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Elementary Row Operations.
Row-Equivalent (-5 X])._System

Clearly, the interchange of two equations does not alter the solution set. Neither does that addition
because we can undo it by a corresponding subtraction. Similarly for that multiplication, which we
can undo by multiplying the new equation by 1/c (since c#0), producing the original equation.

We now call a linear system S, row-equivalent to a linear system S, if S; can be obtained from S, by
(finitely many!) row operations. Thus we have proved the following result, which also justifies the
Gauss elimination.

Because of this theorem, systems having the same solution sets are often called equivalent systems.
But note well that we are dealing with row operations.

No column operations on the augmented matrix are permitted in this context because they would

enerally alter the solution set.
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Gauss Elimination
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Gauss Elimination and Back Substitution

This is a standard elimination method for solving linear systems that
proceeds systematically irrespective of particular features of the
coefficients.

If a system is in “triangular form” we can solve it by “back substitution”.

|

Triangular Matrices

4 2112 0 O
3 2|,|-8 -1 0
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2008 M atrices_(‘Zﬁ)'
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_ 1) 4 o)
Xp+ 2%+ X3= 1 1 2 17 x] [1
L 2¥3%, - Xg=-3 2 3 —1jx | |3
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Gauss Elimination and Back Substitution

4 ) - Y
X+ 2%+ X3= 1 > 1 2 10 x] [1
X2 +3X3 — 5 > O 1 3 X2 =
— 0 0 17 34
K 17X3 — 34} K_ __X3_ _ _/

We can solve this by “Back substitution”, that
IS, solve the last equation for the variable, and
then work backward, substituting the value of
the variable into the above equation and solve
it for another variable.
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Gauss Elimination and Back Substitution
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2008_Matrices(2)

- oo
1 2 1]x 1
0 1 3|x,|=
0 0 17| x, 34
N T

We can solve this by “Back substitution”, that
IS, solve the last equation for the variable, and
then work backward, substituting the value of
the variable into the above equation and solve
it for another variable.



Gauss Elimination and Back Substitution

/'x1+2xz+x3: i\:>
X, +3X3=95 >
N 17x3= 34,
34
Xo=—=2
17

X, +3X; =X, +3:2=5

X, =-1

2008_Matrices(2)

- oo
1 2 1]x 1
0 1 3|x,|=
0 0 17| x, 34
N T

We can solve this by “Back substitution”, that
IS, solve the last equation for the variable, and
then work backward, substituting the value of
the variable into the above equation and solve
it for another variable.
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/'x1+2xz+x3: i\:>
X, +3X3=95 >
N 17x3= 34,
34
Xo=—=2
17

X, +3X; =X, +3-2=9

X, =-1

- oo
1 2 1]x 1
0 1 3|x,|=
0 0 17| x, 34
N T

We can solve this by “Back substitution”, that
IS, solve the last equation for the variable, and
then work backward, substituting the value of
the variable into the above equation and solve
it for another variable.

X, +2X, + X, =X%+2-(-1)+2=1
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Gauss Elimination and Back Substitution

4 o) - Y
X+ 2%+ X3= 1 > 1 2 10 x] [1
XZ +3X3 — 5 > O 1 3 X2 -
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K 17X3 34} K_ | | L _/
34 H 13 1 H »
X, = — 2 We can solve this by “Back substitution”, that
3 17 IS, solve the last equation for the variable, and
then work backward, substituting the value of
the variable into the above equation and solve
_ o it for another variable.
. X2 — _1

X, +2X, + X, =X%+2-(-1)+2=1
X =1
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Gauss Elimination and Back Substitution

/'x1+2xz+x3: i\:>
X, +3X3=95
N 17x3:34y> X,
34
Xo=—=2
17

X, +3X; =X, +3-2=9

X, =-1

- oo
1 2 1]x 1
0 1 3|x,|=
0 0 17| x, 34
N T

We can solve this by “Back substitution”, that
IS, solve the last equation for the variable, and
then work backward, substituting the value of
the variable into the above equation and solve
it for another variable.

X, +2X, + X, =X%+2-(-1)+2=1

X =1
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Gauss Elimination and Back Substitution

4 _ o) - Y
X+ 2%+ X3= 1 > 1 2 10 x] [1
- 0 0 17(x,| |34
K 17X3 34} X3 K_ | . — L _/
34 — —
X, = — 2 We can solve this by “Back substitution”, that
3 17 IS, solve the last equation for the variable, and
then work backward, substituting the value of
the variable into the above equation and solve
_ o it for another variable.
. X2 — _1

X, +2X, + X, =X%+2-(-1)+2=1
X =1
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Gauss Elimination and Back Substitution

/'X1+2XZ+X3::f\:>X1
X, +3X3=95 X,
N 17x3:34y> X,
34
Xo=—=2
17

X, +3X; =X, +3-2=9

X, =-1

- oo
1 2 1]x 1
0 1 3|x,|=
0 0 17| x, 34
N T

We can solve this by “Back substitution”, that
IS, solve the last equation for the variable, and
then work backward, substituting the value of
the variable into the above equation and solve
it for another variable.

X, +2X, + X, =X%+2-(-1)+2=1

X =1
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Gauss Elimination and Back Substitution

Since a linear system is completely determined by its augmented matrix, Gauss elimination can be
done by merely considering the matrices.
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Gauss Elimination and Back Substitution

Since a linear system is completely determined by its augmented matrix, Gauss elimination can be
done by merely considering the matrices.

a _ =)
1 2 1]|x 1
3 -1 -1]x, 2
2 3 1| x -3
\_ _ _

2008_Matrices()
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augmented matrix

-

12
3 -1
2 3

1
_15
_1§

~




Gauss Elimination and Back Substitution

Since a linear system is completely determined by its augmented matrix, Gauss elimination can be
done by merely considering the matrices.

a _ =)
1 2 1]|x 1
3 -1 -1]x, 2
2 3 1| x -3
\_ _ _

2008_Matrices()

—

augmented matrix

-

12
3 -1
2 3

1
_15
_1§

~




Gauss Elimination and Back Substitution

Since a linear system is completely determined by its augmented matrix, Gauss elimination can be
done by merely considering the matrices.
augmented matrix

. R - —
1 2 17 x] [1 1 2 11
3 -1 -1|x,|=| 2 > | |3 -1 -1} 2
2 3 -1|x,| |-3 2 3 -1 -3

\_ - - 7 N R/

- ) n )
1 2 17 x] [1 12 1141
0 1 3|x,|= > 01 35
0 0 17| x| |34 0 0 17 |34

\_ - N /




Row-echelon form

2008_Matrices(2)
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Gauss Elimination :
The Three Possible Cases of Systems

case 1: Gauss Elimination if Infinitely Many Solutions EXxist

three equations < four unknowns
30 20 20 -50;80]
06 15 15 -54:27

12 -03 -03 24 ;21
3

3.0x, +2.0x, +2.0%;, —5.0x, =8.0
0.6x, +1.5X, +1.5X, —5.4x, = 2.7
1.2x, —0.3x, +0.3x, +2.4x, =2.1

- Row2-0.2*Row1l @

Row3-0.4*Row1
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Gauss Elimination :

The Three Possible Cases of Systems

case 1: Gauss Elimination if Infinitely Many Solutions EXxist

three equations < four unknowns

06 15 15 -54:27

g
30 20 20 -5080]
0 11 11 -4411
0 -11 -11 44 '-11

\

2008_Matrices(2)

30 20 20 -5080]

12 -03 -03 24 ;21

3.0x, +2.0x, +2.0%;, —5.0x, =8.0
0.6x, +1.5X, +1.5X, —5.4x, = 2.7
1.2x, —0.3x, +0.3x, +2.4x, =2.1

%
3.0x, +2.0x, +2.0x, —5.0x, =8.0
1.1x, +1.1x,—4.4x, =1.1
-1.1x, -1.1x,+4.4x, =-1.1

U

Row2-0.2*Row1l

Row3-0.4*Row1



Gauss Elimination :

The Three Possible Cases of Systems

case 1: Gauss Elimination if Infinitely Many Solutions EXxist

three equations < four unknowns

30 20 20 -5080]
06 15 15 -54:27
12 -03 -03 24 121
] . ]
30 20 20 -5080]
0 11 11 -44' 11

0 -11 -11 44 -11

g

2008_Matrices(2)

3.0x, +2.0x, +2.0%;, —5.0x, =8.0
0.6x, +1.5X, +1.5X, —5.4x, = 2.7
1.2x, —0.3x, +0.3x, +2.4x, =2.1

%
3.0x, +2.0x, +2.0x, —5.0x, =8.0
1.1x, +1.1x,—4.4x, =1.1
-1.1x, -1.1x,+4.4x, =-1.1

Row2-0.2*Row1l

Row3-0.4*Row1

Row3+Row?2 @



Gauss Elimination :

The Three Possible Cases of Systems

case 1: Gauss Elimination if Infinitely Many Solutions Exist

three equations < four unknowns

06 15 15 -54:27

iy}
30 20 20 -5080]
0 11 11 -4411
0 -11 -11 44 '-11

\

30 20 20 -50:80]
0 11 11 -44'11
0 0 0 0 0

2008 M atricesLZ) |

30 20 20 -5080]

12 -03 -03 24 ;21

3.0x, +2.0x, +2.0%;, —5.0x, =8.0
0.6x, +1.5X, +1.5X, —5.4x, = 2.7
1.2x, —0.3x, +0.3x, +2.4x, =2.1

%
3.0x, +2.0x, +2.0x, —5.0x, =8.0
1.1x, +1.1x,—4.4x, =1.1
-1.1x, -1.1x,+4.4x, =-1.1

Row2-0.2*Row1l

Row3-0.4*Row1

Row3+Row?2 @

3.0x, +2.0x, +2.0x, —5.0x, =8.0
1.1x, +1.1x, —4.4x, =1.1
0=0



Gauss Elimination :
The Three Possible Cases of Systems

case 1: Gauss Elimination if Infinitely Many Solutions EXxist

30 20 20 -50;80 3.0, +2.0x, +2.0x, —5.0x, =8.0
0 11 11 -44:11 1.1x, +1.1x, - 4.4x, =1.1
0 0 0 0 !0 0=0
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Gauss Elimination :
The Three Possible Cases of Systems

case 1: Gauss Elimination if Infinitely Many Solutions EXxist

30 20 20 -50;80 3.0, +2.0x, +2.0x, —5.0x, =8.0
0 11 11 -44:11 1.1x, +1.1x, - 4.4x, =1.1
0 0 0 0 !0 0=0

Back substitution.

2008_Matrice_s(2_) A




Gauss Elimination :
The Three Possible Cases of Systems

case 1: Gauss Elimination if Infinitely Many Solutions EXxist

30 20 20 -50;80 3.0, +2.0x, +2.0x, —5.0x, =8.0
0 11 11 -44:11 1.1x, +1.1x, - 4.4x, =1.1
0 0 0 0 !0 0=0

Back substitution.
From the second equation : X, =1—X, +4Xx,
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Gauss Elimination :
The Three Possible Cases of Systems

case 1: Gauss Elimination if Infinitely Many Solutions EXxist

30 20 20 -50;80 3.0, +2.0x, +2.0x, —5.0x, =8.0
0 11 11 -44:11 1.1x, +1.1x, - 4.4x, =1.1
0 0 0 0 !0 0=0

Back substitution.
From the second equation : X, =1—X, +4X,
From the first equation : x, =1-X,
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Gauss Elimination :
The Three Possible Cases of Systems

case 1: Gauss Elimination if Infinitely Many Solutions EXxist

30 20 20 -50;80 3.0, +2.0x, +2.0x, —5.0x, =8.0
0 11 11 -44:11 1.1x, +1.1x, - 4.4x, =1.1
0 0 0 0 !0 0=0

Back substitution.
From the second equation : X, =1—X, +4X,
From the first equation : x, =1-X,

Since x5 and x, remain arbitrary, we have infinitely
many solutions.

2008_Matrices(2_)




Gauss Elimination :
The Three Possible Cases of Systems

case 1: Gauss Elimination if Infinitely Many Solutions EXxist

30 20 20 -50;80 3.0, +2.0x, +2.0x, —5.0x, =8.0
0 11 11 -44:11 1.1x, +1.1x, - 4.4x, =1.1
0 0 0 0 !0 0=0

Back substitution.
From the second equation : X, =1—X, +4X,
From the first equation : x, =1-X,

Since x5 and x, remain arbitrary, we have infinitely
many solutions.

If we choose a value of x; and a value of x,, then the corresponding values of x,
and x, are uniquely determined.

2008_Matrices(2_)




Gauss Elimination :
The Three Possible Cases of Systems

case 2 : Gauss Elimination if no Solution Exists

3 2 1.3 (3X, +2X, + X, =3

2 1 10 12X+ X, + X, =0

6 2 4:6 6%, +2X, +4X, =6
& O

Row2-2/3*Row1

Row3-2*Row1
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Gauss Elimination :
The Three Possible Cases of Systems

case 2 : Gauss Elimination if no Solution Exists

3 2 1.3 (3X, +2X, + X, =3

2 110 12X+ X, + X, =0

6 2 4:6 6%, +2X, +4X, =6

o O

3 2 1 3] (3%, + 2X,+ X, =3
: Row2-2/3*Row1

0 -1/3 1/3}-2 ¢ —1/3x,+1/3x,=-2
@ Row3-2*Row1

0 -2 20| - 2X,+ 4x,;=0

U U

Row3-6*Row3
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Gauss Elimination :
The Three Possible Cases of Systems

case 2 : Gauss Elimination if no Solution Exists

3 2 1.3 (3X, +2X, + X, =3
2 110 12X+ X, + X, =0
6 2 4:6 6%, +2X, +4X, =6
& &
3 2 1 3] (3%, + 2X,+ X, =3
: Row2-2/3*Row1
0 -1/3 1/3! -2 I —1/3x%,+1/3x, =2
@ Row3-2*Row1
0 -2 20| - 2X,+ 4x,;=0
& b
3 2 13 (3X, + 2X,+ X, =3

Row3-6*Row3

-

0 —1/3 1/3 -2 1/3x, +1/3%, =2

0 0 0 12 \ 0=12




Gauss Elimination :
The Three Possible Cases of Systems

case 2 : Gauss Elimination if no Solution Exists

3 2 1.3 (3X, +2X, + X, =3
2 110 12X+ X, + X, =0
6 2 4:6] |6X, +2X, +4%; =6
b U
3 2 1 3] (3%, + 2X,+ X, =3
: Row2-2/3*Row1
0 -1/3 1/3 -2 ! —1/3x,+1/3x, =2
g Row3-2*Row1
0 -2 20| - 2X,+ 4x,;=0
U U
3 2 13 (3X, + 2X,+ X, =3
5 Row3-6*Row3
0 -1/3 1/3 -2 ! —1/3%,+1/3%, =2
0 0 012 | 0=12

The false statement 0=12 show that the system has no solution.
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Gauss Elimination :
The Three Possible Cases of Systems

Row Echelon Form

At the end of the Gauss elimination (before the back substitution)
the row-echelon form (& AICI2|&) of the augmented matrix will be

_a,ll a, e a, | b, i
5, s Cor | B,
Zero krr km Br (8)
.,
Zero o
| t:;m |

Here,r<mand a; #0,c,,#0, -+, k. # 0, and all the entries in the blue triangle as well as in the blue
rectangle are zero. From this we see that with respect to solutions of the system with augmented
matrix (8) (and thus with respect to the originally given system) there are three possible cases:

2008_Matrices(2) 7




Gauss Elimination :
The Three Possible Cases of Systems

Row Echelon Form
(a) Exactly one solution

ifr=nand b..b,,if present, are zero. To get the solution, solve the nth equation corresponding to (8)
(which is k,x,=b,) for x,,, then the (n-1)st equation for x,,, and so on up the line.

(b) Infinitely many solutions

if r<nand 6r+1,"'6m, if present, are zero. To obtain any of these solutions, choose values of x, , -, X,
arbitrary . Then solve the rth equation for x,, then the (r-1)st equation for x,,, and so on up the line.

(c) No solution
if r <m and one of the entries b,,,,---b_is not zero.

n=3 _
s A N\ ni4 n13
N _ f TN VY \I 'd \=
r=3 1 1.0 r—2[[30 20 20 -5080 r=2|3 2 13
0 \10 25§ 90 i :
; > 1.1 11 -44:11 & -1/3 1/3}-2
_ T ] iF = —
00 0f: (@ |
X, =X, +X% =0
: ) 0-x, +10x, + 25%, =90 iy b

0-x +0-x,-95x%x, =-190
0-%x+0-x,+0-x,=0
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Gauss Elimination :
The Three Possible Cases of Systems

Row Echelon Form
(a) Exactly one solution

ifr=nand b..b,,if present, are zero. To get the solution, solve the nth equation corresponding to (8)
(which is k,x,=b,) for x,,, then the (n-1)st equation for x,,, and so on up the line.

(b) Infinitely many solutions

if r<nand 6r+1,"'6m, if present, are zero. To obtain any of these solutions, choose values of x, , -, X,
arbitrary . Then solve the rth equation for x,, then the (r-1)st equation for x,,, and so on up the line.

(c)No solution  (no. of equations > no. of unknowns)

if r<m and one of the entries b, ,,---b_is not zero.

r "R N ni4 ni3
N -1 1 ' 0 7 ' N r \=
r=3 r=2 0 20 20 —5.058.0 r=23 2 1 | 3
OO0 2 90 L { hu 11 -44 111 { 0\ 13 143 =2
g 8 ‘355‘(?0 m=4 0o 0 o o0 |7 m=3 0 0 02y jm=s
2 - 1/
X, =X, +X% =0 X, =X, +% =0
—X, +11x, + 24 %, =90 0 0-x, +10x, + 25x%, =90 iy! 9
3x,—3x,-92%,=-190 | 0-%+0-x,-95%x,=-190
2% — 2%, +2%, =0 0-x+0-x,+0-x,=0
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Gauss Elimination :
The Three Possible Cases of Systems

Row Echelon Form
(a) Exactly one solution (no. of equations ‘r’ = no. of unknowns ‘n’)

ifr=nand b..b,,if present, are zero. To get the solution, solve the nth equation corresponding to (8)
(which is k,x,=b,) for x,,, then the (n-1)st equation for x,,, and so on up the line.

(b) Infinitely many solutions

if r<nand 6r+1,"'6m, if present, are zero. To obtain any of these solutions, choose values of x, , -, X,
arbitrary . Then solve the rth equation for x,, then the (r-1)st equation for x,,, and so on up the line.

(c)No solution  (no. of equations > no. of unknowns)

if r<m and one of the entries b, ,,---b_is not zero.

r "R N ni4 ni3
N -1 1 ' 0 7 ' N r \=
r=3 r=2 0 20 20 —5.058.0 r=23 2 1 | 3
OO0 2 90 L { hu 11 -44 111 { 0\ 13 143 =2
g 8 ‘355‘(?0 m=4 0o 0 o o0 |7 m=3 0 0 02y jm=s
2 - 1/
X, =X, +X% =0 X, =X, +% =0
—X, +11x, + 24 %, =90 0 0-x, +10x, + 25x%, =90 iy! 9
3x,—3x,-92%,=-190 | 0-%+0-x,-95%x,=-190
2% — 2%, +2%, =0 0-x+0-x,+0-x,=0
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Gauss Elimination :
The Three Possible Cases of Systems

Row Echelon Form
(a) Exactly one solution (no. of equations ‘r’ = no. of unknowns ‘n’)

ifr=nand b, b,,if present, are zero. To get the solution, solve the nth equation corresponding to (8)
(which is k,x,=b,)) for x,, then the (n-1)st equation for x,_,, and so on up the line.

(b) Infinitely many solutions  (no. of equations < no. of unknowns)

if r<nand 6r+1,"'6m, if present, are zero. To obtain any of these solutions, choose values of x, , -, X,
arbitrary . Then solve the rth equation for x,, then the (r-1)st equation for x,,, and so on up the line.

(c)No solution  (no. of equations > no. of unknowns)

if r <m and one of the entries b,,,,---b_is not zero.

) n=)§ . ni4 ni3
_ ; — Vs N\
r=3 o 0 r=2[[30 20 20 -50:80 r=2
P02 90 L { hu 11 -44:11 {l 13 13 -2
0 0\ -95-190|(m=4 0 0 0 0|70 m=3 L12| m=3
00 0 (0] |
3.0%, +2.0x, +2.0%, —5.0x, = 8.0 3% + 2X, + %, =3
—x, —0.3x, —0.3x, +0.2x, =—2.3 OX +7X, +2% =15
X =X, +% =0 X =X, +X; =0 | 1.5%,+1.0x, +1.0x, —2.5x, =4.0 3% +2X, + X% =-9
—X, +11x, + 24%, =90 » 0-x +10x, + 25x, =90 iyt 9%
3% —3%,-92% =-190 |0-x +0-X,-95%,=-190 [3.0x, +2.0X, +2.0%, —5.0x, =8.0 3+ 2%+ X =3
2%, = 2%, +2% =0 0-%+0-%+0-% =0 $0-x +1.1%, +1.1x, —4.4x, =1.1 —1/3%, +1/3%, =2
0=12

2008_Matrices(2) | 0-%x+0-%,+0-x,+0-X, =0.0_




Rank of a Matrix.
Linear Independence.

2008_Matrices(2) _
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Linearly independent vectors

L,
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Linearly independent vectors

L,

2008_Matrices(2)




Linearly independent vectors
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Linearly independent vectors

V4

|
|
|
|
|
|
|
|
|
|
|
|
|
i=|0]j=|1|k=|0 :
|
|
|
|
|
|
|
|
|
|
|
|
|
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Linearly independent vectors

V4

|
|
|
|
|
|
|
|
|
|
X 1Y (0) 0) |
|
i=|0|j=l1]k=|0 :
|

|

|

|

|

|

|

|

|

|

|

|

|

0, 0) I

We can express the location of the point with i,
J, k.
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Linearly independent vectors

V4

i=|0]j=[1]k=]|0

We can express the location of the point with i,
J, k.

al+bj+ck=al0|+bl1l|+c| O

2008_Matrices(2)




Linearly independent vectors

7 If the point is at the origin, the equation
becomes

X 1Y) (o) (0)
i=|0|j=l1|k=|0
C/ARR Y

We can express the location of the point with i,
J, k.

al+bj+ck=a/0|+Dbl1 [+c| O
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Linearly independent vectors

7 getsgnrigisnt is at the origin, the equation
‘< 1] [o] [o]  [0]

i % a0|+b|1|+c/0|=0=]|0
0 0 1 0

X 1) (o) (0 S - -
i=|0|j=[1 k=0
O) 0 D

We can express the location of the point with i,
J, k.

al+bj+ck=al 0 |+Dbl1 |+c| O
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Linearly independent vectors

Z
K
_ J
I
X 1) (o) (0
i=|0|j=l1]k=|0
0, 0y 1)

We can express the location of the point with i,

i k.

al+bj+ck=al 0

2008 M atricesiZ) ]

+b

+C

If the point is at the origin, the equation
becomes

1 0 0 0
a0|+bl1|+c/0(=0=]|0
0] (0] |1 0]

The equation above is satisfied if and only if
a=b=c=0.



Linearly independent vectors

Z
K
_ J
I
X 1) (o) (0
i=|0|j=l1]k=|0
0, 0y 1)

We can express the location of the point with i,

i k.

al+bj+ck=al 0

2008 M atricesiZ) ]

(1)

0/

+b

+C

If the point is at the origin, the equation
becomes

1 0 0 0
a0|+bl1|+c/0(=0=]|0
0] (0] |1 0]

The equation above is satisfied if and only if
a=b=c=0.

Then, i, j, k are linearly independent.



Linear Independence and Dependence of Vectors

Given any set of m vectors a), -, a,, (With the same number of components),

a linear combination of these vectors is an expression of the form

lars. Now consider th |

Cy, Cy, ™™, C,y @re_an

Cla(l) + Cza(z) + c° + Cma(m) — O """ (1)
c,=C,=-=C, =0
ﬁ A1y 82y 1 Q)
H|I.I_

Definition 3.1 Linear Dependence/Independence N

Asetof functions T, (%), f,(X), ..., T, (X)is saidto be ‘linearly

dependent’on aninterval | if there existconstant C,,C,,-..C,,, not all zero

suchthat ¢, f,(X) +c, f, (X)) +---c, f . (X) =0

forevery xintheinterval.

If the set of functionsis notlinearly dependenton the interval, it is said to be

‘linearlyindependent’

(S /
In other words, a set of functions is ‘linearly independent’ if the only constants for

c, f,(X)+c, f,(X)+---+c f (X)=0

are G, =C, =---=C, =0
2008_Matrices(2) :
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Linear Independence and Dependence of Vectors

Given any set of m vectors a), -, a,, (With the same number of components),

a linear combination of these vectors is an expression of the form

lars. Now consider th |

Cy, Cy, ™™, C,y @re_an

Cla(l) + Cza(z) + ¢ + Cma(m) — O """ (1)
c,=C,=-=C, =0
ﬁ a(1) ' a(z) a ’a(m) vectors linearly independent set or linearly independent.
H| o

Definition 3.1 Linear Dependence/Independence N

Asetof functions T, (%), f,(X), ..., T, (X)is saidto be ‘linearly

dependent’on aninterval | if there existconstant C,,C,,-..C,,, not all zero

suchthat ¢, f,(X) +c, f, (X)) +---c, f . (X) =0

forevery xintheinterval.

If the set of functionsis notlinearly dependenton the interval, it is said to be

‘linearlyindependent’

(S /
In other words, a set of functions is ‘linearly independent’ if the only constants for

c, f,(X)+c, f,(X)+---+c f (X)=0

are G, =C, =---=C, =0
2008_Matrices(2) )
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Linear Independence and Dependence of Vectors

Given any set of m vectors a), -, a,, (With the same number of components),

a linear combination of these vectors is an expression of the form

lars. Now consider th |

Cy, Cy, ™™, C,y @re_an

Cla(l) + Cza(z) + ¢ + Cma(m) — O """ (1)
When C1:(:2:”':Cm20
ﬁ a(1) ' a(z) a ’a(m) vectors linearly independent set or linearly independent.
H| 2

Definition 3.1 Linear Dependence/Independence N

Asetof functions T, (%), f,(X), ..., T, (X)is saidto be ‘linearly

dependent’on aninterval | if there existconstant C,,C,,-..C,,, not all zero

suchthat ¢, f,(X) +c, f, (X)) +---c, f . (X) =0

forevery xintheinterval.

If the set of functionsis notlinearly dependenton the interval, it is said to be

‘linearlyindependent’

(S /
In other words, a set of functions is ‘linearly independent’ if the only constants for

c, f,(X)+c, f,(X)+---+c f (X)=0

are G, =C, =---=C, =0
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Linear Independence and Dependence of Vectors

Given any set of m vectors a), -, a,, (With the same number of components),

a linear combination of these vectors is an expression of the form

lars. Now consider th |

Cy, Cy, ™™, C,y @re_an

C]_a(l) L CZa(Z) + .. Cma(m) = O ...... (1)
When C1:(:2:”':szo
ﬁecmr A)rA(z)r s Ay vectors linearly independent set or linearly independent.
H| =

Definition 3.1 Linear Dependence/Independence N

Asetof functions T, (%), f,(X), ..., T, (X)is saidto be ‘linearly

dependent’on aninterval | if there existconstant C,,C,,-..C,,, not all zero

suchthat ¢, f,(X) +c, f, (X)) +---c, f . (X) =0

forevery xintheinterval.

If the set of functionsis notlinearly dependenton the interval, it is said to be

‘linearlyindependent’

(S /
In other words, a set of functions is ‘linearly independent’ if the only constants for

c, f,(X)+c, f,(X)+---+c f (X)=0

are G, =C, =---=C, =0
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Linear Independence and Dependence of Vectors

Given any set of m vectors a), -, a,, (With the same number of components),

a linear combination of these vectors is an expression of the form

lars. Now consider th |

Cy, Cy, ™™, C,y @re_an

Cidy) +CoAp) ++Cdy) =0 oo @)
When Cl:CZ:”':Cm:O
Vector a a(2) A a(m) vectors linearly independent set or linearly independent.

1)’
o

Function Definition 3.1 Linear Dependence/Independence N

Asetof functions T, (%), f,(X), ..., T, (X)is saidto be ‘linearly

dependent’on aninterval | if there existconstant C,,C,,-..C,,, not all zero

suchthat ¢, f,(X) +c, f, (X)) +---c, f . (X) =0

forevery xintheinterval.

If the set of functionsis notlinearly dependenton the interval, it is said to be

‘linearlyindependent’

(S /
In other words, a set of functions is ‘linearly independent’ if the only constants for

¢, f,(X)+c,f,(X)+---+c f (x)=0

are G, =C, =---=C, =0
2008_Matrices(2) :

90/
394



Linear Independence and Dependence of Vectors

Cla(l) _I_ Cza(z) + °° _I_ Cma(m) — O """ (1)
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Linear Independence and Dependence of Vectors

Cla(l) _I_ Cza(z) + °° _I_ Cma(m) — O """ (1)

If (1) also holds with scalars not all zero, we call these vectors linearly dependent, because
then we can express (at least) one of them as a linear combination of the others. For
instance, if (1) holds with, say, ¢,=0, we can solve (1) for a,;:
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Linear Independence and Dependence of Vectors

Cla(l) _I_ Cza(z) + °° _I_ Cma(m) — O """ (1)

If (1) also holds with scalars not all zero, we call these vectors linearly dependent, because
then we can express (at least) one of them as a linear combination of the others. For
instance, if (1) holds with, say, ¢,=0, we can solve (1) for a,;:

(Some k’s may be zero. Or even all of them, namely, if a,,=0.)
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Linear Independence and Dependence of Vectors

Ex 1) Linear Independence and Dependence

Vector

ay=[3 0 2 2]
a, =[-6, 42, 24, 54]
a, =[21, —21, 0,-15]

6a, =[18, 0, 12, 12]

—%a(z) =[3,-21,-12,-27]

—a, =[-21,21, 0, 15]

1
6a, — Ea(z) —a, =[0,0,0,0]

2008 M atrices_(‘Zﬁ)'

@f

@
®

-

N

N

Linear Systems

3X 4+ 0-X,+ 2%, =2
—6X, +42X, + 24X, =54
21x -21x, + 0-X;=-15

ILOx2+@
[ 3%+ 0-%, + 2x, =2

0-x, +42X, +28x, =58

21x -21%, + 0-X,=-15

L ox(-N+®
(3%, +0-X,+ 2%, =2

0-x, +42x, + 28X, =58

| 0-x,—21x, —14x,=-29

f 0.5
3%+ 0-x, + 2x =2 wOOO

0-x, +42X, +28x, =58

|1 0-%+0-%,+0-x,=0

Matrix
'3 0 2i27i3 0 2
6 42 245 54 |:|—6 42 24
21 -21 0 ;-15|:|21 -21 O
(3 0 212 3 0 2
0 42 285 58 0 42 28
21 -21 0 ;-15|:|21 -21 O
3 0 22 3 0 2
0 42 28 58 [(|0 42 28
0 -21 -14{-29|:|0 -21 -14
3 0 212 3 0 2
0 42 28 558 0 42 28
0 0 00 0 0 0




Linear Independence and Dependence of Vectors

Ex 1) Linear Independence and Dependence

Vector

ay=[3 0 2 2]
a, =[-6, 42, 24, 54]
a, =[21, —21, 0,-15]

6a, =[18, 0, 12, 12]

—%a(z) =[3,-21,-12,-27]

—a, =[-21,21, 0, 15]

1
6a, — Ea(z) —a, =[0,0,0,0]

The three vectors are

linearly dependent
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Ex 1) Linear Independence and Dependence

Vector

ay=[3 0 2 2]
a, =[-6, 42, 24, 54]
a, =[21, —21, 0,-15]

6a, =[18, 0, 12, 12]

—%a(z) =[3,-21,-12,-27]

—a, =[-21,21, 0, 15]

1
6a, — Ea(z) —a, =[0,0,0,0]

The three vectors are

linearly dependent
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Linear Systems

@ 3x+0-X,+ 2%, =2
@ —6Xx +42X, +24x, =54
21x -21x, + 0-X;=-15

ILOx2+@
[ 3%+ 0-%, + 2x, =2

0-x, +42X, +28x, =58

21x -21%, + 0-X,=-15
L Ox(-7)+®

-

(3%, +0-X,+ 2%, =2

0-x, +42x, + 28X, =58

| 0-x,—21x, —14x,=-29

L @x(0.5)+®

N

[ 3%+ 0-X, + 2X, =2
0-x, +42X, +28x, =58
|1 0-%+0-%,+0-x,=0

N

The three equations are
linearly dependent

Matrix
'3 0 2i27i3 0 2
6 42 245 54 |:|—6 42 24
21 -21 0 ;-15|:|21 -21 O
(3 0 212 3 0 2
0 42 285 58 0 42 28
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3 0 22 3 0 2
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3 0 212 3 0 2
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0 0 00 0 0 0




Linear Independence and Dependence of Vectors

Ex 1) Linear Independence and Dependence

Vector

ay=[3 0 2 2]
a, =[-6, 42, 24, 54]
a, =[21, —21, 0,-15]

6a, =[18, 0, 12, 12]

—%a(z) =[3,-21,-12,-27]

—a, =[-21,21, 0, 15]

1
6a, — Ea(z) —a, =[0,0,0,0]

The three vectors are

linearly dependent
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Linear Systems

@ 3x+0-X,+ 2%, =2
@ —6Xx +42X, +24x, =54
21x -21x, + 0-X;=-15

ILOx2+@
[ 3%+ 0-%, + 2x, =2

0-x, +42X, +28x, =58

21x -21%, + 0-X,=-15
L Ox(-7)+®

-

(3%, +0-X,+ 2%, =2

0-x, +42x, + 28X, =58

| 0-x,—21x, —14x,=-29

L @x(0.5)+®

N

[ 3%+ 0-X, + 2X, =2
0-x, +42X, +28x, =58
|1 0-%+0-%,+0-x,=0

N

The three equations are
linearly dependent

Matrix
'3 0 2i27i3 0 2
6 42 245 54 |:|—6 42 24
21 -21 0 ;-15|:|21 -21 O
'3 0 2i 273 0 2
0 42 285 58 0 42 28
21 -21 0 ;-15|:|21 -21 O
3 0 2273 0 2
0 42 28 58 [(|0 42 28
0 -21 -14{-29|:|0 -21 -14
3 0 212 3 0 2
0 42 28 558 0 42 28
0 0 00 0 0 0

The three rows are
linearly dependent




Rank of a Matrix

Rank of a Matrix

The rank of a matrix A
- “the maximum number of linearly independent row vectors” of A. rank A.
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Rank of a Matrix

Rank of a Matrix

The rank of a matrix A
: “the maximum number of linearly independent row vectors” of A. rank A.

Ex 2) Rank — -

3 0 2 2
The matrix A=|-6 42 24 54 |... (2)
21 -21 0 -15
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Rank of a Matrix

Rank of a Matrix

The rank of a matrix A
: “the maximum number of linearly independent row vectors” of A. rank A.

Ex 2) Rank

The matrix

A —

3 0 2

21 -21 0

2

-6 42 24 54

—-15

has rank 2, because Example 1 shows that the first two row vectors are linearly
independent, whereas all three row vectors are linearly dependent.
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Rank of a Matrix

Rank of a Matrix

The rank of a matrix A
: “the maximum number of linearly independent row vectors” of A. rank A.

Ex 2) Rank T 3 O 2 2 ]
The matrix A=|-0 42 24 54 |... (2)
21 —21 0 -15

has rank 2, because Example 1 shows that the first two row vectors are linearly
independent, whereas all three row vectors are linearly dependent.

Note further that rank A=0 if and only if A=0 (zero matrix).
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Rank of a Matrix

M Example 1 11 13 X+ X, =X, =3
Rank of 3 x 4 Matrix 2 -2 24 =25 +oG =8
c . e . 3 5 _7 8 3%, +9X, — X, =8
onsider the 3 X 4 matrix LoD
1 1 -1 3 (11 13 K% =
0-X —4X, +8x%, =2
_ 10 4 2 3
A=l2 -2 6 8| s 5 7 g 3, +5x, — X, =8
3 5 -7 8
Jax-3+e
— _ (1 1 -1 3) [ x+x%-x%=3
WIEh u,=(-11-13), u,=(2-268), and 0 4 8 0.% —4x, +8%, = 2
u;=(3 5 -7 8), we see that : 0% 4 2% —dx =1
the set uy, u,, u; is linearly dependent. @x(05)+@ |
On the other hand, since neither u, nor u, 1 1 -1 3 X+ Xy =Xy =3
Is a constant multiple of the other set of : 0 -4 8 2 0-% —4X, +8%, =2
row vectors u,, U, is linearly independent. 10-% +0-% +0-%. =0
Hence by Definition, rank(A) = 2. % 2 5
rank(A) 2 |

2008_M atrices(Z)




Rank and Row-Equivalent Matrices

Theorem : Row-Equivalent Matrices

Row-equivalent matrices have the same rank.

A, row-equivalent to a matrix A,
=> rank is invariant under elementary row operations.

(1 -1 1 | 30 20 20 -50 3 2 1]
-1 1 -1 06 15 15 -54 2 1 1
0 10 25 1.2 -03 -03 24 6 2 4
20 10 0 ) ﬂ ) ﬂ

= _ﬂl 1] 3.0 2.0 20 -5.0] [

0 10 25 0 11 11 -44 0 -1/3 1/3
0 0 -95 0 0 0 0 0 0 0
0 0 0

2008_Matrices(2)




Rank and Linear System Solutions
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Rank and Row-Equivalent Matrices

Theorem 8.4 Rank of a Matrix by Row Reduction
If a matrix A is row equivalent to a row-echelon form B, then
1) the row space of A =the row space of B
i) the nonzero rows of B from a basis for the row space of A, and
iii) rank(A) = the number of nonzero rows in B

i 30 20 20 -5080 3213
; 06 15 15 -54;27 2 1 10
12 -03 -03 24 |21 6 2 416

D0 25 0 \ 11 11 4411 b 13 13 2
0 0>-95:-190 2 0 0 0]l

0 0 0]

X, =X, +X =0
—X +11x, + 24X, =90
3%, —3X, —92x, =-190
2X, —2X, +2%, =0
X, =X, +X =0
0-x, +10x, + 25X, =90
0-x +0-x,-95x%x, =-190
2008_Malrites e +0-% =0




Rank and Row-Equivalent Matrices

Theorem 8.4

Rank of a Matrix by Row Reduction

If a matrix A is row equivalent to a row-echelon form B, then

1) the row space of A =the row space of B

i) the nonzero rows of B from a basis for the row space of A, and
iii) rank(A) = the number of nonzero rows in B

. 4
L =4 1 40 30 20 20 -5080 (3 2 1:3]
S 06 15 15 -54:27 5
0 10 25 190 PO EELTEL
! 12 -03 -03 24 i21 i
20 10 0 80| - 6 2 416
@00 25 | 9 N il oy 0\ -1/3 1/3} -2
0 0> —95:-190 0 0 0 0@ 1
; 0 0 012!
®o 0o o0 | (0 | '
rank : 3

2008 Qr‘iéejS@_)& fo %, =0

X, =X, +X =0
—X +11x, + 24X, =90
3%, —3X, —92x, =-190
2X, —2X, +2%, =0

X, =X, +X =0
0-x +10x, + 25%, =90
0-x +0-x,-95x%x, =-190




Rank and Row-Equivalent Matrices

Theorem 8.4

Rank of a Matrix by Row Reduction

If a matrix A is row equivalent to a row-echelon form B, then

1) the row space of A =the row space of B

i) the nonzero rows of B from a basis for the row space of A, and

iii) rank(A) = the number of nonzero rows in B

\ 4
(1 -1 1 o0 30 20 20 -50.80 3 2 1:!3]
S 06 15 15 -54:27 5
0 10 25 90 T T 2L
: 12 -03 -03 24 21 i
20 10 0 80| - 6 2 416
@00 25 | 9 @O\ 11 L1 —44 2l 0\ -1/3 1/3} -2
0 0> -95:-190 0 0 0 0] Py
; 0 0 02!
®o 0o o0 | (0 | '
rank - 3 rank : 2

2008 Qr‘iéejS@_)& fo %, =0

X, =X, +X =0
—X +11x, + 24X, =90
3%, —3X, —92x, =-190
2X, —2X, +2%, =0

X, =X, +X =0
0-x +10x, + 25%, =90
0-x +0-x,-95x%x, =-190




Rank and Row-Equivalent Matrices

Theorem 8.4

Rank of a Matrix by Row Reduction
If a matrix A is row equivalent to a row-echelon form B, then
1) the row space of A =the row space of B

i) the nonzero rows of B from a basis for the row space of A, and
iii) rank(A) = the number of nonzero rows in B

< 4
L =4 1 9 30 20 20 -50i80 (3 2 1,3]
—01 10 ;1 :900 06 15 15 -54:27 21 1'0

1 5 | = !
: 12 -03 -03 24 21 |
20 10 0 80| - 6 2 416
O1 -1 1 0" @[30 20 20 -50:80 @3 2 71 3
| 11 11 -44:11 i
@010 25 |90 @ |[0 i @i—lls 1/3 -2
0 0> —95:-190 0.0 0 o7 12
: | ®[l0 0 0]u2l
®o 0o o0 | (0 | '
rank - 3 rank : 2 rank : 3
X =% +X% =0 3.0x, +2.0%, +2.0x, —5.0x, =8.0 3X, + 2X, + X, =3
“X 11X + 24% =90 —x, 0.3, —0.3%, +0.2X, =—2.3 O, + 7, +2X, =15
3%, —3X, —92x, =-190
2% — 2%, +2%, =0  1.5x +1.0x, +1.0%, —2.5x, = 4.0 3X, +2X, + X, =-9
X =X % =0 3.0%, +2.0x, +2.0%, —5.0x, =8.0 3+ 2%+ X =3
O'X1+1OX2+25X3:90 0 1.1 1.1x. —4.4 =11
0% +0-%, ~ 95, =190 ) X+ 06 +1.1X —4.4%, = 1. 5 —1/3X,+1/3x,=-2
. 0-x+0-x,+0-%+0-x,=0.0 0=12

2008_Mafrites(2y +0-% =0
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Rank and Row-Equivalent Matrices

M Example 3 Solution)
Linear Independence . If we form a matrix A with the given
. vectors as rows, and if we row reduce
/Dependence . A to a row-echelon form B with rank 3,
. then the set of vectors is linearly
Determine whether the set of .~ independent. |
vectors - If rank(A)<3, then the set of vectors is
u,=<211> - linearly dependent.
u,=<0,3,0> '
u,=<312> 2 11 oW 1 0 0
in R3 in linearly dependent or ~ A=|0 3 0] oo 10 1 0
linearly independent. 3 12 t 0 01

Thus rank(A)=3 and the set of
- vectors uy, Uy, Us is linearly
- independent.

2008_M atricesh(‘ZA)




Rank and Linear Systems

2008_Matrice_s(2_)

7
R a/ifferent
e
1 0|0
b 1 O No solution case
r—
0 0]l T [

rank(A)#rank(A|B)

False statement




Rank and Linear Systems

X +X, =1
4%, — X, =—6
2% —3X, =8

=

1
4
2

P {Xi
X2

} N

> Ax=B

2008_Matrices(2)

R different

L
1 0]0

b l O No solution case

0 0]t T [
rank(A)#rank(A|B)

False statement




Rank and Linear Systems

X, +X% =1 1 1 1
4%, - X, =—6 = |4 -1 L)((l}z —6 ~ Ax=B
2x, —3%, =8 2 3|5 |8
1 11
[A|B]=|4 -1|-6
2 3|8 ”

2008_Matrices(2)

rank(A)#rank(A|B)

0

1

s different

No solution case

|

False statement




Rank and Linear Systems

X, +X, =1 1 1 (1]
X
4, —X,=—6 o |4 -1 { 1}= —6 ~> Ax=B
X
2x, —3%, =8 2 3|5 |8
1 1]1] 1 ]
|[A|B]=|4 -1|-6|—|0 1
2 -3/8] |0 0|16 ”
row operation //a;fferent
1 0]0]

b 1 O No solution case

oo | |

rank(A)#rank(A|B)

False statement
2008_Matrices(2)




Rank and Linear Systems

X, +X, =1 1 1 B
Xl
4, —X,=—6 Lo |4 —1{ }z —6 ~> Ax=B
X
2x, —3%, =8 2 3|5 |8
1 1]1] [1 1 [1 0]0
[A|B]=|4 -1|-6|—|0 1|2|—|0 1|0
2 -3|8| |0 o0|16] |0 O0f2| .7
row operation row operation //Eﬁf/ferent
1 0]0]

b 1 O No solution case

0 01 T |

rank(A)#rank(A|B)

False statement
2008_Matrices(22




Rank and Linear Systems

X, +X, =1 1 1 B
Xl
4, —X,=—6 Lo |4 —1{ }z —6 ~> Ax=B
X
2x, —3%, =8 2 3|5 |8
1 1 |1] [1 0]1] [1 0]0]
[A|B]=|4 -1|-6|—|0 1 —>|0 1|0| rank(A[B)=3
2 -3|8| |0 o0|16] |0 O0f2| .7
row operation row operation //a;f/ferent
1 0]0]

b 1 O No solution case

0 01 T |

False statement

rank(A)#rank(A|B)
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Rank and Linear Systems

X + X, =1 1 1 1]
4, —x,=-6 = |4 -1 {Xl}z 6| ~ Ax=B
2% —3X, =8 2 -3 %2 8
1 1 1] [1 0l1] J[1 0]0]
[A|B]=|4 -1|-6|—{0 1|2 |—|0 1|0| rank(A|B)=3
2 -3|8 0 0|16 0 01 -7
1 1 p
A=4 -1
£ = 1010
b 1 | O| Nosolution case
oo ||

2008 M atrices_(‘Zﬁ)'

rank(A)#rank(A|B)

False statement




Rank and Linear Systems

X, +X, =1 1 1 B
4%, - X, =—6 = |4 -1 {Xl}z —6 > Ax=B
2x, —3%, =8 2 -3 " 8
(1 11]1] [1 0l1] [1 of0]
[A|B]=|4 -1|-6|—|0 1 —>|0 1|0| rank(A|B)=3
2 -3| 8 0 016 0 01 =
: ) ro;v operati_on_ ) ro;v OPerati_On /,_fa?fferent
1 1 1 0 Py
A=4 -1| — |0 1
2 3] 0 0 1 010
row operation b 1 { O| Nosolution case
oo ||

2008 M atrices_(‘Zﬁ)'

rank(A)#rank(A|B)

False statement




Rank and Linear Systems

X, +X, =1 1 1] B
Xl
4, —X,=—6 Lo |4 —1{ }z —6 ~> Ax=B
X
2x, —3%, =8 2 3|5 |8
(1 1|1] [1 0|1] [1 0]O0]
[A|B]= 4 -1|-6|—|0 1 —>|0 110 rank(A|B)=3
2 -3|8| |0 o0|16] |0 O0f2| .7
) . row operation row operation //a;fferent
1 1 1 0] L
A=14 -1 —> 0 1 rank(A)=2
_2 —3_ _O O_ 1 010
row operation h 1 O No solution case
oo ||

2008 M atricesLZ) |

rank(A)#rank(A|B)

False statement




Rank and Linear Systems

False statement

X, +X, =1 (1 1] (1]
4%, - X, =—6 = |4 -1 {Xl}z —6 > Ax=B
2x, —3%, =8 2 -3 " 8
(1 1 |1] [1 0l1] J[1 0|0
[A|B]=|4 -1|-6|—|0 1 —|0 1|0| rank(A[B)=3
2 -3| 8 0 016 0 01 -
] e o e | itaren
1 1 1 0 =
A= -1 —> 0 1 rank(A)=2
|2 3] 0 0] 1 0|0 X, +0-x, =1
row operation b 1|0 Nosotioncase 4 0-X, + X, =0
0 01! T 10-x, +0-x, =1]
rank(A)#rank(A|B)




Rank and Row-Equivalent Matrices

Theorem 8.5 Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient
matrix A is the same as the rank of the augmented matrix of the system

O 30 20 20 -50:80 3 2 1,3

-1 1 -1 {0 06 15 15 -54:27 51 1'0
0 10 25 190 ‘ ’
| 12 -03 -03 24 121 i

20 10 0 80 - j60 2 &1 6]

| O\ 11 11 -44:11 =
0210 25 1 90 Fos 0\ -1/3 1/31-2
0 0>-95-190 0 0 0 ©0ji0 - =

| 0 0 0]u12!
0 0 0 (0 '

X, =X, +% =0
—X, +11x, + 24X, =90
3%, —3X, —92x, =-190
2X, —2X, +2%, =0

X, =X, +X =0
0-x +10x, + 25%, =90
0-x+0-x,-95x%, =-190
O@Q&MQtﬁF@éSQZ?(sZO




Rank and Row-Equivalent Matrices

®
@

®

Theorem 8.5

A linear system of equations AX=B is consistent if and only if the rank of the coefficient

Consistency of AX=B

matrix A is the same as the rank of the augmented matrix of the system

1 -1 1 'o0
1 1 -1 o0
0 10 25 90
20 10 0 '80
[ =il gl § @
0N10 25 ' 90
0 0>.-951-190
0 0 0]
X, =X, +% =0

—X, +11x, + 24X, =90
3%, —3X, —92x, =-190

008 Btrteef2y =0

2X, —2X, +2%, =0
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Rank and Row-Equivalent Matrices

®
@

®

Theorem 8.5

A linear system of equations AX=B is consistent if and only if the rank of the coefficient

Consistency of AX=B

matrix A is the same as the rank of the augmented matrix of the system

1 -1 1 'o0
1 1 -1 o0
0 10 25 90
20 10 0 '80
[ =i ol | @
0N10 25 ' 90

0 0>.-951-190
0 0 0]

X, =X, +% =0

—X, +11x, + 24X, =90
3%, —3X, —92x, =-190

008 Btrteef2y =0

2X, —2X, +2%, =0

X, =X, +X =0
0-x +10x, + 25%, =90
0-x+0-x,-95x%, =-190
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Rank and Row-Equivalent Matrices

Theorem 8.5

Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient
matrix A is the same as the rank of the augmented matrix of the system

1 -1 1
-1 1 -1
O 10 25
20 10 O

25

0 O 0

X, =X, +% =0
—X, +11x, + 24X, =90

Q|

oilo :
@l o o5 ~190
®

(T

90

3%, —3X, —92x, =-190

2X, —2X, +2%, =0

X, =X, +X =0
0-x +10x, + 25%, =90

0-x+0-x,-95x%, =-190

0RasBtteco) =0

-

3.0
0.6

2.0
1.5

2.0
1.5

~5.0 /8.0
5427

12 -03 -03 24 121
0 20 20 -50.80

®
@

rank (A|B): 3
rank (A): 3

O\ 11 11 -44:11

0o 0 0 0] "
rank (A|B) : 2
rank (A): 2

3.0x, +2.0x, +2.0x, —5.0x, =8.0
5 —%—0.3x,-0.3%,+0.2x, =-2.3
1.5x, +1.0x, +1.0x, —2.5x, = 4.0

3.0x, +2.0x, +2.0x, —5.0x, =8.0
3 0-x +1.1x, +1.1x,-4.4x, =1.1
0-x+0-x,+0-X,+0-x,=0.0

o NN W
N P DN

QTN
o O w

@3 2 713

®on -1/3 1/31 -2

@0 0 0]i12]
rank (A|B) : 3
rank (A): 2

3X + 2X, + %, =3
OX +7X,+2X;, =15
3%, +2X, + %X, =-9

3+ 2%+ X =3
—1/3%, +1/ 3%, =2




Rank and Row-Equivalent Matrices

Theorem 8.5

Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient
matrix A is the same as the rank of the augmented matrix of the system

1 -1 1 'o0
1 1 -1 'o0
0 10 25 |90
20 10 0 '80

0 O 0

X, =X, + X =0
—X, +11x, + 24X, =90
3%, —3X, —92x, =-190
2X, —2X, +2%, =0

X, =X, +X =0
0-x +10x, + 25%, =90
0-x+0-x,-95x%, =-190
0984 8t¥eaf2X; =0

"

@,

oilo 25 i 90
@0 o —95 1-190
®

(T

Solution

20 20
1.5 15

0 20 20 -50;80
O\ 11 11 -44:11

0o 0 o0 o] 7

3.0
0.6
@)
@
rank (A|B): 3
rank (A): 3

N

rank (A|B) : 2
rank (A): 2

3.0x, +2.0x, +2.0x, —5.0x, =8.0
5 —%—0.3x,-0.3%,+0.2x, =-2.3
1.5x, +1.0x, +1.0x, —2.5x, = 4.0

3.0%, +2.0x, +2.0%, —5.0x, =8.0
3 0-x +1.1x, +1.1x,-4.4x, =1.1
0-x+0-x,+0-X,+0-x,=0.0

5.0 8.0

54127
12 -03 -03 24 21

3 213
2 1 10
6 2 46
@rs 2 113
® 0. -1/3 1/31 -2
@0 0 0]i12]
rank (A|B) : 3
rank (A): 2

3X + 2X, + %, =3
OX +7X,+2X;, =15
3%, +2X, + %X, =-9

3+ 2%+ X =3
—1/3%, +1/ 3%, =2




Rank and Row-Equivalent Matrices

Theorem 8.5

Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient
matrix A is the same as the rank of the augmented matrix of the system

1 -1 1 !
101 -1
0 10 25 !
20 10 0 !

0 O 0

X, =X, + X =0
—X, +11x, + 24X, =90
3%, —3X, —92x, =-190
2X, —2X, +2%, =0

X, =X, +X =0
0-x +10x, + 25%, =90
0-x+0-x,-95x%, =-190
0984 8t¥eaf2X; =0

"

2 30 20 20 -5080
g 06 15 15 -54127
90 12 -03 -03 24 21
80 |

@

@/

® Qiilo 25 ' 90 @
0 0>.-951-190

®

| k (A|B): 3
(@ ran

rank (A): 3

Solution

N

0 20 20 -50;80
O\ 11 11 -44:11

0o 0 o0 o] 7

rank (A|B) : 2
rank (A): 2

3.0x, +2.0x, +2.0x, —5.0x, =8.0
5 —%—0.3x,-0.3%,+0.2x, =-2.3
1.5x, +1.0x, +1.0x, —2.5x, = 4.0

Solution
3.0%, +2.0x, +2.0%, —5.0x, =8.0
5 0-x+1.1x, +1.1x,-4.4x, =11
0-x+0-x,+0-X,+0-x,=0.0

3 213
2 1 10
6 2 46
@3 2 1 3
® 0. -1/3 1/31 -2
@0 0 0]i12]
rank (A|B) : 3
rank (A): 2

3X + 2X, + %, =3
OX +7X,+2X;, =15
3%, +2X, + %X, =-9

3+ 2%+ X =3
—1/3%, +1/ 3%, =2




Rank and Row-Equivalent Matrices

Theorem 8.5

Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient
matrix A is the same as the rank of the augmented matrix of the system

0 O 0

X, =X, + X =0
—X, +11x, + 24X, =90
3%, —3X, —92x, =-190
2X, —2X, +2%, =0

X, =X, +X =0
0-x +10x, + 25%, =90
0-x+0-x,-95x%, =-190
0984 8t¥eaf2X; =0

"

1 -1 1 !0
11 -1 !0
0 10 25 190
20 10 0 80|

@,

oilo 25 i 90
@0 o —95 1-190
®

(T

Solution

rank (A|B): 3
rank (A): 3

N

30 20 20 -50]80
06 15 15 -54127
12 -03 -03 24 121
@ [30 20 20 -50:80
@ [|0\ 11 11 -44:11
0o 0 o0 o] 7
rank (A|B) : 2
rank (A): 2

3.0x, +2.0x, +2.0x, —5.0x, =8.0
—X, —0.3x, —0.3%, +0.2x, =-2.3
1.5x, +1.0x, +1.0x, —2.5x, = 4.0

Solution

3.0%, +2.0x, +2.0%, —5.0x, =8.0
3 0-x +1.1x, +1.1x,-4.4x, =1.1

0-x+0-x,+0-X,+0-x,=0.0

3 213
2 1 10
6 2 46
@rs 2 113
® 0. -1/3 1/31 -2
@0 0 0]i12]
rank (A|B) : 3
rank (A): 2

3X + 2X, + %, =3
OX +7X,+2X;, =15
3%, +2X, + %X, =-9

No Solution

3+ 2%+ X =3
—1/3%, +1/ 3%, =2




Rank and Row-Equivalent Matrices

Theorem 8.5

Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient

matrix A is the same as the rank of the augmented matrix of the system

1 -1 1 !
101 -1
0 10 25 !
20 10 0 !

@,

éiilo 25 i 90
@0 o —95 1-190
®

0 0 0]

2 30 20 20 -5080
g 06 15 15 -54127
90 12 -03 -03 24 21
80 |
7 @[30 20 20 -5.0:80
@ |0\ 11 11 4411
0 0 0 0] "
rank (A|B): 3 .
=R

X, =X, +% =0
—X, +11x, + 24X, =90
3%, —3X, —92x, =-190
2X, —2X, +2%, =0

X, =X, +X =0
0-x +10x, + 25%, =90
0-x+0-x,-95x%, =-190
0984 8t¥eaf2X; =0

"

Solution
- One solution

3.0x, +2.0x, +2.0x, —5.0x, =8.0

5 —%—0.3x,-0.3%,+0.2x, =-2.3

1.5x, +1.0x, +1.0x, —2.5x, = 4.0

3.0%, +2.0x, +2.0%, —5.0x, =8.0
3 0-x +1.1x, +1.1x,-4.4x, =1.1
0-x+0-x,+0-X,+0-x,=0.0

N

Solution

3 213
2 1 10
6 2 46
@3 2 1 3
® 0. -1/3 1/31 -2
0 0 0]u12!
rank (A|B) : 3
rank (A): 2

3X + 2X, + %, =3
OX +7X,+2X;, =15
3%, +2X, + %X, =-9

No Solution

3+ 2%+ X =3
—1/3%, +1/ 3%, =2



Rank and Row-Equivalent Matrices

Theorem 8.5

Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient

matrix A is the same as the rank of the augmented matrix of the system

1 -1 1 !
101 -1
0 10 25 !
20 10 0 !

@,

oilo 25 i 90
@0 o —95 1-190
®

0 0 0]

X, =X, +% =0
—X, +11x, + 24X, =90
3%, —3X, —92x, =-190
2X, —2X, +2%, =0

X, =X, +X =0
0-x +10x, + 25%, =90
0-x+0-x,-95x%, =-190
0984 8t¥eaf2X; =0

"

0 30 20 20 -50/80 (3 2 13]
2 06 15 15 -54]27 51 1'0
90 | ’
1.2 -03 —-03 24 21 i
80 ' 6 2 416
2 @[30 20 20 -50!80 @[3 2 Y13
@ |0\ 11 11 -44:11 ® i
| O\ -1/3 1/3:-2
DETORORoY: 0L 0 0]z
: !
ol Eﬁ;g)s' ’ rank (A[B) : 2 ! rank (AJB) : 3
: rank (A): 2 s EA;' )2

Solution
- One solution

3.0x, +2.0x, +2.0x, —5.0x, =8.0

5 —%—0.3x,-0.3%,+0.2x, =-2.3

1.5x, +1.0x, +1.0x, —2.5x, = 4.0

3.0%, +2.0%, +2.0%, —5.0x, =8.0°
3 0-x +1.1x, +1.1x,-4.4x, =1.1
0-x+0-x,+0-X,+0-x,=0.0

N

Solution

Many solutions

3X + 2X, + %, =3
OX +7X,+2X;, =15
3%, +2X, + %X, =-9

No Solution

3+ 2%+ X =3
—1/3%, +1/ 3%, =2



Rank in Terms of Column Vectors

Theorem : Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent column vectors of A.
Hence A and its transpose AT have the same rank.

Proof)
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Theorem : Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent column vectors of A.
Hence A and its transpose AT have the same rank.

Proof) Let Abean mx nmatrix of rank A=r
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Rank in Terms of Column Vectors

Theorem : Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent column vectors of A.
Hence A and its transpose AT have the same rank.

Proof) Let Abean mx nmatrix of rank A=r

Then by definition of rank, A has r linearly independent rows which we
denOte by V(l)’ N V(r)

2008_Matrice_s(2_) A




Rank in Terms of Column Vectors

Theorem : Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent column vectors of A.
Hence A and its transpose AT have the same rank.

Proof) Let Abean mx nmatrix of rank A=r
Then by definition of rank, A has r linearly independent rows which we

denote by v, -, Vi and all the rows ag,, =+, a, of A are linear
combinations of those.

2008_Matrices(2_)




Rank in Terms of Column Vectors

-3 by 3 _matrix

let rank A =3
A, a,
A=la, ay
| &y Gy

2008_Matrice_s(2) _
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Rank in Terms of Column Vectors

-3 by 3 _matrix
Iet I'apk A — 3 Note

A2°| rank7} 30|02 SHHIE{ = linearly independent
a, a, a;| [a (Aol

A= Ay Qy Ay |[F| A, |,
|85, Q5 Az | |83
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Rank in Terms of Column Vectors

-3 by 3 _matrix
let rank A=3

A, &, ap; G
A= Ay Qy Ay |[F| A, |,

|85 8y Gy | |8

3(=rank A) linearly independent rows (basis) :

2008_Matrices(2_)

Note

<::| A2°| rank7} 30|02 SHHIE{ = linearly independent
S}LC}.




Rank in Terms of Column Vectors

-3 by 3 _matrix
let rank A=3 o

A, &, ap; G
A= Ay Qy Ay |[F| A, |,
|85, Q5 Az | |83

3(=rank A) linearly independent rows (basis) :

V)= [V11 Vio V13]

2008_Matrices()
_——

Note

<::| A2°| rank7} 30|02 SHHIE{ = linearly independent
S}LC}.




Rank in Terms of Column Vectors

-3 by 3 _matrix
let rank A=3 o

A, &, ap; G
A= Ay Qy Ay |[F| A, |,
|85, Q5 Az | |83

3(=rank A) linearly independent rows (basis) :

V1:[V11 Vio V13]
V2:[V21 V) V23]

2008_Matrices()
_——

Note

<::| A2°| rank7} 30|02 SHHIE{ = linearly independent
S}LC}.




Rank in Terms of Column Vectors

-3 by 3 _matrix
Iet rapk A — 3 Note

} A2°| rank7} 30|02 SHHIE{ = linearly independent
a, @, a;| [a (Aol

A= Ay Qy Ay |[F| A, |,
|85, Q5 Az | |83

3(=rank A) linearly independent rows (basis) :
Vi=1DNg Vi V13]
Vo =1V Vo V23]
Vi =[Va1 Vg V33]

2008_Matrices(2)



Rank in Terms of Column Vectors

-3 by 3 _matrix
let rapkA:3 - -

a11 a12 a13 al <] A9| rank7} 30|82 SHIE{ = linearly independent
StCt.

A = a21 8.22 a23 = a2

_a31 a32 a33 _ a3

3(= rank A) linearly independent rows (basis) : Q3OE AS| MHE|7} 0|2 Z7HS 3749| BasisZ
#ELh (ex:a,a,,a,)

: ] Ex) 3Xt@l 32t c>2I HIE| bS
B basis a,,a,, 9| linear
Vl :V11 V12 V13 = 7 Z7to| Qojo| HIE{(b)= AC| SHHIE|2 FH = COmblnat|o E %
= 4 Ak p=
V2 o ._V21 V22 V23] * Atk b=Ila, +ma, +na, (I,m,n:const

Vi =[Va1 Vg V33]

2008 M atricesiZ) j




Rank in Terms of Column Vectors

-3 by 3 _matrix
Iet rapk A — 3 _ ~ _ Note

A2°| rank7} 30|02 SHHIE{ = linearly independent
a, a, a,| [a (3 Aol
A= d,y dy, dy [=|4a,

|85 8y Gy | |8

3(=rank A) linearly independent rows (basis) : J2{8 & AQ| siHIE|{7} 0]

2= Z7t2 37l12| BasisE

Ex) 3XHl Z7HAto| WE| bS
basis 31 8.2 9| linear

i #eChh (ex:a,a,,a,)
V=111 Vo V13] 2l
- o| elo|o| HIE{(b)= AQ| SHHIE|Z HESIE combination E BH

= 7to
V, = __\/21 V,, V23] * Atk b=Ila, +ma, +na, (I,m,n:const
Vi =1Vs Vi V33]

<] d,,d,,d; & CI2 basis2 B SICIH 3712| basis7} & Q6}C}.
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Rank in Terms of Column Vectors

-3 by 3 _matrix
let rank A=3

A, &, ap; G
A= Ay Qy Ay |[F| A, |,

|85 8y Gy | |8

3(=rank A) linearly independent rows (basis) :

Vi=1DNg Vi V13]
Vo =1V Vo V23]
Vi =[Va Vi V33]

d; Q, g3 C1Vy TGV, +C3V5
Ay Ay Ay [ = CyVy +CyV, +Cy5V5
dg; Az, Agg C3Vy +C3V, +C55V5

2008 M atricesLZ) |

Note

<::| A2| rank7} 30|82 SYHIE{ = linearly independent

StCt.

a2{o 2 Ao| $HIE|{7} Of

2= Z7t2 37l12| BasisE

#ELE (ex:aj,a,,a;) Ex) 3%Hal 32+
basis 4, 8.2

7k0| Qlo|o| HIE{(b)= AQ| SHHIE|Z HSI= combination

Ao| HE| b
9| linear
E BH

=la, + ma, +na, (I,m,n:const

<] d,,d,,d; & CI2 basis2 B SICIH 3712| basis7} & Q6}C}.




Rank in Terms of Column Vectors

-3 by 3 _matrix
let rapkA:3

A, &, ap; G
A= Ay Qy Ay |[F| A, |,

|85 8y Gy | |8

3(=rank A) linearly independent rows (basis) :

Vi=1DNg Vi V13]
Vo =1V Vo V23]
Vi =[Va Vi V33]

a'11 a12 a13 C11\/1 + C12V2 + ClSV3

Ay Ay Ay [ = CyVy +CyV, +Cy5V5

a3l a32 a33 C31V1 + C32V2 + C33V3

2008 M atricesLZ)

Note
<::| A2°| rank7} 30|02 SHHIE{ = linearly independent
stc}.

<] de{o 2 Ao| siHlE|7} 0| B = 372 37|9| BasisS
#ELE (ex:aj,a,,a;)

Ex) 3kh2l BZHA
basis 4, 8.2,
1 37t0] 9lojo| HiE|(b)i AQ| HMIE|S g combination

to| HiE| bE
3 2 linear
oZ 5¥

T 8 b=Ila, +ma, +na, (I,m,n:const

<] d,,d,,d; & CI2 basis2 B SICIH 3712| basis7} & Q6}C}.

b=la, + ma, + na,

=l(cy v, +C,V, +C3V,5) +M(CyyVy +C,ppV, +CpeVs) +N(Cy V) +CypV, +CiV3)
= (Ic, + mc,, +nc,,)v, +(Ic, + mc,, +nc,, )V, + (Ic; + MC,; +NCy3) V4
(I,m,n,c:const)




Rank in Terms of Column Vectors

-3 by 3 _matrix
let rank A =3 Note

[ } [ ] A2°| rank7} 30|02 SHHIE{ = linearly independent
a, @, a;| [a (Aol

A=lay, ay, ay|=|a,|,
| 831 8y 843 | |9

3(= rank A) linearly independent rows (basis) : <] O o2 AQ| SiHIE{7} 0|2 = Z7H2 37|9| Basis2

g

i ] #eChh (ex:a,a,,a,) B) 38 S24o| Ul bE
— basis a;,d,, 2 linear
Vl :Vll V12 V13 = 7 Z7to| Qlo|o| HIE{(b)= AS| SHHIE|Z F &I comblnatlo2 Es e |
— 2 ol —
V, = __V21 V,, V23] * Atk b=Ila, +ma, +na, (I,m,n:const
Vy=|Vy, Vg, V]
3 L73l 32 33 <] a,,8,,d, E C}2 basis2 EHSCHH 3712| basis7} = L}t
d; 8y a3 C11Vy +CpV,y +C3V3 b=la, + ma, + na,
a,, a,, da, |=|Cy,V;+C,V,+CyhV, =1(c,,V, +C,V, +C3V,) + M(C,,V, +Cyp,V, +CpeV3) +N(CyyV, +CoyV, +Co5Vy)
a, @, a CyyV, +CyoV, +CV, = (Ic, + mc,, +nc,,)v, +(Ic, + mc,, +nc,, )V, + (Ic; + mC,; +NCy3) V4
(I,m,n,c:const) Ex) 3kt2l Z7HAMO| HIE| b2
basis V,,V, V3 9] linear

combinatio o= HH
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Rank in Terms of Column Vectors

-3 by 3 _matrix
let rapk A=3 Note

] B ] A2°| rank7} 30|02 SHHIE{ = linearly independent
a, a, a;| [a S
A= dyy QA Ay (=4, |,
|85, 83 85| |43

3(= rank A) linearly independent rows (basis) : <] J2{o 2 Ao| 3iHIE|7} 0| B= 27H2 37[9| BasisE,

g

i ] #eChh (ex:a,a,,a,) B) 38 S24o| Ul bE
= basis a1 a,, 2 linear
Vl :Vll V12 V13 = 7 Z7to| Qlo|o| HIE{(b)= AS| SHHIE|Z F &I comblnatlo2 Es e |
—_ 2 ol _
V, = __V21 Vs, V23] * Atk b=Ila, +ma, +na, (I,m,n:const
Vy=|Vy, Vg, V]
3 L73l 32 33 <] a,,8,,d, E C}2 basis2 EHSCHH 3712| basis7} = L}t
d; 8y a3 C11Vy +CpV,y +C3V3 b=la, + ma, + na,
a,, a,, da, |=|Cy,V;+C,V,+CyhV, =1(c,,V, +C,V, +C3V,) + M(C,,V, +Cyp,V, +CpeV3) +N(CyyV, +CoyV, +Co5Vy)
=(lc,, + mc,, + nc,,)v, + (lc,, + mc,, +nc,,)v, +(Ic.. + mc,, +ncC,,) Vv
Ay, Ay, Ay, CyVy +CyyV, +CgaVy (Ic,, 21 1)V, + (IC, 22 2)V, + (I, 23 23) Vs
(I,m,n,c:const) Ex) 3kt2l Z7HAMO| HIE| b2
basis V,,V, V3 9] linear

<] a,,8,,8; 8 C}2 2749| basis2 EHSICIH combination© £
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Rank in Terms of Column Vectors

-3 by 3 _matrix
let rapkA:3

Ay
A=|a,

| 3

3(=rank A) linearly independent rows (basis) :

=V Vi V13]

2008_M atricesh(‘ZA)

<] d2{ B2 AQ| SHHIE{7} O| & Z7H2 3719 BasisE

C1Vy TGV, +C3V5

C, 1V, +CpV, +Cy3V,

C31V1 + 032V2 + C33V3

Note

<::| A2°| rank7} 30|02 SHHIE{ = linearly independent

S|C}.

g

#ELE (ex:aj,a,,a;) Ex) 3XH@l 37Hito| W\ bS
basis 4, a2, 3 2 linear
o2 BH

= 7 Z7io| Qlo|o| HIE{(b)= AQ| SHHIE|Z TSI combination
* Atk b=Ila, +ma, +na, (I,m,n:const

<::| d,,d,,d; & CI2 basis2 B SICIH 3712| basis7} & Q6}C}.

b=la, + ma, + na,
=l(cy v, +C,V, +C3V,5) +M(CyyVy +C,ppV, +CpeVs) +N(Cy V) +CypV, +CiV3)
= (Ic, + mc,, +nc,,)v, +(Ic, + mc,, +nc,, )V, + (Ic; + mC,; +NCy3) V4

(I,m,n,c:const) Ex) 3kt2l Z7HAMO| HIE| b2
basis V;,V, V3 9| linear
<] al’az’a 2 C}2 2749| basis2 B3 SC}H comblnatlo o2 ¥H

=la, + ma, + na,

= I((:11\/1 + C12V2) + m(czlvl + szvz) + n(C31V1 + Cszvz)

= (Ic, + mc,, +nc,,)v, +(Ic, + mc,, +nc,, )V,

(I,m,n,c:const)




Rank in Terms of Column Vectors

-3 by 3 _matrix
let rapkA:3

A —

2008_M atricesh(‘ZA)

Ay,
a21

| 3

3(=rank A) linearly independent rows (basis) :

a32

Ay,
a'22

Az

A3
a23

a33

A3 G
Ay =] 8, |

A | |83

=V Vi V13]
= [V

= Va1

Vys)
Va3 ]

V22
V32

C1Vy TGV, +C3V5

C, 1V, +CpV, +Cy3V,

C31V1 + 032V2 + C33V3

Note
<::| A2°| rank7} 30|02 SHHIE{ = linearly independent
stc}.

g

72 379| BasisE

<] d2{o 2 Ao| SIHIE|{7} 0|2 =

ZELE (ex:a,a,,a,) Ex) 3Xtgl 37Hio| HE| bE
basis ai,a 3 2| linear

5 1 Z7to| Yolo| HE|(b)s A2 WHE| 2 mHg|combination 2= E

* ALk b=Ila +ma,+na, (I,m,n:const

<::| d,,d,,d; & CI2 basis2 B SICIH 3712| basis7} & Q6}C}.

b=la, + ma, + na,
=l(cy v, +C,V, +C3V,5) +M(CyyVy +C,ppV, +CpeVs) +N(Cy V) +CypV, +CiV3)
= (Ic, + mc,, +nc,,)v, +(Ic, + mc,, +nc,, )V, + (Ic; + mC,; +NCy3) V4

(I,m,n,c:const)

<] a,,a,,a; £ C}2 2749| basis2 EHHSHCIH
=la, + ma, + na,

Ex) 3Xt3l Sty
basis Vi, Vy, V
combinationg

= I((:11\/1 + C12V2) + m(czlvl + szvz) + n(C31V1 + Cszvz)
= (Ic, + mc,, +nc,,)v, +(Ic, + mc,, +nc,, )V,

(I,m,n,c:const)




Rank in Terms of Column Vectors

-3 by 3 _matrix
IetrapkA:3 o

A, &, ap; G
A= Ay 8y Ay [T a

|85 8y Gy | |8

3(=rank A) linearly independent rows (basis) :

Vi=1DNg Vi V13]
Vo =1V Vo V23]
Vi =[Va Vi V33]

a3 C;1Vy +CpV, +Ci3V,
Apz | =| Ca1Vy +CpVy +Cy3V3
a32 A3 C31Vy +C55V, +Cg3V35
'6'I-I - |

HIE| S v1, v2, v30| UXlZHsto 2 HSEH

2008 M atrices~(‘2)

—

Note

<::| A2°| rank7} 30|02 SHHIE{ = linearly independent
S}LC}.

g

<] dB{o 2 Ao #HIE|{7} 0| 2= Z7HS 37|29 Basis=
Z#erh (ex:a,a,,a,) Ex) 3518l B7HLo| HE| bE
basis ai,a 3 2| linear

1 Z7to| Yolo| HE|(b)= AQ| WHE|Z HHT|combinationo= B

* ALk b=Ila +ma,+na, (I,m,n:const

<::| d,,d,,d; & CI2 basis2 B SICIH 3712| basis7} & Q6}C}.

b=la, + ma, + na,
=l(cy v, +C,V, +C3V,5) +M(CyyVy +C,ppV, +CpeVs) +N(Cy V) +CypV, +CiV3)
= (Ic, + mc,, +nc,,)v, +(Ic, + mc,, +nc,, )V, + (Ic; + mC,; +NCy3) V4

(I,m,n,c:const)

Ex) 3k}2l Z7ZHAto| HIE| bE
basis V;,V, y Vj 9| linear
<] al’az’a E C}2 2749] basis2 B SHCHH comblnatlongi |

=la, + ma, + na,

= I((:11\/1 + C12V2) + m(czlvl + szvz) + n(C31V1 + Cszvz)
V,,V = 9] I
= (|C11 +mMeCy, + nC31)V1 + (Iclz +me,, + ncsz)vz B ol 2 G o=t SHE &?

(I,m,n,c:const)




Rank in Terms of Column Vectors
-3 by 3 _matrix

Q a; ad, ap C;yVy +CpV, 1G5V,
A= a, |=| 3y 8y 8y |=|CyVy +CuV, +CxuV;
a, dy Q43 Qg G5 Vy TGV, +C55V,

Ay = CpyVyy +CpVo +C15Va
Ay = CyVyq TCVy G5V
dgy = CgyVyy +C3,Vyy +Cg5V5

a‘12 = C11V12 + C12V22 + C13V32 Ao| HHiF] 0] YHE{E L linearly independent $t basis

Ay = CpqVip 1 CppVpy +Cp3Va) v m

Az, = C31Vyy 1+ C3V,, +C55V3,

A3 = CpyVi3 +CpVp3 + G5V,
Ayg = CyyVi3 T CpVog +Cy3Vsg
Agg = C3,Vi3 +C5,Vo3 +Cg3V53

Y E & 3749| basis (c2] H&2| == vo| £} el EXY. U2tA rank AT = rank
2008_Matrices(2) A




Rank in Terms of Column Vectors
-3 by 3 _matrix

Q a; ad, ap C;yVy +CpV, 1G5V,
A= a, |=| 3y 8y 8y |=|CyVy +CuV, +CxuV;
a, dy Q43 Qg G5 Vy TGV, +C55V,

(1 @ ao] MES M2 basis vo| HEO = BHBH

Ay = CpyVyy +CpVo +C15Va
Ay = CyVyq TCVy G5V
dgy = CgyVyy +C3,Vyy +Cg5V5

a‘12 = C11V12 + C12V22 + C13V32 Ao| HHiF] 0] YHE{E L linearly independent $t basis

Ayy = CyyVi, G0V, +Co3V5, v /R

Az, = C31Vyy 1+ C3V,, +C55V3,

A3 = CpyVi3 +CpVp3 + G5V,
Ayg = CyyVi3 T CpVog +Cy3Vsg
Agg = C3,Vi3 +C5,Vo3 +Cg3V53

HHIE| = 37]9] basis (c2| M &9 == vo| £} «sh &EXY. }2fA] rank AT = rank
2008_Matrices(2) A




Rank in Terms of Column Vectors
-3 by 3 _matrix

al all a12 a13 C11V1 + ClZVZ + ClBVB
A=la, |=]8y, 8y ay|=|CyV;+CyV,+CxV;
a3 a31 a32 a33 C31V1 + C32V2 + C33V3
(1w ao] MEE M2 basis vo| HEO = BHBH
Ay =CyVig + GV +GaVy [a.] :@, &5 833] =€y, +C,V, +C5V,
Ayy = CyqVig +Cy5Vy1 + GV = Gl Vi Vg Gl Vi Vi + GlVor Voo e

= (CoaVip + CipVip +CiaVigy ), (CyyVig + CiVop +CiaViy )]
a‘31

= C3,V1 T C3Vy +C55V5

a‘12 = C11V12 + C12V22 + C13V32 Ao| HHiF] 0] YHE{E L linearly independent $t basis

Ay = CpqVip 1 CppVpy +Cp3Va) v m

Az, = C31Vyy 1+ C3V,, +C55V3,

A3 = CpyVi3 +CpVp3 + G5V,
Ayg = CyyVi3 T CpVog +Cy3Vsg
Agg = C3,Vi3 +C5,Vo3 +Cg3V53

HHIE| = 37]9] basis (c2| M &9 == vo| £} «sh &EXY. }2fA] rank AT = rank
2008_Matrices(2) A




Rank in Terms of Column Vectors
-3 by 3 _matrix

Q a; ad, ap C;yVy +CpV, 1G5V,
A= a, |=| 3y 8y 8y |=|CyVy +CuV, +CxuV;
a, dy; Qg Ag G5 Vy TGV, +C55V,

SHHIE]| 30| MBS ME basis ve| 2oz HTi6IH

Ay = CpaViy GV +GiaVyy (2] =) (@) 8] = Gy + GV, + Vs

d,; = CyVy; +C50V, +Co5V4, = Cy1[Vir, Vip Via ]+ CiolViys Vg s Vg ] Ca[ Vg s Vg Vg ]
d,, =Cs,V,, +C5,V,, +C,V :’ (CiaVis +CipVap +CiaVsy )]
31~ ¥31"11 32721 33731

a‘12 = C11V12 + C12V22 + C13V32 Ao| HHiF] 0] YHE{E L linearly independent $t basis

Ayy = CyyVi, G0V, +Co3V5, v /R

Az, = C31Vyy 1+ C3V,, +C55V3,

A3 = CpyVi3 +CpVp3 + G5V,
Ayg = CyyVi3 T CpVog +Cy3Vsg
Agg = C3,Vi3 +C5,Vo3 +Cg3V53

HHIE| = 37]9] basis (c2| M &9 == vo| £} «sh &EXY. }2fA] rank AT = rank
2008_Matrices(2) A




Rank in Terms of Column Vectors
-3 by 3 _matrix

Q a; ad, ap C;yVy +CpV, 1G5V,
A= a, |=| a8y 8y Ay |=|CyV; TGV, +C)uV;
a, dy; Qg Ag G5 Vy TGV, +C55V,

SHHIE]| 30| MBS ME basis ve| 2oz HTi6IH

Ay = CpyViy T CppVoy +GigV5 [a,] =(a) @) i) = CuV + 6V, +6iV,

= = Cll Vll’VZI.Z’VlB C].Z VZl’V22’V23 c V31’V32’V33
a'21 o C21V11 ] C22\/21 i C23\/31 m)
Agy = CgqViy T CgVo1 1 Ca3V5

a‘12 = C11V12 + C12V22 + C13V32 Ao| HHiF] 0] YHE{E L linearly independent $t basis

Ayy = CyyVi, G0V, +Co3V5, v /R

Az, = C31Vyy 1+ C3V,, +C55V3,

A3 = CpyVig +CpVog +Ci3Vag
Ayg = CyyVi3 T CpVog +Cy3Vsg
Agg = C3,Vi3 +C5,Vo3 +Cg3V53

HHIE| = 37]9] basis (c2| M &9 == vo| £} «sh &EXY. }2fA] rank AT = rank
2008_Matrices(2) A




Rank in Terms of Column Vectors
-3 by 3 _matrix

Q a; ad, ap C; vy +CpV, +C5V,
A= a, |=| a8y 8y Ay |=|CyV; TGV, +C)uV;
a, dy; Qg Ag G5 Vy TGV, +C55V,

_ SHHIE]| 30| MBS ME basis ve| 2oz HTi6IH

d;, =C;,Vy; +C,LV,, +C3Vy, [a,] @@@) C,,Vy +Cp,V, +CpuV,

— = CyylVags Vg, Vig |+ CialVog s Vg s Vg I + Cial Vg, Vg, Vg
aZl T C21V11 + C22V21 + CZ3V31 m)
a‘3l — C31V11 + C32V21 + C33V31

8, = CyV;, +CiVyy + CpaVay Ao| odHiIES 0| HE{S 2 linearly independent 3t basis
Ayy = CyqVip +CpoV5, +Co5V5, _ v _ _ m _
85, = CqyVy, +CayVsyy + CasVa, C Ciy Cio Ci3
B $ Ao | = Vi | Cop |+ Vo | Cop [+ Vg | Cog
Aiz = CyyVi3 +CpVo5 +CiVsg ay, Cyy C., ]

Ayg = CyyVi3 T CpVog +Cy3Vsg - - - -
Agg = C3,Vi3 +C5,Vo3 +Cg3V53

—

HHIE| = 37]9] basis (c2| M &9 == vo| £} «sh &EXY. }2fA] rank AT = rank
2008 _Matrices(2) A




Rank in Terms of Column Vectors
-3 by 3 _matrix

AO| S HIE:
a ] [a, &, a,| [cavitc,V,+cyy, | . 1
A= A, |=| 8y 8y 3y |=|CyV; +CpV, +CpV, — m _C o _C 7 _C 7
a, Ay Ay gy | Cyy V) +C3V, +C35V5 alk 11 12 13
oy | = Vi | Cop | T Vo | Cop | V3 | Cyg
_a3k_ _C ] _C2_ _C3_
0] €HIE{E2 linearly independent St basis
HHIE| = 37H2]| basis (c2] H&=9| == vo| 2} ¢ =xf.

(2} A rank AT = rank A

2008_Matrices(2)




Rank in Terms of Column Vectors
-3 by 3 _matrix

8y,

8y,

A3

a22

a'23

&
84 N

2008_Matrices(2)

a3

As3 |

Cllvl + C12V2 + C13V3

=|CyVy +C,V, + G5V,

CSlvl + C32V2 + C33V3

A9| HHE;

\

Ay
a2 k

Ay _

= Vi

+V,

+ Vs,




Rank in Terms of Column Vectors
-3 by 3 _matrix

8y, 8y

A3

a‘23

a,
A= A, |=|ay 3y
a, Ay Ay

2008_Matrices()
_—

d33 |

Cllvl + C12V2 + C13V3

=|CyVy +C,V, + G5V,

CSlvl + C32V2 + C33V3

AS| ZHEf

\

Ay
a2 k

Ay _

= Vi

0| EHIE{S0| linearly dependent S}C}H?

Cll
C21

C31 A




Rank in Terms of Column Vectors
-3 by 3 _matrix

0| EHIE{S0| linearly dependent S}C}H?

AO| S HIE:
a Q; &, C,Vy +CpV, + G5V, | T HE /\
A= A, |=| 8y 8y 3y |=|CyV; +CpV, +CpV, — a1 m B C - — c - — c -
a, Ay Ay gy | G5,V TGV, +Cy5V, k 11 12 13
- = - - - - —— A [ = Vi | Cop |+ Var | Co |+ V5| Cog
alk Cll C12 ClZ C C C
. B a3k | | Y31 | | Y32 | Y33 ]
Ay [ = Vi | Cop [T Vo | Cpp [T V5 UJ Cyy
_a3k_ _C3l_ _C32_ _C23_

2008_Matrices(2)




Rank in Terms of Column Vectors
-3 by 3 _matrix

0| EHIE{S0| linearly dependent S}C}H?

AO| S HIE:
a Q; &, C,Vy +CpV, + G5V, | T HE /\
A= A, |=| 8y 8y 3y |=|CyV; +CpV, +CpV, — a1 m B C - — c - — c -
a, Ay Ay gy | G5,V TGV, +Cy5V, k 11 12 13
- = - - - - —— A [ = Vi | Cop |+ Var | Co |+ V5| Cog
alk Cll C12 ClZ C C C
. B a3k | | Y31 | | Y32 | Y33 ]
Ay [ = Vi | Cop [T Vo | Cpp [T V5 UJ Cyy
_a3k_ _C3l_ _C32_ _C23_

2008_Matrices(2)




Rank in Terms of Column Vectors
-3 by 3 _matrix

0| EHIE{S0| linearly dependent S}C}H?

AO| HHIE
a Q; &, C,Vy +CpV, + G5V, | T HE /\
A= A, |=| 8y 8y 3y |=|CyV; +CpV, +CpV, — a1 m B C - — c - — c -
a, Ay Ay gy | G5,V TGV, +Cy5V, k 11 12 13
- = - - - - —— A [ = Vi | Cop |+ Var | Co |+ V5| Cog
alk Cll C12 C12 C C C
. B a3k | | Y31 | | Y32 | Y33 ]
Ay [ = Vi | Cop [T Vo | Cpp [T V5 UJ Cyy
| Ay | Csy Cs, | Cy3

Ay Ci
Ay | = Vi | Cx +(V2k+V3ku) C,,
| Ca1 |

Ay |

b Aol e 2N basiso| 147t SIS A| |0 2&0| E Vi, Vi,

aQ a, &, 3a; CVy +CpV, +UC,V, CyV; +Cp L+ U)(V, +V;) CyV; +Cp L+ UV g,
A= A, |=|8y 8y 8y |=|CyV; +CuV, +UC,V, =) CyV, +Cy (1+ U)(Vz + V3) =1C;V; +Cy (1+ u)vnew
a, d; Q43 Qg s,V +C3V, +UC,V, CsVy +Cyp (1+ u)(Vz + V3) C;,Vy + Gy, (1+ u)vnew

2008 M atricesLZ)




Rank in Terms of Column Vectors
-3 by 3 _matrix

- AO| HHIE
a ] [a, &, a,| [cavitc,V,+cyy, | . 1
A= A, |=|ay 8y, dy |=]CyV,+ChV, +C)uV, — a1 m _C u _C u _C u
a, Ay Ay gy | Cyy V) +C3V, +C35V5 K - - 13
0] EHE{£0| linearly dependent &}C}H? a2k = Vi C21 + V2k C22 SR V3k 023
_a3k_ _C31_ _C32_ _C33_
a1k Cll C12
Ay | =V | Gy | T (V2k + V3ku) C,,
| Ay, | C3; | Cs,

L L Aol wue) oM basisel |47t SIS EI0] 220 H V,V,,

aQ a, &, 3a; CVy +CpV, +UC,V, CyV; +Cp L+ U)(V, +V;) C,V, +C,(1+u)v
A= A, |=|8y 8y 8y |=|CyV; +CuV, +UC,V, =) CyV, +Cy (1+ U)(Vz + V3) =1C;V; +Cy (1+ U)V
a, d; Q43 Qg s,V +C3V, +UC,V, CsVy +Cyp (1+ u)(Vz + V3) C;,Vy + Gy, (1+ U)V

new

new

new

2008 M atricesLZ) |




Rank in Terms of Column Vectors
-3 by 3 _matrix

- AO| SHIE
a | [an a, &) [GVi+o,v,+c,v, | . L
A=la, |=| 8y 8y 8y |=|CyVy+CyV,+CyV, _a1 . _C 1 _C i _C i
A, A3 dy g | | G5V, +CyV, + G5V, k 11 12 13
AHIE = H o1 H —
0| ¥HIE{E0]| linearly dependent SfC}H? a2k 1k C21 + V2k C22 + V3k C23
| kS | Ca1 | Cs5 | | Ca3 |

- 0] €HIE| S 2 linearly independent $F basis

Ay Ciy Cy
Ay | = Vi | Gy | T (V2k + V3ku) C,,
| A, | G5y | G5,

L L Aol wue) oM basisel 47t SIS EIO] 220 H V,V,,

aQ a, &, 3a; CVy +CpV, +UC,V, CyV; +Cp L+ U)(V, +V;) C,V, +C,(1+u)v
A= A, |=|8y 8y 8y |=|CyV; +CuV, +UC,V, =) CyV, +Cy (1+ U)(Vz + V3) =1C;V; +Cy (1+ U)V
a, d; Q43 Qg s,V +C3V, +UC,V, CsVy +Cyp (1+ u)(Vz + V3) C;,Vy + Gy, (1+ U)V

new

new

new

2008 M atricesLZ)




Rank in Terms of Column Vectors
-3 by 3 _matrix

- AO| SHIE
a ] [a, a, a,| [cv+ey,+c.y, | . 1
A= A, |=| 8y 8y 3y |=|CyV; +CpV, +CpV, ~ a1 m _C o _C 7 _C ]
a, Ay Ay gy | G5,V TGV, +Cy5V, k 11 12 13
o] 2HIE]=0] i S o? —_
| eHlE{£0| linearly dependent S}C}HH a2k 1k C21 + V2k C22 +V3k C23
_a3k_ _C | _C2_ _C3_
| - 0] €HIE| S 2 linearly independent $F basis
alk Cll C12
— SHHIE| = 37]9] basis (c2] ME9| = vo| 2} 5asGhH =IXJ.
a'2|( T Vlk C21 + (V2k + V3ku) C22 [?I-E_Il-k| rank AT = rank A ° °=
_a3k _C31 _C32

L L Aol wue) oM basisel 47t SIS EIO] 220 H V,V,,

aQ a, &, 3a; CVy +CpV, +UC,V, CyV; +Cp L+ U)(V, +V;) C,V, +C,(1+u)v
2 |T| 8 8y 8y |=|CyVy +CpV, +UC,V, = CyV, +Cy (1+ U)(Vz + V3) =1C;V; +Cy (1+ U)V
3 d; Q43 Qg s,V +C3V, +UC,V, CsVy +Cyp (1+ u)(Vz + V3) C;,Vy + Gy, (1+ U)V

new

new

new

2008_Matrices(2)




Solutions of Homogeneous Linear Systems

2008_Matrice_s(2) :




Homogeneous Linear System with Fewer
Equations Than_Unknowns._(2)

AX = X (A : matrix
AX —Ax=0 A :scalar
(A-A)x=0 | X:vector

I\

2008_Matrices(2) A




Homogeneous Linear System with Fewer
Equations Than_Unknowns._(2)

AX = X (A : matrix
AX—Ax=0 $ A:scalar
(A-A)x=0 | X vector

= |f the rank (A —Al) is equal to n, the number of component of x, (the
determinant of (A —Al) is nonzero), we have a trivial solution (x = 0).
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Homogeneous Linear System with Fewer
Equations. Than_Unknowns._(2)

AX = X (A : matrix
AX—Ax=0 $ A:scalar
(A-A)x=0 | X vector

= |f the rank (A —Al) is equal to n, the number of component of x, (the
determinant of (A —Al) is nonzero), we have a trivial solution (x = 0).

= If the rank (A —Al) is less than n, the number of component of x, (the
determinant of (A —Al) is zero), we have Infinitely many solutions (x

£0).
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Homogeneous Linear System with Fewer
Equations. Than_Unknowns._(2)

AX = X (A : matrix
AX—Ax=0 $ A:scalar
(A-A)x=0 | X vector

= |f the rank (A —Al) is equal to n, the number of component of x, (the
determinant of (A —Al) is nonzero), we have a trivial solution (x = 0).

= If the rank (A —Al) is less than n, the number of component of x, (the
determinant of (A —Al) is zero), we have Infinitely many solutions (x

£0).

= A scalar ﬂ/ such that the equation holds for some vector x # 0 is called an eigenvalue of A.
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Homogeneous Linear System with Fewer
Equations. Than_Unknowns._(2)

AX = X (A : matrix
AX—Ax=0 $ A:scalar
(A-A)x=0 | X vector

= |f the rank (A —Al) is equal to n, the number of component of x, (the
determinant of (A —Al) is nonzero), we have a trivial solution (x = 0).

= If the rank (A —Al) is less than n, the number of component of x, (the
determinant of (A —Al) is zero), we have Infinitely many solutions (x

£0).

= A scalar ﬂ/ such that the equation holds for some vector x # 0 is called an eigenvalue of A.

= At that time, vector x is called eigenvector of A.

2008_Matrices(2)




Second- and Third-Order Determinants

2008_Matrices(2) _




Determinant of second- and third order

Determinant of second order

Determinant of third order

2008_Matrices(2)




Determinant of second- and third order

Determinant of second order

D =det A =det

Determinant of third order

2008_Matrices(2)

Ay
a’21

A,
a'22

= dy a,, —a,dy




Determinant of second- and third order

Determinant of second order

D=det A=det| B %2 |_|% %e|_ a,a,, —a,a,,

L a'21 a'22 N a21 a'22

Determinant of third order

d; dyp, Qg
D = dy;  ay, Ay

a31 a32 a33

2008_Matrices(2)




Determinant of second- and third order

Determinant of second order

D=det A=det| B %2 |_|% %e|_ a,a,, —a,a,,

L a'21 a'22 N a21 a'22

Determinant of third order

d; dp Qg
D = dy,

d d
dg; 3y g3
d d

= ap —ay, +as;

2008 M atricesLZ) |




Determinant of second- and third order

Determinant of second order

D=det A=det| B %2 |_|% %e|_ a,a,, —a,a,,

L a'21 a'22 N a21 a'22

Determinant of third order

d; dp Qg
D = dy,

d d
dg; 3y g3
d d

= ap —ady, +as;

2008 M atricesLZ) |




Determinant of Order n

Terms

In D we have n? entries g, also n rows and n columns, and a main diagonal on
which a,,, a5, ..., a,, stand.

M, is called the minor of g in D, and C;, the cofactor of g in D

For later use we note that D may also be written in terms of minors

D = Z ) a, M, (j=12, -, n)

2008 M atrices_(‘Zﬁ)'




Determinant of Order n

A determinant of order nis a scalar associated with an n x n matrix A=[a;], which is

written

Ay G G
dyy Gyp -t Gy
D =detA=

nn

and is defined for n=1 by

O
I
£

2008_Matrices(2)




Determinant of Order n
For n22 by

D=a;,Cj+a;,Cj, +---+a;,Cy, (J =12, n)

D=a,Cy +a,C, +--+a,C, (k =12, n)
Here,

. J+k
Cjk — (_1) M jk

M, is a determinant of order n-1, namely, the determinant of the

submatrix of A obtained A by omitting the row and column of the entry
a,, that is, the jth row and the kth column.

2008 M atricesiZ) ]




Determinant of Order n

1) n=1

A= [all]

2) n=2

A =

_a21 a22_

2008_Matrices(2) _




Determinant of Order n

1) n=1

A=la,| ..detA=a,

2) n=2

A =

_a21 a22_

2008_Matrices(2)




Determinant of Order n

1) n=1

A=la,| ..detA=a,

2) n=2

A =

_a21 a22_

det A =

2008_Matrices(2) A




Determinant of Order n

1) n=1

A=la,| ..detA=a,

2) n=2

A =

_a'21 a22_

dy; G
a'21 a22

(jEEtA/Q\ — Elll

2008_Matrices()
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Determinant of Order n

1) n=1
A=la,| ..detA=a,
2) n=2
Al B
_aZl a22_
detA= q
: a22

2008_Matrices()
_——




Determinant of Order n

1) n=1
A=la,| ..detA=a,
2) n=2
Al B
_a'21 a22_
det A — a11 o a12 a11 a12
a22 a‘21 a22

2008_Matrices(2)




Determinant of Order n

1) n=1
A=la,| ..detA=a,
2) n=2
Al B
_aZl a22_
detA= q —a,
: a22 ; a‘21

2008_Matrices(2)




Determinant of Order n

1) n=1

A=la,| ..detA=a,

2) n=2

A =

_a'21 a22_

detA= q —a,
: a22 2 a21

- a12a21

= ay,a,,

2008_Matrices(2)




Determinant of Order n

3)n=3 ~ —
dj;  dy, Gy
A= dy,; 8y, Ay
dj; 83, dgg |

det A =

2008_Matrices(2)




Determinant of Order n

Jn=3 _
dj;  dp Qg
A=lay &, ay
| d3; Az g3
dy; dpp A
det A=2a,(8, QA dy
dy; d3 g3

2008_Matrices()
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Determinant of Order n

3)n=3 ~ —
dj;  dy, Gy
A= dy,; 8y, Ay
| d3; 83, dgg |

detA=a,, dyy, Ay

a32 a33

2008_Matrices()
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Determinant of Order n

3)n=3 ~ -
d; dp A3
A=la, &, ay
| dy; 83 dg3

d; &, Gy

det A=a,, Ay  Ap3| —pdy Gy Ay

d3; d33 d3; d3 dg3

2008_Matrices(2) 7




Determinant of Order n

3)n=3 ~ -
d; dp dg
A=la, ay, ay
A3 dyp g3
det A=a,, dyy  Sy3| — |y, dys
d3; d33 da Aa;

2008_Matrices(2)




Determinant of Order n

3)n=3 ~

Ay
A=|a,
_a'31

2008_Matrices(2)

C¥
a22

a'32

Ay

a'23

a33 i

a‘22

a32

a23

a33

—d,|d

a‘31

21

a‘23

a'33

T8

Ay
a‘21

a'31

Ay,
a'22

a'32

A3
a23

a33




Determinant of Order n

3)n=3 ~ —

dj; Qp, g3
A= d,y, a,, dy
| dj) dj, dgg |
det A=a,, dy, Ayg| —dp,|ay dyg| +ay31dy; Ay,
dj, dj; dsy dj; dj; dg

2008_Matrices(2)




Determinant of Order n

)n=3 _
d; Q, Y3
A=la, ay, ay
| dj) dj, dgg |
det A=a,, dyy  Sy3| — |y, doz| T Ay3|dy; Ay
d3, s da Ada; d3; A

- all(a22a33 . 323332)_ d, (3213-33 . a23a31)
+ a3 (a21a32 - a22a31)

2008 M atricesLZ)




Determinant : Cy =(-1"" M,
(Minors_and_Cofactors_of a_Third-Order Determinant)

Find minors and cofactors.
d; dp A
A= dyy dy, Ay
_a31 a32 a33_

1) 1st row

2008_Matrices(2)




Determinant : Cy =(-1)"M,,
(Minors_and_Cofactors_of a_Third-Order Determinant)

Find minors and cofactors.
d; &, 3
A=la, a8, a,;
_a31 a32 a33_
1) 1st row
d; &y 3

M11:a21 d,, Ay

a'3 1 a32 a33




Determinant : Cy =(-1)"M,,
(Minors_and_Cofactors_of a_Third-Order Determinant)

Find minors and cofactors.
d; dp A
A= dyy dy, Ay
_a31 a32 a33 N
1) 1st row
M 11 — Ay, Ay
a32 a33




Determinant : Cy =(-1)"M,,
(Minors_and_Cofactors_of a_Third-Order Determinant)

Findminorsan—dcofactors. ] a, a4, d;
djp QA3 My =@y 8 8y
A=la, &, ay A1 Gy G
d3; Az g3
1) 15 row
M, = dy, Ay
dz; g




Determinant : Cy =(-1)"M,,
(Minors_and_Cofactors_of a_Third-Order Determinant)

Find minors and cofactors.
dy A Ay M, =a,, a,s
A=|a, a a
21 22 23 a31 3.33
_a31 a32 a33_
1) 1st row
M 11 — dy, Ay
a32 a33




Determinant :

C'k = (_1)j+k M jk

(Minors_and_Cofactors_of a_Third-Order Determinant)

Find minors and cofactors.

A, a8, a;
A=la, a8, ay
83; d3p a3

1) 15t row
My, = dy, dyg
d3; dj3

I\/|12

a'21

a31

a23
a‘33
d, A3
a22 a23
a'32 a'33




Determinant : Cy =(-1)"M,,
(Minors_and_Cofactors_of a_Third-Order Determinant)

Find minors and cofactors.

djp QA3 |\/|12:a

A= dy; 8y, Ay

21 a23

dsy ds;
djy Az, dgz
1) 1st row
M, = a,, a,, My =la,, ay
dj, dg; A1 G




Determinant : Cy =(-1)""M,,
(Minors_and_Cofactors_of a_Third-Order Determinant)

Find minors and cofactors.

djp QA3 |\/|12:a

A= dy; 8y, Ay

21 a23

dsy ds;
djy Az, dgz
1) 1st row
M, = a,, a,, My =la,, ay
a,, a,, dy; dg,

C11 — (_1)1+1M11 =My,

2008_M atricesh(‘ZA)




Determinant : Cy =(-1)""M,,
(Minors_and_Cofactors_of a_Third-Order Determinant)

Find minors and cofactors.
dy A Ay M, =a,, a,s
A=la, a, a
21 22 23 31 33
12 — U 12 —  '"Wi12
1) 1st row
_ M., =
dy, dgg E

Cy = (1" My, =M,

2008 Matrlces(Z)




Determinant : Cy =(-1)""M,,
(Minors_and_Cofactors_of a_Third-Order Determinant)

Find minors and cofactors.

djp QA3 |\/|12:a

A= dy; 8y, Ay

31 33
12 — U 12 —  "Wl12
1) 1st row
_ M., =
dy, dgg SR

Ciu= (_1)1+1M11 =My, C13 — (_1)1+3 M13 — M13

2008_M atrices(Z)




Determinant : Cy =(-1)"M,,
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.

A= dy; 8y, Ay

2) 2"d row

2008_Matrices(2)



Determinant : Cy =(-1)"M,,
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
d; Qp Q3
A= dy; 4y dy
_a'31 a32 a33 N
2) 2"d row
d; dp A

le =|dy; 4y Ay

a31 a'32 a33

2008_Matrices(2)




Determinant : Cy =(-1)"M,,
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.

A= dy; 8y, Ay

a'31 a32 a'33
2) 2"d row
&, a3
M, =
a'32 a33

2008_Matrices(2)




Determinant : Cy =(-1)"M,,
(Minors and Cofactors of a Third-Order Determinant)

Findminorsan_dcofactors. ] d, d, d
d; dyp g Moo =180 8 8
A=lay 8y ay dz; dy g
dy; dj, dg;
2) 2% row
d, a13
M, =
dsp dag

2008 M atricesLZ) |




Determinant : Cy =(-1)"M,,
(Minors and Cofactors of a Third-Order Determinant)

T —— o — d, 4 A3
_all d, a3 M,, =
A=la, a, ay A3 A3
dy; djy dgg
2) 2 row
d, a13
M, =
dsp dag

2008 M atricesLZ) |




Determinant :

Cy =

(_1)j+k M jk

(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
d; dp Sy3
A= dy; 4y dy
a'31 a32 a33
2) 2"d row
d, g
M 21 —
a'32 a33

2008_M atrices_(_Z)

MZZ

Ay

a31

Ay

a‘21

a‘31

a'22

a23

a‘33

Ay 3

a33

Ay




Determinant : Cy =(-1)"M,,
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.

) _ Y CE
d; &, g M o =
A=|a a a
21 22 23 Ay, Agq
dj; &3, dg;
2) 2"d row
a12 a13 a11 a12
M,, = | M3 =
dy, djyg dj; Ay

2008_M atrices_(_Z)




Determinant : Cy =(=1)""M;,
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
i i} o a3
dp Ay A3 M o =
A=|a, a, a
21 22 23 a31 a33
a'31 a32 a33
2) 2"d row
d, d; dy; 4y
M,, = | M3 =
dy, djyg dy; dy

C, = (_1)2+1M 2 ="My,

2
2008_M atr:ll'cesh(‘Zﬂ)




Determinant : Cy =(=1)""M;,
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
_ _ ! CR
d; &, g M o =
A= dy; 8y, Ay A, s,
dj; &3, dg; 242
— szz(_l) M22:M22
) 2" row
a12 a13 a11 a12
M,, = | Mo =|
dy, djyg dj; Ay

C, = (_1)21M 2 ="My,

2
2008_M atr?&esj?)




Determinant : Cy =(=1)""M;,
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
_ _ ! CR
d; &, g M o =
A= dy; 8y, Ay A, s,
dj; &3, dg; 242
— szz(_l) M22:M22
) 2" row
a12 a13 a11 a12
M,, = | M, =
dy, djyg dj; Ay

C, = (_ 1)21 M,, =-M, Cp= (_1)2+3 M, :M 23

2
2008_Matr:|IEesSZ)




Determinant : Cy =(-1)"M,,
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.

2008_Matrices(2)



Determinant : Cy =(-1)"M,,
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.

dj;  dy, A3
A= dy; 8y, Ay

a'31 a32 a33 i

3) 3" row

dj;  dp, Qg3
M31:a21 d,, Ay

a31 a32 a33

2008_Matrices(2)




Determinant : Cy =(-1)"M,,
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.




Determinant : Cy =(-1)"M,,
(Minors and Cofactors of a Third-Order Determinant)

Findminorsan_dcofactors. ] d, d, d;
d; dyp g My =182 82 a5
A=|a, a, a, Ay, Ay, Qg
dy; dj, dg;
3) 3 row
d, Q3

M31 — d,, Ay

2008 M atricesLZ) |




Determinant : Cy =(-1)"M,,
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.

_ _ Ay CE
dj; A A M,, =|a,, a,s
A=la, &, ay
d3; d3p dgg
3) 31 row
A, 3




Determinant : Cy =(-1)"M,,
(Minors and Cofactors of a Third-Order Determinant)

I T e S d, 4 A3
a, a, a; M3, =2y, %3
A=la, 8, ay
dy; dj, dg;
3) 3 row
d, Q3 e
|\/|31 — d,, dyg Iv|13 =821 Gy Ay
dy) djy dgg




Determinant : Cy =(-1)"M,,
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.

_ _ Ay CE
dj; A A M,, =|a,, a,s
A=la, &, ay
d3; d3p dgg
3) 31 row
a, a, d; o




Determinant : Cy =(=1)""M;,
(Minors and Cofactors of a Third-Order Determinant)

I T e S d, 4 A3
a, a, a; M3, =2y, %3
A=la, 8, ay
dy; dj, dg;
3) 3 row
d, Q3 T
M31 B 2, a, |\/|13 =|dy Ay

C (_1)3+1 M 31 — M 31

2008_Matr"i%lls~(‘2ﬂ)—_;




Determinant : Cy =(=1)""M;,
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.

_ _ G A5
dj; A A M,, =|a,, a,s
A= dy; 8y, Ay
dj; &3, dg; 342
C32 — (_1) M32 — _Msz
3) 3" row
A, A
dj, 3 \ . ' . ?
M 31 — d,, Ay o ! e

C (_ 1)+1 M 31 — M 31

2008_M atr%%sg(%)—u




Determinant : Cy =(=1)""M;,
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.

_ _ G A5
dj; A A M,, =|a,, a,s
A= dy; 8y, Ay
dj; &3, dg; 342
C32 — (_1) M32 — _Msz
3) 3" row
A, A
dj, 3 \ . ' . ?
M 31 — d,, Ay o ! e

C (— 1)3+1 M., =M, Cas = (_ 1)3+3 Mgz = Mg,

2008_M atr%%sj?)i ‘




n

Determinant : D:a:e(_l)“kajkmjk (j=12,---,n)
r Determinant)

(Minors and Cofactors of a Third-Or

(Expansions of a Third-Order Determinant)

Find determinant 1 3 O
detA=(2 6 4
-1 0 2

1) 1strows

2008_Matrices(2)




Determinant : D:a':e(_l)j+kajijk (j=12 - n)
(Minors and Cofactors of a Third-Order Determinant)
(Expansions of a Third-Order Determinant)

Find determinant 1 3 O
detA=|2 6 4
-1 0 2
1) 15t rows
1 3 0
=12 6 4
-1 0 2

2008_Matrices(2) - -
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Determinant : D:a':e(_l)j+kajijk (j=12 - n)
(Minors and Cofactors of a Third-Order Determinant)
(Expansions of a Third-Order Determinant)

Fddeeminagt ) o
detA=|2 6 4
-1 0 2
1) 1% rows
=1 6
0 2

2008_Matrices()
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Determinant : D:%':(e(_l)j+kajijk (j=12 - n)
(Minors and Cofactors of a Third-Order Determinant)
(Expansions of a Third-Order Determinant)

Find determinant 1 3 O
detA=|2 6 4
-1 0 2
1) 15t rows
1 3 0
=1 6 -32 6 4
0 2 -1 0 2

2008_Matrices(2)




Determinant : D:%':(e(_l)j+kajijk (j=12 - n)
(Minors and Cofactors of a Third-Order Determinant)
(Expansions of a Third-Order Determinant)

Find determinant 1 3 O
detA=(2 6 4
-1 0 2

1) 1strows

2008_Matrices(2)




Determinant : D:%':(e(_l)j+kajijk (j=12 - n)
(Minors and Cofactors of a Third-Order Determinant)
(Expansions of a Third-Order Determinant)

Find determinant 1 3 O
detA=(2 6 4
-1 0 2

1) 1strows

2008_Matrices(2)




Determinant : D:%':(e(_l)j+kajijk (j=12 - n)
(Minors and Cofactors of a Third-Order Determinant)
(Expansions of a Third-Order Determinant)

Find determinant 1 3 O
detA=(2 6 4
-1 0 2

1) 1strows

2008_Matrices(2)




Determinant : D=§e(—1)j+ka,-k'\/|,-k (j=12 - n)
(Minors and Cofactors of a Third-Order Determinant)
(Expansions of a Third-Order Determinant)

Find determinant 1 3 O
detA=(2 6 4
-1 0 2

1) 1strows

=1 6 4 -3 2 4 +02 6
0 2 -1 2 -1 0

—12

=1(12—-0)—3(4+4)+0(0+6)

2008 M atrices_(‘Zﬁ)'




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

1 3 0
detA=|2 6 4
-1 0 2

2) 2"d rows

2008_Matrices(2)




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

1 3 0
detA=|2 6 4
o -1 0 2

1 3 0

=22 6 4

-1 0 2

2008_Matrices(2) - -
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Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

1 3 0
detA=|2 6 4
o -1 0 2

3 0
=2
0 2

2008_Matrices(2_)




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

1 3 0
detA=|2 6 4
o -1 0 2

3 0 1 3 0

=2 +6/2 6 4

0 22 |-1 0 2

2008_Matrices(2)




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

1 3 0
detA=|2 6 4
-1 0 2

2) 2"d rows

1
|
N

+6

2008_Matrices(2)




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

1 3 0
detA=|2 6 4
-1 0 2

2) 2"d rows

1
+6 —4/ 2

1
|
N

2008_Matrices(2)




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

1 3 0
detA=|2 6 4
-1 0 2

2) 2"d rows

1
|
N

+6 —4

2008_Matrices(2)




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

1 3 0
detA=|2 6 4
-1 0 2

2) 2"d rows

1
|
N

+6 —4

|
|
N

——2(6—0)+6(2+0)—4(0+3)

2008 M atricesiZ) ]




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

-3 0 0
detA=|6 4 O
-1 2 5

2008_Matrices(2)




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

-3 00
detA=|{6 4 0
-1 2 5

-3 0 0

=-36 4 0
-1 2 5

2008_Matrices(2) N B :
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Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

-3 0 0
detA=|6 4 O
-1 2 5

— =3 4 0

2 5

2008_Matrices(2_)




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

-3 0 0
detA=|6 4 O
-1 2 5

=3 4 0 -06 4 0

2008_Matrices(2)




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

-3 0 0
detA=|6 4 O
-1 2 5

=3 4 0 -0/ 6 0

2008_Matrices(2)




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

-3 0 0
detA=|6 4 O
-1 2 5

=3 4 0 -0/ 6 O +06 4 0

2008_Matrices(2)




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

-3 0 0
detA=|6 4 O
-1 2 5

=3 4 0 -0/ 6 0 +0 6 4 |

2008_Matrices(2)




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

-3 0 0
detA=|6 4 O
-1 2 5




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

-3 0 0
detA=|6 4 O
-1 2 5




Determinant : D= (1*a,M, (j=12 -, n)
(Minors and Cofactors of a Third-Order Determinant)

(Expansions of a Third-Order Determinant)
Find determinant.

-3 0 0
detA=|6 4 O
-1 2 5




Solving linear systems of two equations

Solve the linear systems of two equations

A X+, X, = bl @
a, X +a,,X,=b, .o

1. General Solution

2008_Matrices(2)




Solving linear systems of two equations

Solve the linear systems of two equations

A X+, X, = bl @
a, X +a,,X,=b, .o

1. General Solution

®Xa22 _@Xaiz :

2008_Matrices(2)




Solving linear systems of two equations

Solve the linear systems of two equations

A X+, X, = bl @
a, X +a,,X,=b, .o

1. General Solution

®Xa22 _@xaiz :

(a11a22 - a12a21)xl
— b1a22 - a12b2
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Solving linear systems of two equations

Solve the linear systems of two equations

A X+, X, = bl @
a, X +a,,X,=b, .o

1. General Solution
Dxa, —@xay,:
(a11a22 - a12a21)xl
=ba,, —a;,b,

X, = b1"3122 B a12b2

E d; Ay, —dj,ay,
(a11a22 — a8, # O)
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Solving linear systems of two equations

Solve the linear systems of two equations

A X+, X, = bl @
a, X +a,,X,=b, .o

Dxa,,—2xa,,: Dx(—ay,)+Dxay,:
(2418, — 81,851 )X,
=ha,, —a,b,

— b1a22 B a12b2

X,

E d; Ay, —dj,ay,
(a11a22 — a8, # O)
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Solving linear systems of two equations

Solve the linear systems of two equations

A X+, X, = bl @
a, X +a,,X,=b, .o

1. General Solution

Dxa,, —@xay,: ®X(_a21)+@xa11:

(a11a22 - a12a21)xl (a11a22 - aiza21)X1
— b1a22 - a12b2 — alle - b1a21
X, = b1a22 B a12b2

E d; Ay, —dj,ay,
(a11a22 — a8, # O)
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Solving linear systems of two equations

Solve the linear systems of two equations

A X+, X, = bl @
a, X +a,,X,=b, .o

1. General Solution

Dxa,, —@xay,: ®X(_a21)+@xa11:

(a11a22 - a12a21)xl (a11azz - aiza21)X1
— b1a22 - a12b2 — alle - b1a21
LY = b1a22 B a12b2 L X = allbz B bla21
. Xy S X,
d; Ay, —dj,ay, d; Ay, —dp,8y

(a11a22 —dy,dy F O) (a11a22 —dj,d, F O)
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Solving linear systems of two equations

Solve the linear systems of two equations = b2, —ay,b,
b @ A118y, — 81,85
a:l.lxl + a12X2 o 1 X2 _ a11b2 _b1a21
8185, = 84,8,
8y, X +8yX, =hb, .o o o
2. Use Cramer’s rule > D= f= a, a,

=a,;a;, —&,a,
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Solving linear systems of two equations

Solve the linear systems of two equations _ b2, —ay,b,
1
b @ Qy185; — 8,8y
a:l.lxl + a12X2 o 1 X2 _ a11b2 _b1a21
a8y, — 84,8,
Ay X +auX, =hb, .o \ a,
2. Use Cramer’s rule > D= f= a,, azz‘
= a8, — 3,8,
bl a12

b, &,
D
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Solving linear systems of two equations

Solve the linear systems of two equations
—_ O,
a11)(1 T a12X2 o bl
ayX +a,X, =b, e

2. Use Cramer’s rule P>

bl a12
b2 a22

2008_Matrices(2)

X, = b1a22 _a‘12b2
| =
a11a22 - a12a21
X. = a11b2 B b1a21
o=
a11a22 - a12a21

D=det A=

a, aiz‘
a'21 a‘22

=a,;a;, —&,a,



Solving linear systems of two equations

Solve the linear systems of two equations = b2, —ay,b,
@ Qy185; — 8,8y
allxl + a12X2 — bl X2 _ ailbz_b1a21
a8y, — 84,8,
ay X +3,X, =b, .o
D-detA=|1
2. Use Cramer’s rule > a, a,
= a8, — 3,8,
bl a12 all bl
b2 a22 a21 b2
X = X, =
D D
_ b1a22 _ a12b2
D
(D+0)
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Solving linear systems of two

Solve the linear systems of two equations

A Xy + X, = bl =
A, X, +ay,X, =b, .o

2. Use Cramer’s rule P>

bl a12
b2 a22

2008 M atrices_(‘Zﬁ)'

equations

X, = b1a22 _a‘12b2
| =
A118y, — 81,85

X. = allbz_b1a21

2
a11a22 - a12a21

8, &
a'21 a‘22

=a,;a;, —&,a,

D=det A=




Solving linear systems of two

Solve the linear systems of two equations

A Xy + X, = bl =
A, X, +ay,X, =b, .o

2. Use Cramer’s rule P>

bl a12
b2 a22

% (0-0)
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equations

X, = b1a22 _a12b2
| =
A118y, — 81,85

X. = allbz_b1a21

2
a11a22 - a12a21

8, &
a'21 a‘22

=a,;a;, —&,a,

D=det A=




Solving linear systems of three equations

2008 M atrices_(‘Zﬁ)'

Ay
a22

a32

A X + A X, +A3X; = bl
Ay X) Ty X, T 853X = bz
Az  X) A3, X, +Ag3X3 = bs

a23
a33




Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A Xy + AKX, T A 3X3 = bl
Ay X) Ty X, T 853X = bz
A3  X; T 85,X, +dg3X3 = bs
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Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A X + A X, +y3X3 = bl d; d, d3 | X )
Ay X T 85,X, +Ay3X3 = bz |j> dyy Ay, Ay || Xy (=110,

A3  X; T 85,X, +dg3X3 = b3 _a31 ds, a-33_ X3 03
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Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A X + A X, +y3X3 = bl d, d, 3| X )
Ay X T 85,X, +Ay3X3 = bz Ifl> dyy Ay, Ay || Xy (=110,
dg Xy Az, X, +Ag3X3 = b3 dgy 8y, Az || X5 | [ D

A X b
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Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A Xy + AKX, T A 3X3 = bl
Ay X) T Ay X, T 8y3X; = bz
A3  X; T 85,X, +dg3X3 = b3

Ay

a'21 a'22 a’23

_a‘31 a‘32 a33 i

2008_Matrices(2) |
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A Ay Az | X
a‘21 a‘22 a23 X2
_a31 a32 a‘33 N X3
A X

Nl o

w(.)




Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A Xy + AKX, T A 3X3 = bl
Ay X) T Ay X, T 8y3X; = bz
A3  X; T 85,X, +dg3X3 = b3

Ay a,
A= 22 23 |1 b
d 32 33
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A Ay Az | X
a‘21 a‘22 a23 X2
_a31 a32 a‘33 N X3
A X

Nl o

w(.)




Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A Xy + AKX, T A 3X3 = bl
Ay X) T Ay X, T 8y3X; = bz
A3  X; T 85,X, +dg3X3 = b3

.
bt
.

)
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A Ay Az | X
a‘21 a‘22 a23 X2
_a31 a32 a‘33 N X3
A X

Nl o
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Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A Xy + AKX, T A 3X3 = bl
Ay X) T Ay X, T 8y3X; = bz
A3  X; T 85,X, +dg3X3 = b3

2008_Matrices_(_2) 4

e

dy; dp A3 | K

$ a‘21 a‘22 a23 X2
_a'31 a32 a‘33_ X3

A X
)y SEC!
— 0, |j> D, =10, a,
_03_ D;  dy




Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A Xy + AKX, T A 3X3 = bl
Ay X) T Ay X, T 8y3X; = bz
A3  X; T 85,X, +dg3X3 = b3

Ay

a'21 a'22 a’23

_a‘31 a‘32 a33 i
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A Ay Az | X
a‘21 a‘22 a23 X2
_a31 a32 a‘33 N X3
A X
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Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A X + A X, +y3X3 = bl d, d, 3| X )
Ay X T 85,X, +Ay3X3 = bz Ifl> dyy Ay, Ay || Xy (=110,
dg Xy Az, X, +Ag3X3 = b3 dgy 8y, Az || X5 | [ D

>
X
i




Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A Xy + AKX, T A 3X3 = bl

Ay X) T Ay X, T 8y3X; = bz

A3  X; T 85,X, +dg3X3 = b3
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Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A Xy + AKX, T A 3X3 = bl
Ay X) T Ay X, T 8y3X; = bz
A3  X; T 85,X, +dg3X3 = b3

)

A Ay Az | X
a‘21 a‘22 a23 X2
_a31 a32 a33 N X3
A X

Nl T




Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A Xy + AKX, T A 3X3 = bl
Ay X) T Ay X, T 8y3X; = bz
A3  X; T 85,X, +dg3X3 = b3

Ay

a'21 a'22 a’23

_a‘31 a‘32 a33 i
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a‘21 a‘22 a23 X2
_a31 a32 a‘33 N X3
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Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A Xy + AKX, T A 3X3 = bl
Ay X) T Ay X, T 8y3X; = bz
A3  X; T 85,X, +dg3X3 = b3

T
A= dy; 4y ’ b
| d3; Ay

2008_Matrices(2) |

)

A Ay Az | X
a‘21 a‘22 a23 X2
_a31 a32 a‘33 N X3
A X
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Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A Xy + AKX, T A 3X3 = bl
Ay X) T Ay X, T 8y3X; = bz
A3  X; T 85,X, +dg3X3 = b3

a, @, b
A= d,; 32’ b
dj;  dg 0,

)

2008_Matricesi2)_ v 4

dy Qg Q3 || K
a21 a22 a23 X2
_a31 a32 a‘33_ X3
A X

Nl o

w(.)




Solving linear systems of three equations

Note that D,, D,, D; are obtained by replacing Columns 1, 2, 3.

A Xy + AKX, T A 3X3 = bl
Ay X) T Ay X, T 8y3X; = bz
A3  X; T 85,X, +dg3X3 = b3

d; dp b
A= A,y 22 0, ’ b
| djy 50 i Ds

2008_M atrices_(_Z) 4

Ay A, A X

Ifl> dyp Ay Ay || Xy
_a‘31 a32 a‘33 L X3 B

A X
)y d;  dy
— 0, |j> D, =la,; a,
_03_ dg; A3

Nl T




Cramer’s Rule

Cramer’s Theorem (Solution of Linear Systems by Determinants)
(a) If alinear system of n equations in the same number of unknowns x;, ..., X,

A X) +apX, -+ X = bl
&, X, +a,X, +-+a, X =D,

a X +a,X,+---+a X =b

has a nonzero coefficient determinant D=det(A), the system has precisely one solution.
This solution is given by the formulas

Where D, is the determinant obtained from D by replacing in D the kth column
by the column with the entries by, ..., b,
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Cramer’s Rule

Cramer’s Theorem (Solution of Linear Systems by Determinants)

all “ee alk “e aln bl

Ayy Ay vt Ay bz
D, =

anl “ee ank cee ann bn
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Cramer’s Rule

Cramer’s Theorem (Solution of Linear Systems by Determinants)

a,, oA, b2

nn
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Cramer’s Rule

Cramer’s Theorem (Solution of Linear Systems by Determinants)

a, - b2 Ay, b2

a, - b eoa b

replace
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Cramer’s Rule

Cramer’s Theorem (Solution of Linear Systems by Determinants)

a, - b2 Ay, b2

a, - b eoa b

N n
\---x---l ‘lll]llll‘

replace

D, =bC, +b,Cy +---+b,C,
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Cramer’s Rule

Cramer’s Theorem (Solution of Linear Systems by Determinants)

a21 b2 a2n b2
Dk _ ] 1 5
anl __bn ann bn
"'X"“ 'i---]----ll
replace

D, =bC, +b,C, +---+b,C,,

(b) Hence if the system is homogeneous and D#0, it has only the trivial solution x,=0, ...,
X,=0. If D=0, the homogeneous system also has nontrivial solutions.
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m*
=
w

=l ry

K AHEEH Ao of
f A Xp tapX, 83X =P

N Ay Xy T a5 X, FaygX; =0

d, ) X) +a,,8,,X, +a8,,a;3X; =a, P
— ‘ a11a21xl + a‘lla22X2 + a11a23x3 — allq
(a21a12 o a11a22)X2 + (a21a13 o a11a23)x3 — a21 P— allq
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m*
=
w

=l ry

K AHEEH Ao of
f A Xp tapX, 83X =P

N Ay Xy T a5 X, FaygX; =0

d, ) X) +a,,8,,X, +a8,,a;3X; =a, P
— ‘ a113-21X1 + a‘lla22X2 + a11a23x3 — allq
(a21a12 o a11a22)X2 + (a21a13 o allaZS)XB — a21 P— allq

d3, 8y, X +383,a,X, +3d3,83X;3 =az P
— ‘ Ay A3, Xy 85,85, X, + Qg ag3X; = Ayl
(a31a12 — a113-32))(2 + (a31a13 — a11a33)x3 =dy P—ayl

2008_M atricesh(‘ZA)
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Solving linear systems of two equations

“Solve the linear systems of two equations

7: when 2bl—bZ:O 2bl—b #0=Db’
e et A B el 0! 2 TR
%’;(D:O) D= etA_a _aila22_a12a21_oi a !
21 22 ! — 22 a
. Ay ¥ 8% 9 bl Ay Xy + 85X, = —= b1
_ _ apay : A,
Of &% +a,%, =D, W= 0x+0%=0 |, gy oy
22 ! - 2
®@ a21X1 a= a22 X2 — b2 i Linearly independent sg::t)ilc:: i False statement
8,y X, + 8y,X =@b1 Ny oy =b1i | 3 ' | 2
] 21M 22722 a, a X, +a,X, {aﬂ a,, ;ai—b1 ay ay Eai_bl
2 22 . Ay, PG
a. X +a,X, =b 0 0} O . 0 0 b
LA e ’ ' rank(A)=1=rank(A|B) ' rank(A)=1#2=rank(A|B)
- @ rank(A)=1<2 unknowns
a,% +a,%, =2h
21X T X, a, 1
2 _
3 3 Homogeneous linear systems ;% +a,X, =0
0-%+0-X, =—%b, —b, Ay X +8y,X, =0
{ 8y,
Ax=0 det A= = alz:0 Ax=0
Ay 8y
A= ay 8| | > A= a;
a, a, 0 O
Trivial Solution X =0 Nontrivial many solutions
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Behavior of an nth-Order Determinant under
Elementary Row Operations

Theorem 1. Behavior of an nth-Order Determinant under
Elementary Row Operations

2008_Matrices(2)




Behavior of an nth-Order Determinant under
Elementary Row Operations

Theorem 1. Behavior of an nth-Order Determinant under
Elementary Row Operations

(a) Interchange of two rows multiplies the value of the
determinant by -1.
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Behavior of an nth-Order Determinant under
Elementary Row Operations

Theorem 1. Behavior of an nth-Order Determinant under
Elementary Row Operations

(a) Interchange of two rows multiplies the value of the
determinant by -1.

(b) Addition of a multiple of a row to another row does not
alter the value of the determinant.
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Behavior of an nth-Order Determinant under
Elementary Row Operations

Theorem 1. Behavior of an nth-Order Determinant under
Elementary Row Operations

(a) Interchange of two rows multiplies the value of the
determinant by -1.

(b) Addition of a multiple of a row to another row does not
alter the value of the determinant.

(c) Multiplication of arow by a nonzero constant c
multiplies the value of the determinant by c.
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Behavior of an nth-Order Determinant under
Elementary Row Operations

Proof. (a) Interchange of two rows multiplies the value of the
determinant by -1 by induction.
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Behavior of an nth-Order Determinant under
Elementary Row Operations

Proof. (a) Interchange of two rows multiplies the value of the
determinant by -1 by induction.

The statement holds for n=2 because

2008_Matrices(2)




Behavior of an nth-Order Determinant under
Elementary Row Operations

Proof. (a) Interchange of two rows multiplies the value of the
determinant by -1 by induction.

The statement holds for n=2 because

a b

=ad —Dbc,
c d
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Behavior of an nth-Order Determinant under
Elementary Row Operations

Proof. (a) Interchange of two rows multiplies the value of the
determinant by -1 by induction.

The statement holds for n=2 because

b d
A =ad —bc, ‘ =pbc —ad
c d a b
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Behavior of an nth-Order Determinant under
Elementary Row Operations

Proof. (a) Interchange of two rows multiplies the value of the
determinant by -1 by induction.

The statement holds for n=2 because

a b

=ad —Dbc,
c d

c d
a b

=pc —ad

(a) holds for determinants of order n-122 and show that it then holds

determinants of order n.
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Behavior of an nth-Order Determinant under
Elementary Row Operations

Proof. (a) Interchange of two rows multiplies the value of the
determinant by -1 by induction.

The statement holds for n=2 because

a b

=ad —Dbc,
c d

c d
a b

=pc —ad

(a) holds for determinants of order n-122 and show that it then holds

determinants of order n.

Let D be of order n. Let E be one of those interchanged. Expand D and E
by arow that is not one of those interchanged
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Behavior of an nth-Order Determinant under
Elementary Row Operations

Proof. (a) Interchange of two rows multiplies the value of the
determinant by -1 by induction.

The statement holds for n=2 because

a b

=ad —Dbc,
c d

c d
a b

=pc —ad

(a) holds for determinants of order n-122 and show that it then holds

determinants of order n.

Let D be of order n. Let E be one of those interchanged. Expand D and E
by arow that is not one of those interchanged

D =kz_;(—1)j+kajk|v|jk,
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Behavior of an nth-Order Determinant under
Elementary Row Operations

D:kZ(_l)j+kajijk’ E = Z( Hk jk
1
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Behavior of an nth-Order Determinant under
Elementary Row Operations

D:kZ(_l)j+kajijk’ E = Z( Hk jk
1

N; Is obtained from the minor M;, of g in D by interchange
of those two rows which have been interchanged in D.
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Behavior of an nth-Order Determinant under
Elementary Row Operations

D:kZ(_l)j+kajijk’ E = Z( Hk jk
1

N; Is obtained from the minor M;, of g in D by interchange
of those two rows which have been interchanged in D.
Now these minors are of order n-1.
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Behavior of an nth-Order Determinant under
Elementary Row Operations

D:kZ(_l)j+kajijk’ E = Z( Hk jk
1

N; Is obtained from the minor M;, of g in D by interchange
of those two rows which have been interchanged in D.
Now these minors are of order n-1.

=» The induction hypothesis applies
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Behavior of an nth-Order Determinant under
Elementary Row Operations

D:kZ(_l)j+kajijk’ E = Z( Hk jk
1

N; Is obtained from the minor M;, of g in D by interchange
of those two rows which have been interchanged in D.
Now these minors are of order n-1.

=» The induction hypothesis applies

jk

M, =-N,
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Behavior of an nth-Order Determinant under
Elementary Row Operations

D:kZ(_l)j+kajijk’ E = Z( Hk jk
1

N; Is obtained from the minor M;, of g in D by interchange
of those two rows which have been interchanged in D.
Now these minors are of order n-1.

=» The induction hypothesis applies
M, =-N,

jk
D = kz_;(—l)”kajkl\/l :
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Behavior of an nth-Order Determinant under
Elementary Row Operations

D:kZ(_l)j+kajijk’ E = Z( Hk jk
1

N; Is obtained from the minor M;, of g in D by interchange
of those two rows which have been interchanged in D.
Now these minors are of order n-1.

=» The induction hypothesis applies
M, =-N,

jk
D = kz(_l)j+kajkM ik = Z(—l)j+kajk(_ \ Jk)
=1
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Behavior of an nth-Order Determinant under
Elementary Row Operations

D:kZ(_l)j+kajijk’ E = Z( Hk jk
1

N; Is obtained from the minor M;, of g in D by interchange
of those two rows which have been interchanged in D.
Now these minors are of order n-1.

=» The induction hypothesis applies
M, =-N,

jk
D = kZ:(_l)j+kajkM jk — Z(_l)j+kajk(_ Njk) =-E
-1
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Behavior of an nth-Order Determinant under

Elementary Row Operations
Proof. (b) Addition of a multiple of a row to another row does
not alter the value of the determinant.

Add c times Row i to Row |.

Let B be the new determinant. Its entries in Row j are
A +Cay-
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Behavior of an nth-Order Determinant under

Elementary Row Operations
Proof. (b) Addition of a multiple of a row to another row does
not alter the value of the determinant.

Add c times Row i to Row |.
Let =< bethe new determinant. Its entries in Row j are

D
&y +Cay
Ay Qg Ay,
all ai2 a‘|n
D =
aJ1 aj2 ajn
a a‘n2 ann

nl
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Behavior of an nth-Order Determinant under

Elementary Row Operations
Proof. (b) Addition of a multiple of a row to another row does
not alter the value of the determinant.

Add c times Row i to Row |.
Let =< bethe new determinant. Its entries in Row j are

D
&y +Cay
&y dp &y
all a|2 a‘in
D= :
aJ1 aj2 ajn
a a‘n2 ann

nl
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Behavior of an nth-Order Determinant under

Elementary Row Operations
Proof. (b) Addition of a multiple of a row to another row does
not alter the value of the determinant.

Add c times Row i to Row |.
Let =< bethe new determinant. Its entries in Row j are

D
8 +Ca
A, dp - G, Ay C¥ Ay
dp A Ay Ay a;; o Qi
D = D =

nl
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Behavior of an nth-Order Determinant under
Elementary Row Operations

We can write IS by the jth row.

dpy A, A,

iy d;, A
D =

Ay A, Ay
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Behavior of an nth-Order Determinant under

Elementary Row Operations

We can write IS by the jth row.

dpy A, A,
all a‘i2 ain
D=
ajl+ca,1 aj2+cai2 ajn+cam
anl an2 ann

2008_Matrices(2)

= Z(_l)j+k (ajk + Caik)M ik
1



Behavior of an nth-Order Determinant under
Elementary Row Operations

We can write IS by the jth row.
C CP A




Behavior of an nth-Order Determinant under
Elementary Row Operations
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Behavior of an nth-Order Determinant under
Elementary Row Operations

We can write IS by the jth row.

dpy A, A,
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D = Z(_l) (ajk T Caik)M ik
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ajl+ca,1 8.]-2—|—C6li2 ajn+cam
anl an2 ann
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Elementary Row Operations
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Behavior of an nth-Order Determinant under
Elementary Row Operations

dy & o dy,
, d; Qi G
_ J+K _
Dl — (_1) ajkM jk —
k=1
ajl aj2 ajn
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Behavior of an nth-Order Determinant under
Elementary Row Operations

dy dp gy
, d; Qi G
_ RS _
D, => (-1)"a,M, = =D
k=1
d; Q4;, d;,
anl an2 ann
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Behavior of an nth-Order Determinant under
Elementary Row Operations
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Behavior of an nth-Order Determinant under
Elementary Row Operations
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n . © & dp - Ay OxD+O
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©) all ai2 ain
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Behavior of an nth-Order Determinant under
Elementary Row Operations

d, 4, - &
i N ® allalzam e
B ok ng deetesescsdieiiiiiaiiiaded
D, = (_1) alijk:
k=1
©) a|1 ai2 ain.
an1 an2 ann

It has a;, in both Row i and Row j.
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Behavior of an nth-Order Determinant under
Elementary Row Operations

&, & - 4
i y o allalzam DXD+D
_ jrk . aga Jecceecccceiicscsssiinnnnss
D, = (_1) alijk =
k=1
©) a|1 aiz ain :
an1 a'n2 ann

It has a;, in both Row i and Row j.
Interchanging these two rows gives D, back, but on the other hand it
gives -D, by (a). (D,=-D,=0)
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Behavior of an nth-Order Determinant under
Elementary Row Operations
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Behavior of an nth-Order Determinant under
Elementary Row Operations
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It has a;, in both Row i and Row j.
Interchanging these two rows gives D, back, but on the other hand it
gives -D, by (a). (D,=-D,=0)
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Behavior of an nth-Order Determinant under D,=D

Elementary Row Operations D, =0
& CY. C
Ch CP: o
D=
ap +Cq; a;,+Cq, - a;+Ca,
an1 a‘n2 ann

Theorem (2.e) A zero row or
column renders the value of a
determinant zero

Ox(-1)+®
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Behavior of an nth-Order Determinant under D,=D

Elementary Row_Operations By =t
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D=
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Behavior of an nth-Order Determinant under D,=D

Elementary Row Operations b=t
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Behavior of an nth-Order Determinant under D,=D

Elementary Row Operations b=t
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Behavior of an nth-Order Determinant under

Elementary Row Operations

Proof. (c) Multiplication of a row by a nonzero constant ¢ multiplies the value of
the determinant by ¢

d; Qo 4y

D: ajl ajz tee a.

jn

d, da,, - 4

nn
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Behavior of an nth-Order Determinant under

Elementary Row Operations

Proof. (c) Multiplication of a row by a nonzero constant ¢ multiplies the value of
the determinant by ¢
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Behavior of an nth-Order Determinant under

Elementary Row Operations

Proof. (c) Multiplication of a row by a nonzero constant ¢ multiplies the value of
the determinant by ¢

d; Qo 4y d; Qp o Gy
D=a, a;, - a; D=lca;, caj, ca,;,
dy Ay < . Ay dy, vt dy,

Expand the determinant by the jth row.
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Behavior of an nth-Order Determinant under

Elementary Row Operations

Proof. (c) Multiplication of a row by a nonzero constant ¢ multiplies the value of
the determinant by ¢

d; Qo 4y d; Qp o Gy
D=la;, a, i, D=lca;, caj, ca,;,
dy Ay < . Ay dy, vt dy,

Expand the determinant by the jth row.
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Behavior of an nth-Order Determinant under

Elementary Row Operations

Proof. (c) Multiplication of a row by a nonzero constant ¢ multiplies the value of
the determinant by ¢

d; Qo 4y d; Qp o Gy
D=la;, a, i, D=lca;, caj, ca,;,
dy Ay < . Ay dy, vt dy,

Expand the determinant by the jth row.
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Behavior of an nth-Order Determinant under

Elementary Row Operations

Proof. (c) Multiplication of a row by a nonzero constant ¢ multiplies the value of
the determinant by ¢

d; Qo 4y d; Qp o Gy
D=la;, a, i, D=lca;, caj, ca,;,
dy Ay < . Ay dy, vt dy,

Expand the determinant by the jth row.
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Further Properties of nth-Order Determinants

Theorem 2. Further Properties of nth-Order Determinants
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Further Properties of nth-Order Determinants

Theorem 2. Further Properties of nth-Order Determinants

(d) Transposition leaves the value of a determinant
unaltered.

(e) A zero row or column renders the value of a determinant
Zero.

(f) Proportional rows or columns render the value of a
determinant zero. In particular, a determinant with two
identical rows or columns has the value zero.
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Further Properties of nth-Order Determinants

Proof.
(d) Transposition leaves the value of a determinant unaltered.

Proof.
(e) A zero row or column renders the value of a determinant zero.

d; dpp, vt Gy

d, 4a,, - 4d
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Further Properties of nth-Order Determinants

Proof.
(d) Transposition leaves the value of a determinant unaltered.

Transposition is defined as for matrices, that is, the jth row becomes the
jth column of the transpose.

Proof.
(e) A zero row or column renders the value of a determinant zero.

d; dpp, vt Gy

d, 4a,, - 4d
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Proof.
(d) Transposition leaves the value of a determinant unaltered.
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(e) A zero row or column renders the value of a determinant zero.

d; dpp, vt Gy

d, 4a,, - 4d

2008 M atrices_(‘Zﬁ)'




Further Properties of nth-Order Determinants

Proof.
(d) Transposition leaves the value of a determinant unaltered.

Transposition is defined as for matrices, that is, the jth row becomes the
jth column of the transpose.

Proof.
(e) A zero row or column renders the value of a determinant zero.
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Further Properties of nth-Order Determinants

Proof.
(f) Proportional rows or columns render the value of a determinant zero.

In particular, a determinant with two identical rows or columns has the
value zero.

T dp v Ay,
Ox(-1)+®
all ai2 a|n @
D=

ca, Ca, ca,| @

an1 an2 ann
Theorem (1.c) Multiplication of a row by a Theorem. (1.b) Addition of a multiple of a
nonzero constant ¢ multiplies the value of row to another row does not alter the
the determinant by c value of the determinant.
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Further Properties of nth-Order Determinants

Proof.

value zero.

(f) Proportional rows or columns render the value of a determinant zero.
In particular, a determinant with two identical rows or columns has the

d; &

ai1 al 2
D=

Ca, Ca,

an1 an2

Theorem (1.c) Multiplication of arow by a
nonzero constant ¢ multiplies the value of
the determinant by c
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Theorem. (1.b) Addition of a multiple of a
row to another row does not alter the
value of the determinant.
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Proof.

value zero.
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Further Properties of nth-Order Determinants

Proof.

value zero.

(f) Proportional rows or columns render the value of a determinant zero.
In particular, a determinant with two identical rows or columns has the
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Determinant of a Triangular Matrix

D=detA=

d, &, - a
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Determinant of a Triangular Matrix

a, O 0

aZl a'22 O
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dy Ay Ay

— 311C11 + a12C12 Tt aincln
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Determinant of a Triangular Matrix

fp Gag O O
D:detA: . . 50 c . ? Mll
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Determinant of a Triangular Matrix

fp Gag O O

=» It is also a determinant
of a triangular matrix.

:a11C11 ( Ay, =g ==y, :O)
:ailMll
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Determinant of a Triangular Matrix

dyy ;azz O

=» It is also a determinant
of a triangular matrix.




(T11) 3K AEIYG A9 o)

(a21a12 o allaZZ)X2 + (a21a13 o a11a23)x3 — a21 P— allq
(a31a12 o a113-32))(2 + (a31a13 o a11a33)x3 - a31 P— a11r
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(T21) 3Xt AT LZE 29| of

(a21a12 o allaZZ)X2 + (a21a13 o a11a23)x3 — a21 P— allq
(a31a12 o a113'32))(2 + (a31a13 o a11a33)X3 - a31 P— allr

X = (a22a31 o a213-32) P— (a313-12 o a11a32)q + (3-213-12 _ allazz)r
3 =
a11a22a33 + a12a23a31 T a13321a32 o a11a23a32 _ a'1261216133 o a133'223-31

2008_Matrices(2)




(T21) 3Xt AT LZE 29| of

(a21a12 o allazz)xz + (a21a13 o a11a23)x3 — a21 P— allq
(a31a12 o a113'32))(2 + (a31a13 o a11a33)X3 - a31 P— allr

(azza o a213-32) P— (a313-12 o a11a32)q + (3-213-12 _ allazz)r

det(A) — a11a'22a'33 + a'12a'23a31 + a'13a21a‘32
a11a23a32 a'12a'21a33 a'13a'22a31

_______________________________________________________________________________
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Rank in Terms of Determinants

Theorem 3. Rank in Terms of Determinants

An m x n matrix A=[a;] has rank rx1 if and only if A has anr
X r submatrix with nonzero determinant, whereas every
square submatrix with more than r rows than A has (or does
not have!) has determinant equal to zero.

In particular, if A is square, n x n, it has rank n if and only if

detD =0
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Column Picture and Linear Equations*

2008_Matrices(2) _
*Strang G., Introduction to Linear Algebra, Third edition, Wellesley-Cambridge Press, 2003, Ch.2.1, p21 3::1




Vectors and Linear Equations

The central problem of linear algebra is to solve a system of equations.
Those equations are linear, which means that the unknowns are only
multiplied by numbers - we never see x times y.

X—2y=1
First example) 3x+2y =11
Y4
1
1 3 11 X
3

Figure 2.1 Row picture : The point (3, 1)
where the lines meet is the solution

e solution of first equation

e solution of second equation
2008_Matrices(2)

s




Vectors and Linear Equations

The central problem of linear algebra is to solve a system of equations.
Those equations are linear, which means that the unknowns are only
multiplied by numbers - we never see x times y.

X—2y=1
First example) 3x+2y =11
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Vectors and Linear Equations

The central problem of linear algebra is to solve a system of equations.
Those equations are linear, which means that the unknowns are only
multiplied by numbers - we never see x times y.

X—2y=1
First example) 3x+2y =11
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X
- 3

Figure 2.1 Row picture : The point (3, 1)
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Figure 2.1 Row picture : The point (3, 1)
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The central problem of linear algebra is to solve a system of equations.
Those equations are linear, which means that the unknowns are only
multiplied by numbers - we never see x times y.

X—2y=1
First example) 3x+2y =11

3x+2y =11
Slopes are important in calculus and

this is linear algebra.
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Vectors and Linear Equations

The central problem of linear algebra is to solve a system of equations.
Those equations are linear, which means that the unknowns are only
multiplied by numbers - we never see x times y.

X—2y=1
First example) 3x+2y =11

3x+2y =11

Slopes are important in calculus and
this is linear algebra.

You can’t miss the intersection point where
the two lines meet. The point x =3,y =1 lies
on both lines. That point solves both
equations at once. This is the solution to our
system of linear equation.

Figure 2.1 Row picture : The point (3, 1)
where the lines meet is the solution

e solution of first equation

e solution of second equation
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Vectors and Linear Equations

The central problem of linear algebra is to solve a system of equations.
Those equations are linear, which means that the unknowns are only
multiplied by numbers - we never see x times y.

X—2y=1
First example) 3x+2y =11

3x+2y =11

Slopes are important in calculus and
this is linear algebra.

You can’t miss the intersection point where
the two lines meet. The point x =3,y =1 lies
on both lines. That point solves both
equations at once. This is the solution to our
system of linear equation.

Figure 2.1 Row picture : The point (3, 1)
where the lines meet is the solution

o solution of first equation The row picture show two lines meeting

e solution of second equation at a single point.
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Vectors and Linear Equations

| want to recognize the linear system as a “vector equation”. Instead of
numbers we need to see vectors. If you separate the original system into

its columns instead of its rows, you get ,
This has two column vectors on the lef

1 —2 1 side. The problem is to find the
N X +Yy = — combination of those vectors that
y 3 ? 11 equals the vector on the right.
— 1 H|
2 _
3 3x+2y=11
y A
X—-2y=1
)(~ 1l x-2y=1
Figure 2.1 Column picture : A combination of — o . 3X + 2 y — 11
columns produces the right side (1, 11). - 1 —1\
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its columns instead of its rows, you get ,
This has two column vectors on the lef

1 —2 1 side. The problem is to find the
N X +Yy = — combination of those vectors that
y 3 ? 11 equals the vector on the right.
3
9
2 3 3x+2y=11
y A
X—-2y=1
)(~ 1l x-2y=1
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| want to recognize the linear system as a “vector equation”. Instead of
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Vectors and Linear Equations

| want to recognize the linear system as a “vector equation”. Instead of
numbers we need to see vectors. If you separate the original system into

its columns instead of its rows, you get ,
This has two column vectors on the lef

1 1 —2 1 side. The problem is to find the
. 1 X +y — — combination of those vectors that
y T ) 3 9 11 equals the vector on the right.
{ } We are multiplying the first column by x and the second column by vy,
9 and adding. With the right choices x = 3,y = 1, this produces 3 (column 1)

+ 1 (column 2) = b.

H| 2
3x+2y =11
y A
X—-2y=1
1l x-2y=1
Figure 2.1 Column picture : A combination of — R < 3X + 2 y — 11
columns produces the right side (1, 11). A 1 —1\
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Vectors and Linear Equations

| want to recognize the linear system as a “vector equation”. Instead of
numbers we need to see vectors. If you separate the original system into

its columns instead of its rows, you get ,
This has two column vectors on the lef

1 1 —2 1 side. The problem is to find the
. 1 X +y — — combination of those vectors that
y T ) 3 9 11 equals the vector on the right.
{ } We are multiplying the first column by x and the second column by vy,
9 and adding. With the right choices x = 3,y = 1, this produces 3 (column 1)

+ 1 (column 2) = b.

The column picture combines the column vectors on the
left side to produce the vector b on the right side.

H| 2
3x+2y =11
y A
X—-2y=1
)(~ 1l x-2y=1
Figure 2.1 Column picture : A combination of — o . 3X + 2 y — 11
columns produces the right side (1, 11). A 1 _1\
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X—-2y=1
3x=+2y =11

R AT

The left side of the vector equation is a linear combination of the
columns. The problem is to find the right coefficients x =3 and y=1. We
are combining scalar multiplication and vector addition into one step.
That step is crucially important, because it contains both of basic
operations :

. o 1 —2 1
Linear combination 3 |+ =

2008_M atrices(2_)
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Vectors and Linear Equations

The coefficient matrix on the left side of the equation is the 2 by 2
matrix A :

1 -2
Coefficient matrix A = {3 2}

This is very typical of linear algebra, to look at a matrix by rows and by
columns. Its rows give the row picture and its columns give the column
picture. Same numbers, different pictures, same equations. We write
those equations as a matrix problem Ax =b.

: . 1 -2 X 1
Matrix equation Ax=D0: —
3 2|V 11

The row picture deals with the two rows of A. The column picture
combines the columns. The numbers x =3 and y = 1 go into the solution

vector Xx.
2008_Matric<e_§(2_) 7

381/
394




Vectors and Linear Equations
- Three Equations._in_ Three Unknowns
The three unknowns X, y, z. The linear equations Ax=Db are

X+2yYy+32=0
2X+5y+22=4
OX—-3y+ z2=2
The row picture show three planes meeting at a single point.
Z
y
X
The usual result of two equations in The third equation gives a third plane. It cuts
three unknowns is a intersect line L of the line L at a single point. That point lies on
solutions. all three planes and it solves all three

2008_Matrices(2) equations,
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- Three Equations._in_ Three Unknowns
The three unknowns X, y, z. The linear equations Ax=Db are

X+2yYy+32=0
2X+5y+22=4
OX—-3y+ z2=2
The row picture show three planes meeting at a single point.
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L 7 L
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The usual result of two equations in The third equation gives a third plane. It cuts
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. . 2y+32=06
Vectors and Linear Equations e

2X+9y+22=4
- Three Equations._in_ Three Unknowns 6x-3y+ 2=2
The column picture starts with the vector form of the equations :
1 2 3 6
X|2|+y| S|+z|2|=|4
6 -3 1 2
Z
C The column picture combines three columns to produce
the vector (6,4,2)
Figure 2.4 Column picture : (x,y, z) = (0, 0, 2) because 2(3, 2,
y 1)=(6,4,2)=h.
The coefficient we need are x =0,y =0and z = 2. This is
X also the intersection point of the three planes in the row

picture.
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Vectors and Linear Equations

X+2y+32=06

2X+9y+22=4
- Three Equations._in_ Three Unknowns 6x-3y+ 2=2
The column picture starts with the vector form of the equations :
1] [ 2] [3] [6]
X|2|+y| S|+z|2|=|4
6 -3 1 2
Z
1 C The column picture combines three columns to produce
2 |=column 1 the vector (6,4,2)
6
Figure 2.4 Column picture : (x,y, z) = (0, 0, 2) because 2(3, 2,
A yZ 1)=(6,4,2)=h.
2 5|=column 2
i -3 The coefficient we need are x =0,y =0 and z = 2. This is

2008 M atricesLZ) |

also the intersection point of the three planes in the row
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. . 2y+32=06
Vectors and Linear Equations e

2X+9y+22=4
- Three Equations._in_ Three Unknowns 6x-3y+ 2=2
The column picture starts with the vector form of the equations :
1 2 3 6
X|2|+y| S|+z|2|=|4
6 -3 1 2
Z
1 C The column picture combines three columns to produce
2 |=column 1 the vector (6,4,2)
6
Figure 2.4 Column picture : (x,y, z) = (0, 0, 2) because 2(3, 2,
A yZ 1)=(6,4,2)=h.
2 5|=column 2
1 -3 The coefficient we need are x=0,y =0and z = 2. This is
X 6 also the intersection point of the three planes in the row
picture.

b=|4|=2 times column 3
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Vectors and Linear Equations X+2y+sz=0

: . 2X+5y+2z=4
- The Matrix Form_of the Equations BX=3yT7=2 (3

1 2 3|[x]| |6
Matrix equation : AX =| 2 5 2 Y| = 4=Db
6 -3 1}z 2

Coefficient matrix unknown vector

We multiply the matrix A times the unknown vector x to get the right side
b

Multiplication by rows : Ax Multiplication by columns : Ax is
comes from dot products, each a combination of column
row times the column x : vectors :
(row 1) ex | Ax = x(column 1)
Ax =| (row 2) e X | + y(column 2)+ z(column 3)
| (row 3) e X
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Vectors and Linear Equations AXF ; %HH
- The Matrix Form_of the Equations 7] |2

Ax = x(column 1)+ y(column 2)+ z(column 3)

When we substitute the solution x = (0, 0, 2), the multiplication Ax
produces b :

1 2 0 6 |
5 0|=2 times column 3=|4|
6 -3 1)/2 2

The first dot product in row multiplication is (1,2,3) ¢ (0,0, 2)=6. The

other dot products are 4 and 2. Multiplication by columns is simply 2 times
column 3.

Ax as a combination of the columns of A.
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