product.

(Ex) Sol-gel Immobilization Method

One of entrapment method that stabilizes the enzyme by silica structure



Sol-gel Immobilization Method

- Colloidal suspension of silica particles that is gelled to form a solid
- Prevent the enzymes to leak out and easily mass transfer because of porous structure.
- Advantages
 - ; Entrapped enzymes with beneficial microenvironments
 - High enzyme activity
 - Easy mass transfer because of the porous structure
 - Optically transparent silicate materials

Ideal for the development of chemical / biochemical sensors

Sol-gel Immobilization Process

(a) precursor solution (TMOS, TEOS), sol phase

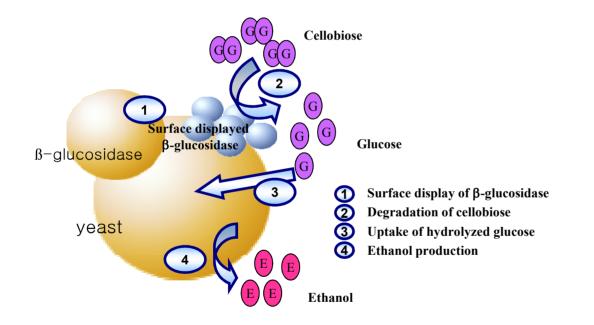
- (b) addition of proteins solution
- (c) networking
- (d) immobilized proteins in porous silica gel

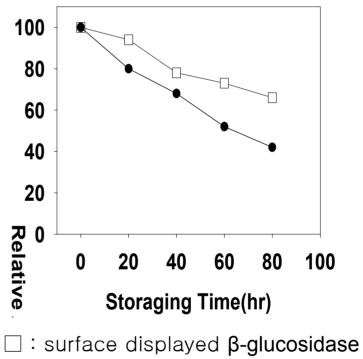
Enzyme Immobilization ; Encapsulation

• Enveloping the enzymes within various form of semi-permeable membranes such as nylon and cellulose nitrate

• Microcapsules varying from 10-100µm in diameter

 Large enzymes cannot pass out or into the capsule, but small substrates and products can pass freely across the semi-permeable membrane.




Enzyme Immobilization ; Cross-linking

- Covalent bond formation between enzymes by means of a bi- or multifunctional reagent
- Glutaraldehyde, toluene diisocyanate
- Form a large, three-dimensional complex structure
- Toxicity of reagent or limiting factor.
- Multiple- binding of enzymes

Surface Display

• : β -glucosidase

(Ex) Application to Protein-Chip


- Ag Ab reaction
- Protein protein interaction / Protein DNA interaction
- Analysis of protein function
- Proteomics
- Medical diagnosis / drug discovery

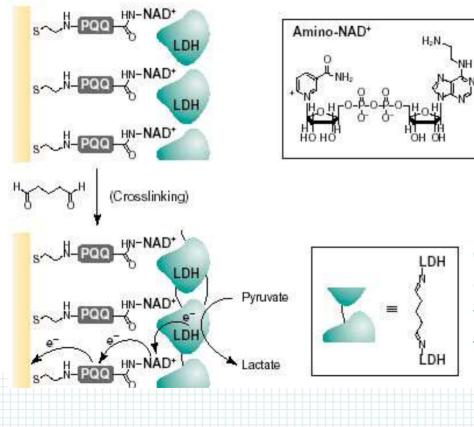
Immobilization type	Adsorption / Absorption	Covalent crosslinking	Affinity attachment
Advantage	 Generally simple No manipulation of the protein sample The possibility of controlling the density and environment of the immobilized species 	 Identical orientation by site specific immobilization Direct immobilization by high affinity Easy protein purification and array fabrication Reproducibility and 	
Diagdycataca	 Some protein denature and inactive Unstable binding Non- specific random and multi-oriented protein immobilization: activity decreased Irreproducibility of results 	on- • Non-specific random orientation: activity decreased	stability of protein layer • The possibility of controlling the density and environment of the immobilized species
Disadvantage			 Difficult application in multi-subunit proteins The possibility of elusion of some protein

Immobilization of Coenzyme ; Entrapment in Membrane Module

- NAD⁺ immobilized to macromolecular carriers like polyethylene glycol
- The coenzyme is continuously available for the enzyme activity
- Some biosensors based on the co-entrapment of NAD(P)+-dependent dehydrogenase and NAD+-dextran of PEG-NAD+ have been reported.

[Schematic representation of the PEG-NAD= regeneration system. (FDH, formate dehydrotenase; SHL, salicylate hydroxylase)]

Immobilization of Coenzyme ; Entrapment in Membrane Module

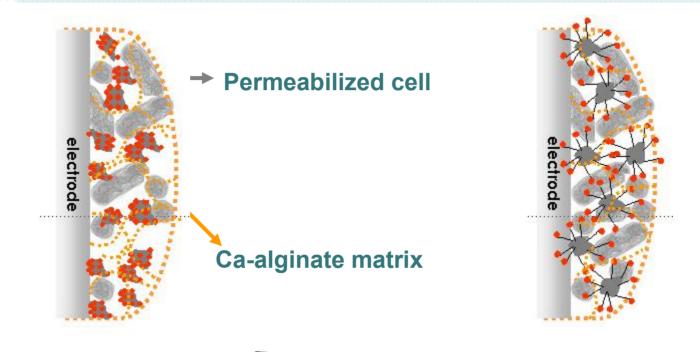

- Recent developments demonstrate the use of nanofiltration membranes for coenzyme retention in continuous enzyme synthesis.
- In this method, a native coenzyme could be used instead of a chemically modified coenzyme.

Parameter	Ultrafiltration membrane	Nanofiltration membrane
Trimethylpyruvateª (feed)	500 mм	500 mм
NAD+ Residence time Mean conversion Yield Total turnover number	0.2 mм 4 h 93% 366 g ⊢¹ d−¹ 2325	0.2 mм 4 h 95% 373 g −1 d−1 7920

[Comparison of the production of L-tert-leucine in continuous working enzyme membrane reactors either equipped with an ultrafiltration or a nanofiltration membrane]

Immobilization of Coenzyme ; Entrapment in Membrane Module

• The N⁶-(2-aminomethyl) –functionalized NAD+, was covalently linked to a pyrroloquinoline quinone monolayer associated with a gold electrode.

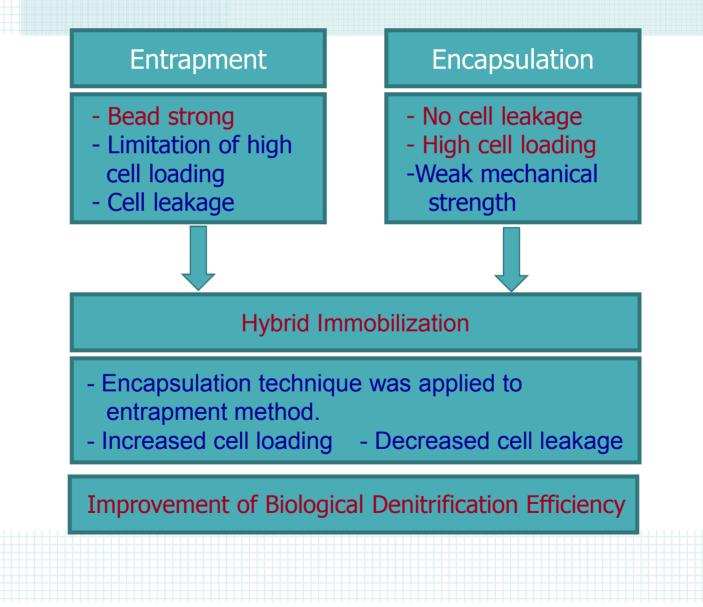


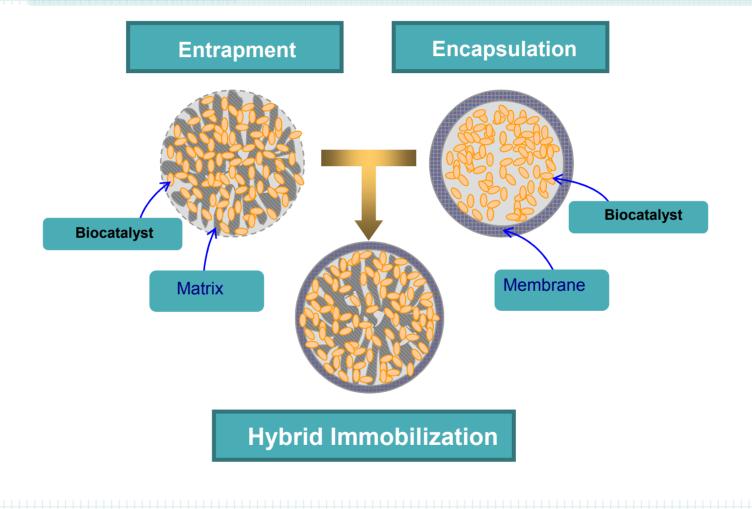
* The enzyme-electrode stimulates the biocatalytic oxidation of lactate and act as an amperometric biosensor for lactate.

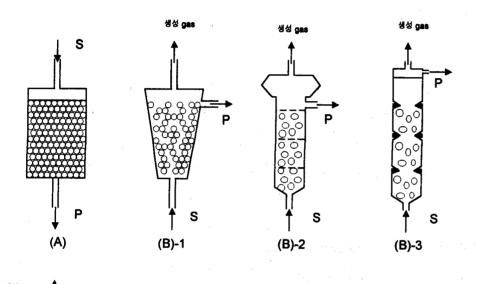
[The assembly of an integrated lactate dehydrogenase monolayer-electrode by the crosslinking of an affinity complex formed between the enzyme and a PQQ_NAD+ monolayerfunctionalized gold electrode.]

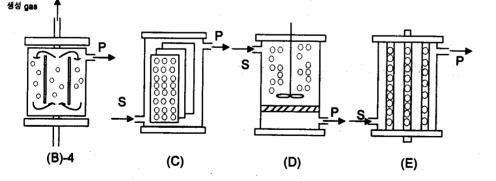
PQQ : Pyrroquinolinequinone

(Ex) Immobilization of Whole Cells




Carbon nanopowder-Neutral red **4** Carbon nanopowder-linker-Neutral red


(Ex) Hybrid Immobilization



Hybrid Immobilization

Reactors for Immobilized Enzymes

- (A) Packed-bed reactor
- (B) Suspended reactor
- (C) Panel type reactor
- (D) Filter type reactor
- (E) Membrane reactor

Characteristics of Bioreactors

Immobilized Bioreactor

Reactor	Characteristics
Batch	Separation is required Small amounts of fine chemicals
CSTR	Ease of control, operation Shear effect Substrate inhibition – favorable
Packed-bed	Most widely used reactor type Conversion – length of the reactor Product inhibition – favorable
Fluidized-bed	Packed-bed< < CSTR Hinimal pressure drop Ease of control – pll, temp. Oxygen supply, gas removal - better
Hollow-fiber	Economy of immobilization Lack of proper control of cell loading

Engineering Considerations

Biocatalysts : Engineering Consideration

- 1. Critical fluid velocity
 - shear rate
 - tensile strength (CO₂)
- 2. External and internal mass transfer
- 3. Operational stability (half-life)
- 4. Compression behavior, pressure drop

Considerations for commercialization

- Immobilization yield (Ex: Eupergit)
- Long-term stability
- Cost
- Contamination by microorganisms
- Impurity treatment in raw materials

(ex) Production of high fructose corn syrup

