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Clearly, the interchange of two equations does not alter the solution set. Neither does that addition

because we can undo it by a corresponding subtraction. Similarly for that multiplication, which we 

can undo by multiplying the new equation by 1/c (since c≠0), producing the original equation.

We now call a linear system S1 row-equivalent to a linear system S2 if S1 can be obtained from S2 by 

(finitely many!) row operations. Thus we have proved the following result, which also justifies the 

Gauss elimination.

Because of this theorem, systems having the same solution sets are often called equivalent systems. 

But note well that we are dealing with row operations. 

No column operations on the augmented matrix are permitted in this context because they would 

generally alter the solution set.
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This is a standard elimination method for solving linear systems that 

proceeds systematically irrespective of particular features of the 

coefficients. 

If a system is in “triangular form” we can solve it by “back substitution”.
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x
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xx1 + 2x2 + x3 = 1

3x1 - x2 - x3 = 2

2x1 + 3x2 - x3 = -3

Gauss Elimination and Back Substitution
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x1 + 2x2 + x3 =  1

x2 +3x3 = 5

-7x2 -4x3 = -1 
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x1 + 2x2 + x3 =  1
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The last equations and matrix are equal to given equations.
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xx1 + 2x2 + x3 = 1

3x1 - x2 - x3 = 2

2x1 + 3x2 - x3 = -3

Gauss Elimination and Back Substitution
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Gauss Elimination and Back Substitution

x1 + 2x2 + x3 =  1

x2 +3x3 = 5

17x3 = 34 
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We can solve this by “Back substitution”, that 

is, solve the last equation for the variable, and 

then work backward, substituting the value of 

the variable into the above equation and solve 

it for another variable.
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Gauss Elimination and Back Substitution

x1 + 2x2 + x3 =  1

x2 +3x3 = 5

17x3 = 34 
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x
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17

34
3 x We can solve this by “Back substitution”, that 

is, solve the last equation for the variable, and 

then work backward, substituting the value of 

the variable into the above equation and solve 

it for another variable.

43/
394



2008_Matrices(2)

Gauss Elimination and Back Substitution

x1 + 2x2 + x3 =  1

x2 +3x3 = 5

17x3 = 34 
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2
17

34
3 x

5233 232  xxx

We can solve this by “Back substitution”, that 

is, solve the last equation for the variable, and 

then work backward, substituting the value of 

the variable into the above equation and solve 

it for another variable.
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Gauss Elimination and Back Substitution

x1 + 2x2 + x3 =  1

x2 +3x3 = 5

17x3 = 34 
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2
17

34
3 x

5233 232  xxx

12 x

We can solve this by “Back substitution”, that 

is, solve the last equation for the variable, and 

then work backward, substituting the value of 

the variable into the above equation and solve 

it for another variable.
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Gauss Elimination and Back Substitution

x1 + 2x2 + x3 =  1

x2 +3x3 = 5

17x3 = 34 

















































34

5

1

1700

310

121

3

2

1

x

x

x

2
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3 x

5233 232  xxx

12 x

12)1(22 1321  xxxx

We can solve this by “Back substitution”, that 

is, solve the last equation for the variable, and 

then work backward, substituting the value of 

the variable into the above equation and solve 

it for another variable.
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Gauss Elimination and Back Substitution

x1 + 2x2 + x3 =  1

x2 +3x3 = 5

17x3 = 34 
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2
17

34
3 x

5233 232  xxx

12 x

12)1(22 1321  xxxx

11 x

We can solve this by “Back substitution”, that 

is, solve the last equation for the variable, and 

then work backward, substituting the value of 

the variable into the above equation and solve 

it for another variable.
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Gauss Elimination and Back Substitution

x1 + 2x2 + x3 =  1

x2 +3x3 = 5

17x3 = 34 
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2
17

34
3 x

5233 232  xxx

12 x

12)1(22 1321  xxxx

11 x

We can solve this by “Back substitution”, that 

is, solve the last equation for the variable, and 

then work backward, substituting the value of 

the variable into the above equation and solve 

it for another variable.

3x
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Gauss Elimination and Back Substitution

x1 + 2x2 + x3 =  1

x2 +3x3 = 5

17x3 = 34 
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2
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34
3 x

5233 232  xxx

12 x

12)1(22 1321  xxxx

11 x

We can solve this by “Back substitution”, that 

is, solve the last equation for the variable, and 

then work backward, substituting the value of 

the variable into the above equation and solve 

it for another variable.

3x

2x
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Gauss Elimination and Back Substitution

x1 + 2x2 + x3 =  1

x2 +3x3 = 5

17x3 = 34 
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5233 232  xxx
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12)1(22 1321  xxxx

11 x

We can solve this by “Back substitution”, that 

is, solve the last equation for the variable, and 

then work backward, substituting the value of 

the variable into the above equation and solve 

it for another variable.

3x

2x

1x
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Gauss Elimination and Back Substitution

Since a linear system is completely determined by its augmented matrix, Gauss elimination can be 

done by merely considering the matrices.
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Gauss Elimination and Back Substitution
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Since a linear system is completely determined by its augmented matrix, Gauss elimination can be 

done by merely considering the matrices.
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Gauss Elimination and Back Substitution
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Since a linear system is completely determined by its augmented matrix, Gauss elimination can be 

done by merely considering the matrices.
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Gauss Elimination and Back Substitution
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Since a linear system is completely determined by its augmented matrix, Gauss elimination can be 

done by merely considering the matrices.
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Row-echelon form
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Gauss Elimination : 
The Three Possible Cases of Systems
case 1 : Gauss Elimination  if Infinitely Many Solutions Exist

three equations < four unknowns























1.24.23.03.02.1

7.24.55.15.16.0

0.80.50.20.20.3 1 2 3 4

1 2 3 4

1 2 3 4

3.0 2.0 2.0 5.0 8.0

0.6 1.5 1.5 5.4 2.7

1.2 0.3 0.3 2.4 2.1

x x x x

x x x x

x x x x

   

   

   
Row2-0.2*Row1

Row3-0.4*Row1
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Gauss Elimination : 
The Three Possible Cases of Systems
case 1 : Gauss Elimination  if Infinitely Many Solutions Exist

three equations < four unknowns























1.24.23.03.02.1

7.24.55.15.16.0

0.80.50.20.20.3 1 2 3 4

1 2 3 4

1 2 3 4

3.0 2.0 2.0 5.0 8.0

0.6 1.5 1.5 5.4 2.7

1.2 0.3 0.3 2.4 2.1

x x x x

x x x x

x x x x
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2 3 4

3.0 2.0 2.0 5.0 8.0

1.1 1.1 4.4 1.1

1.1 1.1 4.4 1.1

x x x x

x x x

x x x
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Gauss Elimination : 
The Three Possible Cases of Systems
case 1 : Gauss Elimination  if Infinitely Many Solutions Exist

three equations < four unknowns
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0.80.50.20.20.3 1 2 3 4

1 2 3 4
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1.1 1.1 4.4 1.1

x x x x

x x x

x x x

   

  

    

Row3+Row2
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Gauss Elimination : 
The Three Possible Cases of Systems
case 1 : Gauss Elimination  if Infinitely Many Solutions Exist

three equations < four unknowns
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Row3+Row2
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0 0
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Gauss Elimination : 
The Three Possible Cases of Systems
case 1 : Gauss Elimination  if Infinitely Many Solutions Exist
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Gauss Elimination : 
The Three Possible Cases of Systems

Back substitution. 

case 1 : Gauss Elimination  if Infinitely Many Solutions Exist
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Gauss Elimination : 
The Three Possible Cases of Systems

Back substitution. 

432 41:equation second  theFrom xxx 

case 1 : Gauss Elimination  if Infinitely Many Solutions Exist
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Gauss Elimination : 
The Three Possible Cases of Systems

Back substitution. 

432 41:equation second  theFrom xxx 

41 1:equationfirst   theFrom xx 

case 1 : Gauss Elimination  if Infinitely Many Solutions Exist
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Gauss Elimination : 
The Three Possible Cases of Systems

Back substitution. 

432 41:equation second  theFrom xxx 

41 1:equationfirst   theFrom xx 

Since x3 and x4 remain arbitrary, we have infinitely 

many solutions.

case 1 : Gauss Elimination  if Infinitely Many Solutions Exist
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Gauss Elimination : 
The Three Possible Cases of Systems

Back substitution. 

432 41:equation second  theFrom xxx 

41 1:equationfirst   theFrom xx 

Since x3 and x4 remain arbitrary, we have infinitely 

many solutions.

case 1 : Gauss Elimination  if Infinitely Many Solutions Exist





















00000

1.14.41.11.10
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0 0
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If we choose a value of x3 and a value of x4, then the corresponding values of x1

and x2 are uniquely determined.

65/
394



2008_Matrices(2)

Gauss Elimination : 
The Three Possible Cases of Systems

















6426

0112

3123
1 2 3

1 2 3

1 2 3

3 2 3

2 0

6 2 4 6

x x x

x x x

x x x

  


  
   

Row2-2/3*Row1

Row3-2*Row1

case 2 : Gauss Elimination if no Solution Exists
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Gauss Elimination : 
The Three Possible Cases of Systems
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3123 1 2 3

2 3

2 3

3 2 3

1/ 3 1/ 3 2

2 4 0

x x x

x x

x x

  


   
   

case 2 : Gauss Elimination if no Solution Exists

Row3-6*Row3
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Gauss Elimination : 
The Three Possible Cases of Systems
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case 2 : Gauss Elimination if no Solution Exists

Row3-6*Row3
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1/ 3 1/ 3 2

0 12

x x x

x x
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Gauss Elimination : 
The Three Possible Cases of Systems
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2 3
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2 4 0
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x x
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case 2 : Gauss Elimination if no Solution Exists

Row3-6*Row3



















12000

23/13/10

3123 1 2 3

2 3
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1/ 3 1/ 3 2

0 12

x x x

x x

  


   
 

The false statement 0=12 show that the system has no solution.
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Gauss Elimination : 
The Three Possible Cases of Systems

Row Echelon Form

At the end of the Gauss elimination (before the back substitution) 

the row-echelon form(행 사다리꼴) of the augmented matrix will be

)8(

~

~

~

~

1

2222

111211











































m

r

rrnrr

n

n

b

b

bkk

bcc

baaa

Zero

Zero

Here, r ≤ m and a11 ≠ 0, c22 ≠ 0, ∙∙∙, krr ≠ 0, and all the entries in the blue triangle as well as in the blue 

rectangle are zero. From this we see that with respect to solutions of the system with augmented 

matrix (8) (and thus with respect to the originally given system) there are three possible cases:
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Gauss Elimination : 
The Three Possible Cases of Systems

(a) Exactly one solution

if r = n and                , if present, are zero. To get the solution, solve the nth equation corresponding to (8)

(which is knnxn=bn) for xn, then the (n-1)st equation for xn-1, and so on up the line. 
1,r mb b























0

190

90

0

000

9500

25100

111
3r

3n

4m

Row Echelon Form

(b) Infinitely many solutions

if r < n and              , if present, are zero. To obtain any of these solutions, choose values of xr-1, ∙∙∙, xn

arbitrary . Then solve the rth equation for xr, then the (r-1)st equation for xr-1, and so on up the line. 
1,r mb b





















00000

1.14.41.11.10

0.80.50.20.20.32r

4n

3m

(c) No solution

if r < m and one of the entries               is not zero.  1,r mb b



















12000

23/13/10

31232r

3m

3n

1 2 3

1 2 3

1 2 3

1 2 3

0

11 24 90

3 3 92 190

2 2 2 0

x x x

x x x

x x x

x x x

  

   


   
   

1 2 3

1 2 3

1 2 3

1 2 3

0

0 10 25 90

0 0 95 190

0 0 0 0

x x x

x x x

x x x

x x x
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Gauss Elimination : 
The Three Possible Cases of Systems

(a) Exactly one solution

if r = n and                , if present, are zero. To get the solution, solve the nth equation corresponding to (8)

(which is knnxn=bn) for xn, then the (n-1)st equation for xn-1, and so on up the line. 
1,r mb b
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90
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000

9500

25100

111
3r

3n

4m

Row Echelon Form

(b) Infinitely many solutions

if r < n and              , if present, are zero. To obtain any of these solutions, choose values of xr-1, ∙∙∙, xn

arbitrary . Then solve the rth equation for xr, then the (r-1)st equation for xr-1, and so on up the line. 
1,r mb b





















00000

1.14.41.11.10

0.80.50.20.20.32r

4n

3m

(c) No solution

if r < m and one of the entries               is not zero.  1,r mb b



















12000

23/13/10

31232r

3m

3n

(no. of equations > no. of unknowns)

1 2 3

1 2 3

1 2 3

1 2 3

0

11 24 90

3 3 92 190

2 2 2 0

x x x

x x x

x x x

x x x

  

   


   
   

1 2 3

1 2 3

1 2 3

1 2 3

0

0 10 25 90

0 0 95 190

0 0 0 0

x x x

x x x

x x x

x x x
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Gauss Elimination : 
The Three Possible Cases of Systems

(a) Exactly one solution

if r = n and                , if present, are zero. To get the solution, solve the nth equation corresponding to (8)

(which is knnxn=bn) for xn, then the (n-1)st equation for xn-1, and so on up the line. 
1,r mb b
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000
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25100

111
3r

3n

4m

Row Echelon Form

(b) Infinitely many solutions

if r < n and              , if present, are zero. To obtain any of these solutions, choose values of xr-1, ∙∙∙, xn

arbitrary . Then solve the rth equation for xr, then the (r-1)st equation for xr-1, and so on up the line. 
1,r mb b
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1.14.41.11.10

0.80.50.20.20.32r

4n

3m

(c) No solution

if r < m and one of the entries               is not zero.  1,r mb b
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(no. of equations > no. of unknowns)

(no. of equations  „r‟ = no. of unknowns   „n‟)

1 2 3

1 2 3

1 2 3

1 2 3

0

11 24 90

3 3 92 190

2 2 2 0

x x x

x x x

x x x

x x x

  

   


   
   

1 2 3

1 2 3

1 2 3

1 2 3

0

0 10 25 90

0 0 95 190

0 0 0 0

x x x

x x x

x x x

x x x
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Gauss Elimination : 
The Three Possible Cases of Systems

(a) Exactly one solution

if r = n and                , if present, are zero. To get the solution, solve the nth equation corresponding to (8)

(which is knnxn=bn) for xn, then the (n-1)st equation for xn-1, and so on up the line. 
1,r mb b
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4m

Row Echelon Form

(b) Infinitely many solutions

if r < n and              , if present, are zero. To obtain any of these solutions, choose values of xr-1, ∙∙∙, xn

arbitrary . Then solve the rth equation for xr, then the (r-1)st equation for xr-1, and so on up the line. 
1,r mb b
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(c) No solution

if r < m and one of the entries               is not zero.  1,r mb b
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(no. of equations  „r‟ = no. of unknowns   „n‟)

(no. of equations < no. of unknowns)

1 2 3 4

1 2 3 4

1 2 3 4

3.0 2.0 2.0 5.0 8.0

0.3 0.3 0.2 2.3

1.5 1.0 1.0 2.5 4.0

x x x x

x x x x

x x x x

   


     
    

1 2 3

2 3

3 2 3

1/ 3 1/ 3 2

0 12

x x x

x x

  


   
 

1 2 3

1 2 3

1 2 3

1 2 3

0

11 24 90

3 3 92 190

2 2 2 0

x x x

x x x

x x x

x x x

  

   


   
   

1 2 3

1 2 3

1 2 3

1 2 3

0

0 10 25 90

0 0 95 190

0 0 0 0

x x x

x x x

x x x

x x x

  


   


     
      

1 2 3 4

1 2 3 4

1 2 3 4

3.0 2.0 2.0 5.0 8.0

0 1.1 1.1 4.4 1.1

0 0 0 0 0.0

x x x x

x x x x

x x x x

   


    
        

1 2 3

1 2 3

1 2 3

3 2 3

9 7 2 15

3 2 9

x x x

x x x

x x x
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Linear Independence.
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Linearly independent vectors 

x

y

z
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Linearly independent vectors 

x

y

z
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Linearly independent vectors 

x

y

z

i

j

k
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Linearly independent vectors 

x

y

z

i

j

k





















































1

0

0

,

0

1

0

,

0

0

1

kji
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Linearly independent vectors 

x

y

z

i

j

k





















































1

0

0

,

0

1

0

,

0

0

1

kji

We can express the location of the point with i, 

j, k.
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Linearly independent vectors 

x

y

z

i

j

k





















































1

0

0

,

0

1

0

,

0

0

1

kji

We can express the location of the point with i, 

j, k.





















































1

0

0

0

1

0

0

0

1

cbacba kji
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Linearly independent vectors 

x

y

z

i

j

k





















































1

0

0

,

0

1

0

,

0

0

1

kji

We can express the location of the point with i, 

j, k.





















































1

0

0

0

1

0

0

0

1

cbacba kji

If the point is at the origin, the equation 

becomes
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Linearly independent vectors 

x

y

z

i

j

k
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1

kji

We can express the location of the point with i, 

j, k.





















































1

0

0

0

1

0

0

0

1

cbacba kji

If the point is at the origin, the equation 

becomes

.

0

0

0

1

0

0

0
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0

0

0
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Linearly independent vectors 

x

y

z

i

j

k
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0

0

,

0

1

0

,

0

0

1

kji

We can express the location of the point with i, 

j, k.





















































1

0

0

0

1

0

0

0

1

cbacba kji

If the point is at the origin, the equation 

becomes

.

0

0

0

1

0

0

0

1

0

0

0

1







































































0cba

The equation above is satisfied if and only if 

a=b=c=0.
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Linearly independent vectors 

x

y

z

i

j

k
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1

kji

We can express the location of the point with i, 

j, k.
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0

1

0

0

0
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cbacba kji

If the point is at the origin, the equation 

becomes

.

0

0

0

1

0

0

0

1

0

0

0

1
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The equation above is satisfied if and only if 

a=b=c=0.

Then, i, j, k are linearly independent.
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Linear Independence and Dependence of Vectors

Given any set of m vectors a(1), ∙∙∙, a(m) (with the same number of components), 

a linear combination of these vectors is an expression of the form

)()2(2)1(1 mmccc aaa  
c1, c2, ∙∙∙, cm are any scalars. Now consider the equation.

)1()()2(2)1(1  0aaa  mmccc

1 2 mc c c    0

(1) (2) ( ), , , ma a a

021  nccc 

Linear Dependence / Independence

A set of functions                                                      is said to be „linearly

dependent‟on an interval      if there exist constant                            not all zero

such that 

for every      in the interval.

If the set of functions is not linearly dependent on the interval, it is said to be 

„linearly independent‟

Definition 3.1

)(,),(),( 21 xfxfxf n

I ,,..., 21 nccc

0)()()( 2211  xfcxfcxfc nn

x

In other words, a set of functions is „linearly independent‟ if the only constants for

0)()()( 2211  xfcxfcxfc nn
are

비교
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Linear Independence and Dependence of Vectors

Given any set of m vectors a(1), ∙∙∙, a(m) (with the same number of components), 

a linear combination of these vectors is an expression of the form

)()2(2)1(1 mmccc aaa  
c1, c2, ∙∙∙, cm are any scalars. Now consider the equation.

)1()()2(2)1(1  0aaa  mmccc

vectors linearly independent set or linearly independent.

1 2 mc c c    0

(1) (2) ( ), , , ma a a

021  nccc 

Linear Dependence / Independence

A set of functions                                                      is said to be „linearly

dependent‟on an interval      if there exist constant                            not all zero

such that 

for every      in the interval.

If the set of functions is not linearly dependent on the interval, it is said to be 

„linearly independent‟

Definition 3.1

)(,),(),( 21 xfxfxf n

I ,,..., 21 nccc

0)()()( 2211  xfcxfcxfc nn

x

In other words, a set of functions is „linearly independent‟ if the only constants for

0)()()( 2211  xfcxfcxfc nn
are

비교
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Linear Independence and Dependence of Vectors

Given any set of m vectors a(1), ∙∙∙, a(m) (with the same number of components), 

a linear combination of these vectors is an expression of the form

)()2(2)1(1 mmccc aaa  
c1, c2, ∙∙∙, cm are any scalars. Now consider the equation.

)1()()2(2)1(1  0aaa  mmccc

vectors linearly independent set or linearly independent.

1 2 mc c c    0

(1) (2) ( ), , , ma a a
When

021  nccc 

Linear Dependence / Independence

A set of functions                                                      is said to be „linearly

dependent‟on an interval      if there exist constant                            not all zero

such that 

for every      in the interval.

If the set of functions is not linearly dependent on the interval, it is said to be 

„linearly independent‟

Definition 3.1

)(,),(),( 21 xfxfxf n

I ,,..., 21 nccc

0)()()( 2211  xfcxfcxfc nn

x

In other words, a set of functions is „linearly independent‟ if the only constants for

0)()()( 2211  xfcxfcxfc nn
are

비교
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Linear Independence and Dependence of Vectors

Given any set of m vectors a(1), ∙∙∙, a(m) (with the same number of components), 

a linear combination of these vectors is an expression of the form

)()2(2)1(1 mmccc aaa  
c1, c2, ∙∙∙, cm are any scalars. Now consider the equation.

)1()()2(2)1(1  0aaa  mmccc

vectors linearly independent set or linearly independent.

1 2 mc c c    0

(1) (2) ( ), , , ma a a
When

021  nccc 

Linear Dependence / Independence

A set of functions                                                      is said to be „linearly

dependent‟on an interval      if there exist constant                            not all zero

such that 

for every      in the interval.

If the set of functions is not linearly dependent on the interval, it is said to be 

„linearly independent‟

Definition 3.1

)(,),(),( 21 xfxfxf n

I ,,..., 21 nccc

0)()()( 2211  xfcxfcxfc nn

x

In other words, a set of functions is „linearly independent‟ if the only constants for

0)()()( 2211  xfcxfcxfc nn
are

비교

Vector
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Linear Independence and Dependence of Vectors

Given any set of m vectors a(1), ∙∙∙, a(m) (with the same number of components), 

a linear combination of these vectors is an expression of the form

)()2(2)1(1 mmccc aaa  
c1, c2, ∙∙∙, cm are any scalars. Now consider the equation.

)1()()2(2)1(1  0aaa  mmccc

vectors linearly independent set or linearly independent.

1 2 mc c c    0

(1) (2) ( ), , , ma a a
When

021  nccc 

Linear Dependence / Independence

A set of functions                                                      is said to be „linearly

dependent‟on an interval      if there exist constant                            not all zero

such that 

for every      in the interval.

If the set of functions is not linearly dependent on the interval, it is said to be 

„linearly independent‟

Definition 3.1

)(,),(),( 21 xfxfxf n

I ,,..., 21 nccc

0)()()( 2211  xfcxfcxfc nn

x

In other words, a set of functions is „linearly independent‟ if the only constants for

0)()()( 2211  xfcxfcxfc nn
are

비교

Vector

Function
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Linear Independence and Dependence of Vectors

)1()()2(2)1(1  0aaa  mmccc

)/  (where     , 1)()2(2)1( cckkk jjmm  aaa 
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Linear Independence and Dependence of Vectors

)1()()2(2)1(1  0aaa  mmccc

If (1) also holds with scalars not all zero, we call these vectors linearly dependent, because 

then we can express (at least) one of them as a linear combination of the others. For 

instance, if (1) holds with, say, c1=0, we can solve (1) for a(1) :

)/  (where     , 1)()2(2)1( cckkk jjmm  aaa 
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Linear Independence and Dependence of Vectors

)1()()2(2)1(1  0aaa  mmccc

If (1) also holds with scalars not all zero, we call these vectors linearly dependent, because 

then we can express (at least) one of them as a linear combination of the others. For 

instance, if (1) holds with, say, c1=0, we can solve (1) for a(1) :

(Some kj‟s may be zero. Or even all of them, namely, if a(1)=0.)

)/  (where     , 1)()2(2)1( cckkk jjmm  aaa 
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Linear Independence and Dependence of Vectors

Ex 1) Linear Independence and Dependence

(1)

(2)

(3)

[ 3, 0, 2, 2]

[ 6, 42, 24, 54]

[21, 21, 0, 15]



 

  

a

a

a

(1)

(2)

(3)

6 [18, 0, 12, 12]

1
[3, 21, 12, 27]

2

[ 21, 21, 0, 15]



    

  

a

a

a

(1) (2) (3)

1
6 [0,0,0,0]

2
  a a a

Vector MatrixLinear Systems

1 2 3

1 2 3

1 2 3

3 0 2 2

6 42 24 54

21 21 0 15

x x x

x x x

x x x

   

   

     

1 2 3

1 2 3

1 2 3

3 0 2 2

0 42 28 58

21 21 0 15

x x x

x x x

x x x

   


   
     

1 2 3

1 2 3

1 2 3

3 0 2 2

0 42 28 58

0 21 14 29

x x x

x x x

x x x

   


   
     

1 2 3

1 2 3

1 2 3

3 0 2 2

0 42 28 58

0 0 0 0

x x x

x x x

x x x

   


   
      

3 0 2 2

6 42 24 54

21 21 0 15

 
 

 
   

3 0 2 2

0 42 28 58

21 21 0 15

 
 
 
   

3 0 2 2

0 42 28 58

0 21 14 29

 
 
 
    

3 0 2 2

0 42 28 58

0 0 0 0

 
 
 
  

3 0 2

6 42 24

21 21 0

 
 

 
  

3 0 2

0 42 28

21 21 0

 
 
 
  

3 0 2

0 42 28

0 21 14

 
 
 
   

3 0 2

0 42 28

0 0 0

 
 
 
  

①x2+②

①x(-7)+③

②x(0.5)+③

①

②

③
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Linear Independence and Dependence of Vectors

The three vectors are 

linearly dependent

Ex 1) Linear Independence and Dependence

(1)

(2)

(3)

[ 3, 0, 2, 2]

[ 6, 42, 24, 54]

[21, 21, 0, 15]



 

  

a

a

a

(1)

(2)

(3)

6 [18, 0, 12, 12]

1
[3, 21, 12, 27]

2

[ 21, 21, 0, 15]



    

  

a

a

a

(1) (2) (3)

1
6 [0,0,0,0]

2
  a a a

Vector MatrixLinear Systems

1 2 3

1 2 3

1 2 3

3 0 2 2

6 42 24 54

21 21 0 15

x x x

x x x

x x x

   

   

     

1 2 3

1 2 3

1 2 3

3 0 2 2

0 42 28 58

21 21 0 15

x x x

x x x

x x x

   


   
     

1 2 3

1 2 3

1 2 3

3 0 2 2

0 42 28 58

0 21 14 29

x x x

x x x

x x x

   


   
     

1 2 3

1 2 3

1 2 3

3 0 2 2

0 42 28 58

0 0 0 0

x x x

x x x

x x x

   


   
      

3 0 2 2

6 42 24 54

21 21 0 15

 
 

 
   

3 0 2 2

0 42 28 58

21 21 0 15

 
 
 
   

3 0 2 2

0 42 28 58

0 21 14 29

 
 
 
    

3 0 2 2

0 42 28 58

0 0 0 0

 
 
 
  

3 0 2

6 42 24

21 21 0

 
 

 
  

3 0 2

0 42 28

21 21 0

 
 
 
  

3 0 2

0 42 28

0 21 14

 
 
 
   

3 0 2

0 42 28

0 0 0

 
 
 
  

①x2+②

①x(-7)+③

②x(0.5)+③

①

②

③
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Linear Independence and Dependence of Vectors

The three vectors are 

linearly dependent

Ex 1) Linear Independence and Dependence

(1)

(2)

(3)

[ 3, 0, 2, 2]

[ 6, 42, 24, 54]

[21, 21, 0, 15]



 

  

a

a

a

(1)

(2)

(3)

6 [18, 0, 12, 12]

1
[3, 21, 12, 27]

2

[ 21, 21, 0, 15]



    

  

a

a

a

(1) (2) (3)

1
6 [0,0,0,0]

2
  a a a

Vector MatrixLinear Systems

1 2 3

1 2 3

1 2 3

3 0 2 2

6 42 24 54

21 21 0 15

x x x

x x x

x x x

   

   

     

1 2 3

1 2 3

1 2 3

3 0 2 2

0 42 28 58

21 21 0 15

x x x

x x x

x x x

   


   
     

1 2 3

1 2 3

1 2 3

3 0 2 2

0 42 28 58

0 21 14 29

x x x

x x x

x x x

   


   
     

1 2 3

1 2 3

1 2 3

3 0 2 2

0 42 28 58

0 0 0 0

x x x

x x x

x x x

   


   
      

3 0 2 2

6 42 24 54

21 21 0 15

 
 

 
   

3 0 2 2

0 42 28 58

21 21 0 15

 
 
 
   

3 0 2 2

0 42 28 58

0 21 14 29

 
 
 
    

3 0 2 2

0 42 28 58

0 0 0 0

 
 
 
  

3 0 2

6 42 24

21 21 0

 
 

 
  

3 0 2

0 42 28

21 21 0

 
 
 
  

3 0 2

0 42 28

0 21 14

 
 
 
   

3 0 2

0 42 28

0 0 0

 
 
 
  

The three equations are 

linearly dependent

①x2+②

①x(-7)+③

②x(0.5)+③

①

②

③
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Linear Independence and Dependence of Vectors

The three vectors are 

linearly dependent

Ex 1) Linear Independence and Dependence

(1)

(2)

(3)

[ 3, 0, 2, 2]

[ 6, 42, 24, 54]

[21, 21, 0, 15]



 

  

a

a

a

(1)

(2)

(3)

6 [18, 0, 12, 12]

1
[3, 21, 12, 27]

2

[ 21, 21, 0, 15]



    

  

a

a

a

(1) (2) (3)

1
6 [0,0,0,0]

2
  a a a

Vector MatrixLinear Systems
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1 2 3

1 2 3

3 0 2 2

6 42 24 54
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x x x

x x x
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1 2 3

1 2 3

3 0 2 2

0 42 28 58

21 21 0 15

x x x

x x x

x x x

   


   
     

1 2 3

1 2 3

1 2 3

3 0 2 2

0 42 28 58

0 21 14 29

x x x

x x x

x x x

   


   
     

1 2 3

1 2 3

1 2 3

3 0 2 2

0 42 28 58

0 0 0 0

x x x

x x x

x x x

   


   
      

3 0 2 2

6 42 24 54

21 21 0 15

 
 

 
   

3 0 2 2

0 42 28 58

21 21 0 15

 
 
 
   

3 0 2 2

0 42 28 58

0 21 14 29

 
 
 
    

3 0 2 2

0 42 28 58

0 0 0 0

 
 
 
  

3 0 2

6 42 24

21 21 0

 
 

 
  

3 0 2

0 42 28

21 21 0

 
 
 
  

3 0 2

0 42 28

0 21 14

 
 
 
   

3 0 2

0 42 28

0 0 0

 
 
 
  

The three equations are 

linearly dependent
The three rows are 

linearly dependent

①x2+②

①x(-7)+③

②x(0.5)+③

①

②

③
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Rank of a Matrix

Rank of a Matrix

The rank of a matrix A

: “the maximum number of linearly independent row vectors” of A. rank A.
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Rank of a Matrix

Rank of a Matrix

The rank of a matrix A

: “the maximum number of linearly independent row vectors” of A. rank A.

Ex 2) Rank

)2(

1502121

5424426

2203





















AThe matrix
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Rank of a Matrix

Rank of a Matrix

The rank of a matrix A

: “the maximum number of linearly independent row vectors” of A. rank A.

Ex 2) Rank

)2(

1502121

5424426

2203





















AThe matrix

has rank 2, because Example 1 shows that the first two row vectors are linearly 

independent, whereas all three row vectors are linearly dependent.
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Rank of a Matrix

Rank of a Matrix

The rank of a matrix A

: “the maximum number of linearly independent row vectors” of A. rank A.

Ex 2) Rank

)2(

1502121

5424426

2203





















AThe matrix

has rank 2, because Example 1 shows that the first two row vectors are linearly 

independent, whereas all three row vectors are linearly dependent.

Note further that rank A=0 if and only if A=0 (zero matrix).

101/
394



2008_Matrices(2)

Rank of a Matrix

 Example 1 
Rank of 3 x 4 Matrix

On the other hand, since neither u1 nor u2

is a constant multiple of the other set of 
row vectors u1, u2 is linearly independent. 
Hence by Definition, rank(A) = 2.

.

8753

8622

3111























A

Consider the 3 x 4 matrix

With u1=(-1 1 -1 3), u2=(2 -2 6 8), and 
u3=(3 5 -7 8), we see that
4u1-1/2u2+u3=0.

the set u1, u2, u3 is linearly dependent.

1 1 1 3

2 2 6 8

3 5 7 8

 
 

 
  

1 1 1 3

0 4 8 2

3 5 7 8

 
 

 
  

1 1 1 3

0 4 8 2

0 2 4 1

 
 

 
   

1 1 1 3

0 4 8 2

0 0 0 0

 
 

 
 
 

①x(-2)+②

①x(-3)+③

②x(0.5)+③

rank(A) = 2

1 2 3

1 2 3

1 2 3

3

2 2 6 8

3 5 7 8

x x x

x x x

x x x

  


  
   

1 2 3

1 2 3

1 2 3

3

0 4 8 2

3 5 7 8

x x x

x x x

x x x

  


   
   

1 2 3

1 2 3

1 2 3

3

0 4 8 2

0 2 4 1

x x x

x x x

x x x

  


   
     

1 2 3

1 2 3

1 2 3

3

0 4 8 2

0 0 0 0

x x x

x x x

x x x
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Rank and Row-Equivalent Matrices

Theorem : Row-Equivalent Matrices

Row-equivalent matrices have the same rank.

A1 row-equivalent to a matrix A2

 rank is invariant under elementary row operations.

1 1 1

0 10 25

0 0 95

0 0 0

 
 
 
 
 
 

1 1 1

1 1 1

0 10 25

20 10 0

 
 
 
 
 
 
 

3.0 2.0 2.0 5.0

0 1.1 1.1 4.4

0 0 0 0

 
 


 
  

3.0 2.0 2.0 5.0

0.6 1.5 1.5 5.4

1.2 0.3 0.3 2.4

 
 


 
   

3 2 1

0 1/ 3 1/ 3

0 0 0

 
 


 
  

3 2 1

2 1 1

6 2 4
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Rank and Linear System Solutions
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Rank of a Matrix by Row Reduction

If a matrix A is row equivalent to a row-echelon form B, then

i) the row space of A = the row space of B

ii) the nonzero rows of B from a basis for the row space of A, and

iii) rank(A) = the number of nonzero rows in B

Theorem 8.4

Rank and Row-Equivalent Matrices





















00000

1.14.41.11.10
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1.24.23.03.02.1

7.24.55.15.16.0

0.80.50.20.20.3



















12000

23/13/10

3123

















6426

0112

3123

1 2 3

1 2 3

1 2 3

1 2 3

0

11 24 90

3 3 92 190

2 2 2 0

x x x

x x x

x x x

x x x

  

   


   
   

1 2 3

1 2 3

1 2 3

1 2 3

0

0 10 25 90

0 0 95 190

0 0 0 0

x x x

x x x

x x x

x x x

  


   


     
      























0

190

90

0

000

9500

25100

111























80

90

0

0

01020

25100

111

111
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Rank of a Matrix by Row Reduction

If a matrix A is row equivalent to a row-echelon form B, then

i) the row space of A = the row space of B

ii) the nonzero rows of B from a basis for the row space of A, and

iii) rank(A) = the number of nonzero rows in B

Theorem 8.4

Rank and Row-Equivalent Matrices
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Rank of a Matrix by Row Reduction

If a matrix A is row equivalent to a row-echelon form B, then

i) the row space of A = the row space of B

ii) the nonzero rows of B from a basis for the row space of A, and

iii) rank(A) = the number of nonzero rows in B

Theorem 8.4

Rank and Row-Equivalent Matrices





















00000

1.14.41.11.10

0.80.50.20.20.3























1.24.23.03.02.1

7.24.55.15.16.0

0.80.50.20.20.3



















12000

23/13/10

3123

















6426

0112

3123

①

②

③

①

②

rank : 3
rank : 2

1 2 3

1 2 3

1 2 3

1 2 3

0

11 24 90

3 3 92 190

2 2 2 0

x x x

x x x

x x x

x x x

  

   


   
   

1 2 3

1 2 3

1 2 3

1 2 3

0

0 10 25 90

0 0 95 190

0 0 0 0

x x x

x x x

x x x

x x x

  


   


     
      























0

190

90

0

000

9500

25100

111























80

90

0

0

01020

25100

111

111

107/
394



2008_Matrices(2)

Rank of a Matrix by Row Reduction

If a matrix A is row equivalent to a row-echelon form B, then

i) the row space of A = the row space of B

ii) the nonzero rows of B from a basis for the row space of A, and

iii) rank(A) = the number of nonzero rows in B

Theorem 8.4

Rank and Row-Equivalent Matrices
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 Example 3  
Linear Independence
/Dependence

Determine whether the set of 
vectors

in R3 in linearly dependent or 
linearly independent.







2,1,3

0,3,0

1,1,2

3

2

1

u

u

u

Solution)

If we form a matrix A with the given 
vectors as rows, and if we row reduce 
A to a row-echelon form B with rank 3, 
then the set of vectors is linearly 
independent.
If rank(A)<3, then the set of vectors is 
linearly dependent.



















213

030

112

A .

100

010

001
















operations

row

Thus rank(A)=3 and the set of 
vectors u1, u2, u3 is linearly 
independent.
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different

1 0 0

0 1 0

0 0 1

 
 
 
  

No solution case

rank(A)≠rank(A|B) False statement
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Ax B

different

1 0 0

0 1 0
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No solution case

rank(A)≠rank(A|B) False statement
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A B
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No solution case

rank(A)≠rank(A|B) False statement
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A B
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row operation different

1 0 0

0 1 0
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No solution case

rank(A)≠rank(A|B) False statement
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A B rank(A|B)=3
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A
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No solution case

rank(A)≠rank(A|B) False statement

116/
394



2008_Matrices(2)

Rank and Linear Systems

1 2

1 2

1 2

1

4 6

2 3 8

x x

x x

x x

 

  

 

1

2

1 1 1

4 1 6

2 3 8

x

x

   
    

      
       

Ax B

 

1 1 1

| 4 1 6

2 3 8

 
 

  
 
  

A B rank(A|B)=3
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2 3
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different
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No solution case

rank(A)≠rank(A|B) False statement
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A B rank(A|B)=3
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A

row operation
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rank(A)=2

different
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No solution case

rank(A)≠rank(A|B) False statement
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A B rank(A|B)=3
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1 1
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2 3

 
 

 
 
  

A

row operation
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0 1
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rank(A)=2

different
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0 0 1

 
 
 
  

No solution case

rank(A)≠rank(A|B)
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False statement
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Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient 

matrix A is the same as the rank of the augmented matrix of the system

Theorem 8.5
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Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient 

matrix A is the same as the rank of the augmented matrix of the system

Theorem 8.5
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Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient 

matrix A is the same as the rank of the augmented matrix of the system

Theorem 8.5
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rank (A|B): 3
rank (A): 3

rank (A|B) : 2
rank (A): 2
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Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient 

matrix A is the same as the rank of the augmented matrix of the system

Theorem 8.5
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Solution

Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient 

matrix A is the same as the rank of the augmented matrix of the system

Theorem 8.5
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Solution Solution

Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient 

matrix A is the same as the rank of the augmented matrix of the system

Theorem 8.5
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Solution Solution
No Solution

Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient 

matrix A is the same as the rank of the augmented matrix of the system

Theorem 8.5
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Rank and Row-Equivalent Matrices





















00000

1.14.41.11.10

0.80.50.20.20.3























1.24.23.03.02.1

7.24.55.15.16.0

0.80.50.20.20.3



















12000

23/13/10

3123

















6426

0112

3123

①

②

③

①

②

③

①

②

1 2 3 4

1 2 3 4

1 2 3 4

3.0 2.0 2.0 5.0 8.0

0.3 0.3 0.2 2.3

1.5 1.0 1.0 2.5 4.0

x x x x

x x x x

x x x x

   


     
    

1 2 3

2 3

3 2 3

1/ 3 1/ 3 2

0 12

x x x

x x

  


   
 

1 2 3

1 2 3

1 2 3

1 2 3

0

11 24 90

3 3 92 190

2 2 2 0

x x x

x x x

x x x

x x x

  

   


   
   

1 2 3

1 2 3

1 2 3

1 2 3

0

0 10 25 90

0 0 95 190

0 0 0 0

x x x

x x x

x x x

x x x

  


   


     
      

1 2 3 4

1 2 3 4

1 2 3 4

3.0 2.0 2.0 5.0 8.0

0 1.1 1.1 4.4 1.1

0 0 0 0 0.0

x x x x

x x x x

x x x x

   


    
        

1 2 3

1 2 3

1 2 3

3 2 3

9 7 2 15

3 2 9

x x x

x x x

x x x

  


  
    























0

190

90

0

000

9500

25100

111























80

90

0

0

01020

25100

111

111

rank (A|B): 3
rank (A): 3

rank (A|B) : 2
rank (A): 2

rank (A|B) : 3
rank (A): 2

Solution Solution
No Solution

- One solution

Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient 

matrix A is the same as the rank of the augmented matrix of the system

Theorem 8.5

127/
394



2008_Matrices(2)

Rank and Row-Equivalent Matrices





















00000

1.14.41.11.10

0.80.50.20.20.3























1.24.23.03.02.1

7.24.55.15.16.0

0.80.50.20.20.3



















12000

23/13/10

3123

















6426

0112

3123

①

②

③

①

②

③

①

②

1 2 3 4

1 2 3 4

1 2 3 4

3.0 2.0 2.0 5.0 8.0

0.3 0.3 0.2 2.3

1.5 1.0 1.0 2.5 4.0

x x x x

x x x x

x x x x

   


     
    

1 2 3

2 3

3 2 3

1/ 3 1/ 3 2

0 12

x x x

x x

  


   
 

1 2 3

1 2 3

1 2 3

1 2 3

0

11 24 90

3 3 92 190

2 2 2 0

x x x

x x x

x x x

x x x

  

   


   
   

1 2 3

1 2 3

1 2 3

1 2 3

0

0 10 25 90

0 0 95 190

0 0 0 0

x x x

x x x

x x x

x x x

  


   


     
      

1 2 3 4

1 2 3 4

1 2 3 4

3.0 2.0 2.0 5.0 8.0

0 1.1 1.1 4.4 1.1

0 0 0 0 0.0

x x x x

x x x x

x x x x

   


    
        

1 2 3

1 2 3

1 2 3

3 2 3

9 7 2 15

3 2 9

x x x

x x x

x x x

  


  
    























0

190

90

0

000

9500

25100

111























80

90

0

0

01020

25100

111

111

rank (A|B): 3
rank (A): 3

rank (A|B) : 2
rank (A): 2

rank (A|B) : 3
rank (A): 2

Solution Solution
No Solution

- One solution - Many solutions

Consistency of AX=B

A linear system of equations AX=B is consistent if and only if the rank of the coefficient 

matrix A is the same as the rank of the augmented matrix of the system

Theorem 8.5
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Rank in Terms of Column Vectors

Theorem : Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent column vectors of A.

Hence A and its transpose AT have the same rank.

Proof)
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Rank in Terms of Column Vectors

Theorem : Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent column vectors of A.

Hence A and its transpose AT have the same rank.

Proof) Let A be an m x n matrix of rank A = r
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Rank in Terms of Column Vectors

Theorem : Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent column vectors of A.

Hence A and its transpose AT have the same rank.

Proof) Let A be an m x n matrix of rank A = r

Then by definition of rank, A has r linearly independent rows which we 

denote by v(1), ∙∙∙, v(r)
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Rank in Terms of Column Vectors

Theorem : Rank in Terms of Column Vectors

The rank r of a matrix A equals the maximum number of linearly independent column vectors of A.

Hence A and its transpose AT have the same rank.

Proof) Let A be an m x n matrix of rank A = r

Then by definition of rank, A has r linearly independent rows which we 

denote by v(1), ∙∙∙, v(r) and all the rows a(1), ∙∙∙, a(m) of A are linear 

combinations of those.
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Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a

 ranlet k 3A Note
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Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a

 ranlet k 3A Note

A의 rank가 3이므로 행벡터는 linearly independent 
하다. 
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Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a

3(= rank A) linearly independent rows (basis) :

 ranlet k 3A Note

A의 rank가 3이므로 행벡터는 linearly independent 
하다. 

135/
394



2008_Matrices(2)

Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a

3(= rank A) linearly independent rows (basis) :

 ranlet k 3A

 1312111 vvvv

Note

A의 rank가 3이므로 행벡터는 linearly independent 
하다. 
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Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a

3(= rank A) linearly independent rows (basis) :

 ranlet k 3A

 1312111 vvvv

 2322212 vvvv

Note

A의 rank가 3이므로 행벡터는 linearly independent 
하다. 
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Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a

3(= rank A) linearly independent rows (basis) :

 ranlet k 3A

 1312111 vvvv

 2322212 vvvv

 3332313 vvvv

Note

A의 rank가 3이므로 행벡터는 linearly independent 
하다. 
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Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a

3(= rank A) linearly independent rows (basis) :

 ranlet k 3A

 1312111 vvvv

 2322212 vvvv

 3332313 vvvv

Note

A의 rank가 3이므로 행벡터는 linearly independent 
하다. 

그러므로 A의 행벡터가 이루는 공간은 3개의 Basis를
갖는다.  (ex :               )

즉 그 공간의 임의의 벡터(b)는 A의 행벡터로 표현될
수 있다. 

1 2 3 ( , , : )l m n l m n const  b a a a

1 2 3, ,a a a Ex) 3차원 공간상의 벡터 b를
basis 의 linear 
combination으로 표현

1 2 3, ,a a a
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Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a

3(= rank A) linearly independent rows (basis) :

 ranlet k 3A

 1312111 vvvv

 2322212 vvvv

 3332313 vvvv

Note

A의 rank가 3이므로 행벡터는 linearly independent 
하다. 

를 다른 basis로 표현한다면 3개의 basis가 필요하다.  1 2 3, ,a a a

그러므로 A의 행벡터가 이루는 공간은 3개의 Basis를
갖는다.  (ex :               )

즉 그 공간의 임의의 벡터(b)는 A의 행벡터로 표현될
수 있다. 

1 2 3 ( , , : )l m n l m n const  b a a a

1 2 3, ,a a a Ex) 3차원 공간상의 벡터 b를
basis 의 linear 
combination으로 표현

1 2 3, ,a a a
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Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a









































333232131

323222121

313212111

333231

232221

131211

vvv

vvv

vvv

ccc

ccc

ccc

aaa

aaa

aaa

3(= rank A) linearly independent rows (basis) :

 ranlet k 3A

 1312111 vvvv

 2322212 vvvv

 3332313 vvvv

Note

A의 rank가 3이므로 행벡터는 linearly independent 
하다. 

를 다른 basis로 표현한다면 3개의 basis가 필요하다.  1 2 3, ,a a a

그러므로 A의 행벡터가 이루는 공간은 3개의 Basis를
갖는다.  (ex :               )

즉 그 공간의 임의의 벡터(b)는 A의 행벡터로 표현될
수 있다. 

1 2 3 ( , , : )l m n l m n const  b a a a

1 2 3, ,a a a Ex) 3차원 공간상의 벡터 b를
basis 의 linear 
combination으로 표현

1 2 3, ,a a a
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Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a









































333232131

323222121

313212111

333231

232221

131211

vvv

vvv

vvv

ccc

ccc

ccc

aaa

aaa

aaa

3(= rank A) linearly independent rows (basis) :

 ranlet k 3A

 1312111 vvvv

 2322212 vvvv

 3332313 vvvv

Note

A의 rank가 3이므로 행벡터는 linearly independent 
하다. 

를 다른 basis로 표현한다면 3개의 basis가 필요하다.  1 2 3, ,a a a

1 2 3

11 1 12 2 13 3 21 1 22 2 23 3 31 1 32 2 33 3

11 21 31 1 12 22 32 2 13 23 33 3

( ) ( ) ( )

( ) ( ) ( )

( , , , : )

l m n

l c c c m c c c n c c c

lc mc nc lc mc nc lc mc nc

l m n c const

  

        

        

b a a a

v v v v v v v v v

v v v

그러므로 A의 행벡터가 이루는 공간은 3개의 Basis를
갖는다.  (ex :               )

즉 그 공간의 임의의 벡터(b)는 A의 행벡터로 표현될
수 있다. 

1 2 3 ( , , : )l m n l m n const  b a a a

1 2 3, ,a a a Ex) 3차원 공간상의 벡터 b를
basis 의 linear 
combination으로 표현

1 2 3, ,a a a
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Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a









































333232131

323222121

313212111

333231

232221

131211

vvv

vvv

vvv

ccc

ccc

ccc

aaa

aaa

aaa

3(= rank A) linearly independent rows (basis) :

 ranlet k 3A

 1312111 vvvv

 2322212 vvvv

 3332313 vvvv

Note

A의 rank가 3이므로 행벡터는 linearly independent 
하다. 

를 다른 basis로 표현한다면 3개의 basis가 필요하다.  1 2 3, ,a a a

1 2 3

11 1 12 2 13 3 21 1 22 2 23 3 31 1 32 2 33 3

11 21 31 1 12 22 32 2 13 23 33 3

( ) ( ) ( )

( ) ( ) ( )

( , , , : )

l m n

l c c c m c c c n c c c

lc mc nc lc mc nc lc mc nc

l m n c const

  

        

        

b a a a

v v v v v v v v v

v v v

그러므로 A의 행벡터가 이루는 공간은 3개의 Basis를
갖는다.  (ex :               )

즉 그 공간의 임의의 벡터(b)는 A의 행벡터로 표현될
수 있다. 

1 2 3 ( , , : )l m n l m n const  b a a a

1 2 3, ,a a a Ex) 3차원 공간상의 벡터 b를
basis 의 linear 
combination으로 표현

1 2 3, ,a a a

Ex) 3차원 공간상의 벡터 b를
basis 의 linear 
combination으로 표현

1 2 3, ,v v v
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Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a









































333232131

323222121

313212111

333231

232221

131211

vvv

vvv

vvv

ccc

ccc

ccc

aaa

aaa

aaa

3(= rank A) linearly independent rows (basis) :

 ranlet k 3A

 1312111 vvvv

 2322212 vvvv

 3332313 vvvv

Note

A의 rank가 3이므로 행벡터는 linearly independent 
하다. 

를 다른 basis로 표현한다면 3개의 basis가 필요하다.  1 2 3, ,a a a

1 2 3

11 1 12 2 13 3 21 1 22 2 23 3 31 1 32 2 33 3

11 21 31 1 12 22 32 2 13 23 33 3

( ) ( ) ( )

( ) ( ) ( )

( , , , : )

l m n

l c c c m c c c n c c c

lc mc nc lc mc nc lc mc nc

l m n c const

  

        

        

b a a a

v v v v v v v v v

v v v

를 다른 2개의 basis로 표현한다면1 2 3, ,a a a

그러므로 A의 행벡터가 이루는 공간은 3개의 Basis를
갖는다.  (ex :               )

즉 그 공간의 임의의 벡터(b)는 A의 행벡터로 표현될
수 있다. 

1 2 3 ( , , : )l m n l m n const  b a a a

1 2 3, ,a a a Ex) 3차원 공간상의 벡터 b를
basis 의 linear 
combination으로 표현

1 2 3, ,a a a

Ex) 3차원 공간상의 벡터 b를
basis 의 linear 
combination으로 표현

1 2 3, ,v v v
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Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a









































333232131

323222121

313212111

333231

232221

131211

vvv

vvv

vvv

ccc

ccc

ccc

aaa

aaa

aaa

3(= rank A) linearly independent rows (basis) :

 ranlet k 3A

 1312111 vvvv

 2322212 vvvv

 3332313 vvvv

Note

A의 rank가 3이므로 행벡터는 linearly independent 
하다. 

를 다른 basis로 표현한다면 3개의 basis가 필요하다.  1 2 3, ,a a a

1 2 3

11 1 12 2 13 3 21 1 22 2 23 3 31 1 32 2 33 3

11 21 31 1 12 22 32 2 13 23 33 3

( ) ( ) ( )

( ) ( ) ( )

( , , , : )

l m n

l c c c m c c c n c c c

lc mc nc lc mc nc lc mc nc

l m n c const

  

        

        

b a a a

v v v v v v v v v

v v v

를 다른 2개의 basis로 표현한다면1 2 3, ,a a a

1 2 3

11 1 12 2 21 1 22 2 31 1 32 2

11 21 31 1 12 22 32 2

( ) ( ) ( )

( ) ( )

( , , , : )

l m n

l c c m c c n c c

lc mc nc lc mc nc

l m n c const

  

     

     

b a a a

v v v v v v

v v

그러므로 A의 행벡터가 이루는 공간은 3개의 Basis를
갖는다.  (ex :               )

즉 그 공간의 임의의 벡터(b)는 A의 행벡터로 표현될
수 있다. 

1 2 3 ( , , : )l m n l m n const  b a a a

1 2 3, ,a a a Ex) 3차원 공간상의 벡터 b를
basis 의 linear 
combination으로 표현

1 2 3, ,a a a

Ex) 3차원 공간상의 벡터 b를
basis 의 linear 
combination으로 표현

1 2 3, ,v v v
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Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a









































333232131

323222121

313212111

333231

232221

131211

vvv

vvv

vvv

ccc

ccc

ccc

aaa

aaa

aaa

3(= rank A) linearly independent rows (basis) :

 ranlet k 3A

 1312111 vvvv

 2322212 vvvv

 3332313 vvvv

Note

A의 rank가 3이므로 행벡터는 linearly independent 
하다. 

를 다른 basis로 표현한다면 3개의 basis가 필요하다.  1 2 3, ,a a a

1 2 3

11 1 12 2 13 3 21 1 22 2 23 3 31 1 32 2 33 3

11 21 31 1 12 22 32 2 13 23 33 3

( ) ( ) ( )

( ) ( ) ( )

( , , , : )

l m n

l c c c m c c c n c c c

lc mc nc lc mc nc lc mc nc

l m n c const

  

        

        

b a a a

v v v v v v v v v

v v v

를 다른 2개의 basis로 표현한다면1 2 3, ,a a a

1 2 3

11 1 12 2 21 1 22 2 31 1 32 2

11 21 31 1 12 22 32 2

( ) ( ) ( )

( ) ( )

( , , , : )

l m n

l c c m c c n c c

lc mc nc lc mc nc

l m n c const

  

     

     

b a a a

v v v v v v

v v

그러므로 A의 행벡터가 이루는 공간은 3개의 Basis를
갖는다.  (ex :               )

즉 그 공간의 임의의 벡터(b)는 A의 행벡터로 표현될
수 있다. 

1 2 3 ( , , : )l m n l m n const  b a a a

1 2 3, ,a a a Ex) 3차원 공간상의 벡터 b를
basis 의 linear 
combination으로 표현

1 2 3, ,a a a

Ex) 3차원 공간상의 벡터 b를
basis 의 linear 
combination으로 표현

1 2 3, ,v v v

Ex)           만으로는 3차원 공
간상의 벡터 b를 표현할 수 없
음
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Rank in Terms of Column Vectors
- 3 by 3 matrix

11 12 13 1

21 22 23 2

31 32 33 3

,

a a a

a a a

a a a

   
   

 
   
      

a

A a

a









































333232131

323222121

313212111

333231

232221

131211

vvv

vvv

vvv

ccc

ccc

ccc

aaa

aaa

aaa

3(= rank A) linearly independent rows (basis) :

 ranlet k 3A

 1312111 vvvv

 2322212 vvvv

 3332313 vvvv

행벡터를 v1, v2, v3의 일차결합으로 표현함

Note

A의 rank가 3이므로 행벡터는 linearly independent 
하다. 

를 다른 basis로 표현한다면 3개의 basis가 필요하다.  1 2 3, ,a a a

1 2 3

11 1 12 2 13 3 21 1 22 2 23 3 31 1 32 2 33 3

11 21 31 1 12 22 32 2 13 23 33 3

( ) ( ) ( )

( ) ( ) ( )

( , , , : )

l m n

l c c c m c c c n c c c

lc mc nc lc mc nc lc mc nc

l m n c const

  

        

        

b a a a

v v v v v v v v v

v v v

를 다른 2개의 basis로 표현한다면1 2 3, ,a a a

1 2 3

11 1 12 2 21 1 22 2 31 1 32 2

11 21 31 1 12 22 32 2

( ) ( ) ( )

( ) ( )

( , , , : )

l m n

l c c m c c n c c

lc mc nc lc mc nc

l m n c const

  

     

     

b a a a

v v v v v v

v v

그러므로 A의 행벡터가 이루는 공간은 3개의 Basis를
갖는다.  (ex :               )

즉 그 공간의 임의의 벡터(b)는 A의 행벡터로 표현될
수 있다. 

1 2 3 ( , , : )l m n l m n const  b a a a

1 2 3, ,a a a Ex) 3차원 공간상의 벡터 b를
basis 의 linear 
combination으로 표현

1 2 3, ,a a a

Ex) 3차원 공간상의 벡터 b를
basis 의 linear 
combination으로 표현

1 2 3, ,v v v

Ex)           만으로는 3차원 공
간상의 벡터 b를 표현할 수 없
음

1 2,v v
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Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va

31132112111111 vcvcvca 

31232122112121 vcvcvca 

31332132113131 vcvcvca 

32132212121112 vcvcvca 

32232222122122 vcvcvca 

32332232123132 vcvcvca 

33132312131113 vcvcvca 

33232322132123 vcvcvca 

33332332133133 vcvcvca 

열벡터도 3개의 basis (c의 성분의 수는 v의 수와 동일함) 존재. 따라서 rank AT = rank 
A

A의 열벡터 이 열벡터들은 linearly independent 한 basis
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Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va

31132112111111 vcvcvca 

31232122112121 vcvcvca 

31332132113131 vcvcvca 

32132212121112 vcvcvca 

32232222122122 vcvcvca 

32332232123132 vcvcvca 

33132312131113 vcvcvca 

33232322132123 vcvcvca 

33332332133133 vcvcvca 

열벡터도 3개의 basis (c의 성분의 수는 v의 수와 동일함) 존재. 따라서 rank AT = rank 
A

1 11 12 13 11 1 12 2 13 3

11 11 12 13 12 21 22 23 13 31 32 33

11 11 12 21 13 31 11 12 12 22 13 32 11 13 12 22 13 32

[ ] [ , , ]

[ , , ] [ , , ] [ , , ]

[( ), ( ), ( )]

a a a c c c

c v v v c v v v c v v v

c v c v c v c v c v c v c v c v c v

   

  

      

a v v v

행벡터 a의 성분을 새로운 basis v의 성분으로 표현하면

A의 열벡터 이 열벡터들은 linearly independent 한 basis
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Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va

31132112111111 vcvcvca 

31232122112121 vcvcvca 

31332132113131 vcvcvca 

32132212121112 vcvcvca 

32232222122122 vcvcvca 

32332232123132 vcvcvca 

33132312131113 vcvcvca 

33232322132123 vcvcvca 

33332332133133 vcvcvca 

열벡터도 3개의 basis (c의 성분의 수는 v의 수와 동일함) 존재. 따라서 rank AT = rank 
A

1 11 12 13 11 1 12 2 13 3

11 11 12 13 12 21 22 23 13 31 32 33

11 11 12 21 13 31 11 12 12 22 13 32 11 13 12 22 13 32

[ ] [ , , ]

[ , , ] [ , , ] [ , , ]

[( ), ( ), ( )]

a a a c c c

c v v v c v v v c v v v

c v c v c v c v c v c v c v c v c v

   

  

      

a v v v

행벡터 a의 성분을 새로운 basis v의 성분으로 표현하면

A의 열벡터 이 열벡터들은 linearly independent 한 basis

150/
394



2008_Matrices(2)

Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va

31132112111111 vcvcvca 

31232122112121 vcvcvca 

31332132113131 vcvcvca 

32132212121112 vcvcvca 

32232222122122 vcvcvca 

32332232123132 vcvcvca 

33132312131113 vcvcvca 

33232322132123 vcvcvca 

33332332133133 vcvcvca 

열벡터도 3개의 basis (c의 성분의 수는 v의 수와 동일함) 존재. 따라서 rank AT = rank 
A

1 11 12 13 11 1 12 2 13 3

11 11 12 13 12 21 22 23 13 31 32 33

11 11 12 21 13 31 11 12 12 22 13 32 11 13 12 22 13 32

[ ] [ , , ]

[ , , ] [ , , ] [ , , ]

[( ), ( ), ( )]

a a a c c c

c v v v c v v v c v v v

c v c v c v c v c v c v c v c v c v

   

  

      

a v v v

행벡터 a의 성분을 새로운 basis v의 성분으로 표현하면

A의 열벡터 이 열벡터들은 linearly independent 한 basis
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Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va

31132112111111 vcvcvca 

31232122112121 vcvcvca 

31332132113131 vcvcvca 

32132212121112 vcvcvca 

32232222122122 vcvcvca 

32332232123132 vcvcvca 

33132312131113 vcvcvca 

33232322132123 vcvcvca 

33332332133133 vcvcvca 

열벡터도 3개의 basis (c의 성분의 수는 v의 수와 동일함) 존재. 따라서 rank AT = rank 
A

1 11 12 13 11 1 12 2 13 3

11 11 12 13 12 21 22 23 13 31 32 33

11 11 12 21 13 31 11 12 12 22 13 32 11 13 12 22 13 32

[ ] [ , , ]

[ , , ] [ , , ] [ , , ]

[( ), ( ), ( )]

a a a c c c

c v v v c v v v c v v v

c v c v c v c v c v c v c v c v c v

   

  

      

a v v v

행벡터 a의 성분을 새로운 basis v의 성분으로 표현하면

A의 열벡터 이 열벡터들은 linearly independent 한 basis
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Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va

31132112111111 vcvcvca 

31232122112121 vcvcvca 

31332132113131 vcvcvca 

32132212121112 vcvcvca 

32232222122122 vcvcvca 

32332232123132 vcvcvca 

33132312131113 vcvcvca 

33232322132123 vcvcvca 

33332332133133 vcvcvca 

열벡터도 3개의 basis (c의 성분의 수는 v의 수와 동일함) 존재. 따라서 rank AT = rank 
A

1 11 12 13 11 1 12 2 13 3

11 11 12 13 12 21 22 23 13 31 32 33

11 11 12 21 13 31 11 12 12 22 13 32 11 13 12 22 13 32

[ ] [ , , ]

[ , , ] [ , , ] [ , , ]

[( ), ( ), ( )]

a a a c c c

c v v v c v v v c v v v

c v c v c v c v c v c v c v c v c v

   

  

      

a v v v

행벡터 a의 성분을 새로운 basis v의 성분으로 표현하면

1 11 12 13

2 1 21 2 22 3 23

3 31 32 33

k

k k k k

k

a c c c

a v c v c v c

a c c c

       
       

  
       
              

A의 열벡터 이 열벡터들은 linearly independent 한 basis
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Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va 1 11 12 13

2 1 21 2 22 3 23

3 31 32 33

k

k k k k

k

a c c c

a v c v c v c

a c c c

       
       

  
       
              

A의 열벡터

이 열벡터들은 linearly independent 한 basis

열벡터도 3개의 basis (c의 성분의 수는 v의 수와 동일함) 존재. 
따라서 rank AT = rank A
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Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va 1 11 12 13

2 1 21 2 22 3 23

3 31 32 33

k

k k k k

k

a c c c

a v c v c v c

a c c c

       
       

  
       
              

A의 열벡터
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Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va 1 11 12 13

2 1 21 2 22 3 23

3 31 32 33

k

k k k k

k

a c c c

a v c v c v c

a c c c

       
       

  
       
              

A의 열벡터 이 열벡터들이 linearly dependent 하다면?
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Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va 1 11 12 13

2 1 21 2 22 3 23

3 31 32 33

k

k k k k

k

a c c c

a v c v c v c

a c c c

       
       

  
       
              

A의 열벡터 이 열벡터들이 linearly dependent 하다면?

1 11 12 12

2 1 21 2 22 3 22

3 31 32 23

k

k k k k

k

a c c c

a v c v c v u c

a c c c

       
       

  
       
              

157/
394



2008_Matrices(2)

Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va 1 11 12 13

2 1 21 2 22 3 23

3 31 32 33

k

k k k k

k

a c c c

a v c v c v c

a c c c

       
       

  
       
              

A의 열벡터 이 열벡터들이 linearly dependent 하다면?

1 11 12 12

2 1 21 2 22 3 22

3 31 32 23

k

k k k k

k

a c c c

a v c v c v u c

a c c c

       
       

  
       
              

1 11 12

2 1 21 2 3 22

3 31 32

( )

k

k k k k

k

a c c

a v c v v u c

a c c
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Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va

A의 행백터 관점에서 basis의 개수가 줄어들게 되어 모순이 됨

1 11 12 13

2 1 21 2 22 3 23

3 31 32 33

k

k k k k

k

a c c c

a v c v c v c

a c c c

       
       

  
       
              

A의 열벡터 이 열벡터들이 linearly dependent 하다면?

1 11 12 12

2 1 21 2 22 3 22

3 31 32 23

k

k k k k

k

a c c c

a v c v c v u c

a c c c

       
       

  
       
              

1 11 12

2 1 21 2 3 22

3 31 32

( )

k

k k k k

k

a c c

a v c v v u c

a c c

     
     

  
     
          

1 11 12 13 11 1 12 2 12 3 11 1 12 2 3 11

2 21 22 23 21 1 22 2 22 3 21 1 22 2 3

31 32 33 31 1 32 2 33 3 31 1 32 2 33

(1 )( )

(1 )( )

(1 )( )

a a a c c uc c c u c

a a a c c uc c c u

a a a c c uc c c u

          
      

               
                 

a v v v v v v v

A a v v v v v v

v v v v v va

1 12

21 1 22

31 1 32

(1 )

(1 )

(1 )

new

new

new

c u

c c u

c c u

  
 

  
  
 

v

v v

v v

1, newv v
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Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va

A의 행백터 관점에서 basis의 개수가 줄어들게 되어 모순이 됨

1 11 12 13

2 1 21 2 22 3 23

3 31 32 33

k

k k k k

k

a c c c

a v c v c v c

a c c c

       
       

  
       
              

A의 열벡터

1 11 12 12

2 1 21 2 22 3 22

3 31 32 23

k

k k k k

k

a c c c

a v c v c v u c

a c c c

       
       

  
       
              

1 11 12

2 1 21 2 3 22

3 31 32

( )

k

k k k k

k

a c c

a v c v v u c

a c c

     
     

  
     
          

1 11 12 13 11 1 12 2 12 3 11 1 12 2 3 11

2 21 22 23 21 1 22 2 22 3 21 1 22 2 3

31 32 33 31 1 32 2 33 3 31 1 32 2 33

(1 )( )

(1 )( )

(1 )( )

a a a c c uc c c u c

a a a c c uc c c u

a a a c c uc c c u

          
      

               
                 

a v v v v v v v

A a v v v v v v

v v v v v va

1 12

21 1 22

31 1 32

(1 )

(1 )

(1 )

new

new

new

c u

c c u

c c u

  
 

  
  
 

v

v v

v v

1, newv v

이 열벡터들이 linearly dependent 하다면?
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Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va

A의 행백터 관점에서 basis의 개수가 줄어들게 되어 모순이 됨

1 11 12 13

2 1 21 2 22 3 23

3 31 32 33

k

k k k k

k

a c c c

a v c v c v c

a c c c

       
       

  
       
              

A의 열벡터

1 11 12 12

2 1 21 2 22 3 22

3 31 32 23

k

k k k k

k

a c c c

a v c v c v u c

a c c c

       
       

  
       
              

1 11 12

2 1 21 2 3 22

3 31 32

( )

k

k k k k

k

a c c

a v c v v u c

a c c

     
     

  
     
          

1 11 12 13 11 1 12 2 12 3 11 1 12 2 3 11

2 21 22 23 21 1 22 2 22 3 21 1 22 2 3

31 32 33 31 1 32 2 33 3 31 1 32 2 33

(1 )( )

(1 )( )

(1 )( )

a a a c c uc c c u c

a a a c c uc c c u

a a a c c uc c c u

          
      

               
                 

a v v v v v v v

A a v v v v v v

v v v v v va

1 12

21 1 22

31 1 32

(1 )

(1 )

(1 )

new

new

new

c u

c c u

c c u

  
 

  
  
 

v

v v

v v

1, newv v

∴ 이 열벡터들은 linearly independent 한 basis

이 열벡터들이 linearly dependent 하다면?
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Rank in Terms of Column Vectors
- 3 by 3 matrix

1 11 12 13 11 1 12 2 13 3

2 21 22 23 21 1 22 2 23 3

31 32 33 31 1 32 2 33 33

a a a c c c

a a a c c c

a a a c c c

     
    

        
          

a v v v

A a v v v

v v va

A의 행백터 관점에서 basis의 개수가 줄어들게 되어 모순이 됨

1 11 12 13

2 1 21 2 22 3 23

3 31 32 33

k

k k k k

k

a c c c

a v c v c v c

a c c c

       
       

  
       
              

A의 열벡터

1 11 12 12

2 1 21 2 22 3 22

3 31 32 23

k

k k k k

k

a c c c

a v c v c v u c

a c c c

       
       

  
       
              

1 11 12

2 1 21 2 3 22

3 31 32

( )

k

k k k k

k

a c c

a v c v v u c

a c c

     
     

  
     
          

1 11 12 13 11 1 12 2 12 3 11 1 12 2 3 11

2 21 22 23 21 1 22 2 22 3 21 1 22 2 3

31 32 33 31 1 32 2 33 3 31 1 32 2 33

(1 )( )

(1 )( )

(1 )( )

a a a c c uc c c u c

a a a c c uc c c u

a a a c c uc c c u

          
      

               
                 

a v v v v v v v

A a v v v v v v

v v v v v va

1 12

21 1 22

31 1 32

(1 )

(1 )

(1 )

new

new

new

c u

c c u

c c u

  
 

  
  
 

v

v v

v v

1, newv v

열벡터도 3개의 basis (c의 성분의 수는 v의 수와 동일함) 존재. 
따라서 rank AT = rank A

∴ 이 열벡터들은 linearly independent 한 basis

이 열벡터들이 linearly dependent 하다면?
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Solutions of Homogeneous Linear Systems
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Homogeneous Linear System with Fewer 
Equations Than Unknowns (2)

0xIA

0xAx

xAx







)( 













vector:

scalar:

matrix:

x

A
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Homogeneous Linear System with Fewer 
Equations Than Unknowns (2)

0xIA

0xAx

xAx







)( 





 If the rank                  is equal to n, the number of component of x, (the 

determinant of                   is nonzero), we have a trivial solution (x = 0).

)( IA 
)( IA 









vector:

scalar:

matrix:

x

A
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Homogeneous Linear System with Fewer 
Equations Than Unknowns (2)

0xIA

0xAx

xAx







)( 





 If the rank                  is equal to n, the number of component of x, (the 

determinant of                   is nonzero), we have a trivial solution (x = 0).

)( IA 
)( IA 

 If the rank                 is less than n, the number of component of x, (the 

determinant of                  is zero), we have Infinitely many solutions (x

≠ 0).

)( IA 
)( IA 









vector:

scalar:

matrix:

x

A
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Homogeneous Linear System with Fewer 
Equations Than Unknowns (2)

0xIA

0xAx

xAx







)( 





 If the rank                  is equal to n, the number of component of x, (the 

determinant of                   is nonzero), we have a trivial solution (x = 0).

)( IA 
)( IA 

 If the rank                 is less than n, the number of component of x, (the 

determinant of                  is zero), we have Infinitely many solutions (x

≠ 0).

)( IA 
)( IA 









vector:

scalar:

matrix:

x

A



 A scalar           such that the equation holds for some vector x ≠ 0 is called an eigenvalue of A.
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Homogeneous Linear System with Fewer 
Equations Than Unknowns (2)

0xIA

0xAx

xAx







)( 





 If the rank                  is equal to n, the number of component of x, (the 

determinant of                   is nonzero), we have a trivial solution (x = 0).

)( IA 
)( IA 

 If the rank                 is less than n, the number of component of x, (the 

determinant of                  is zero), we have Infinitely many solutions (x

≠ 0).

)( IA 
)( IA 









vector:

scalar:

matrix:

x

A



 A scalar           such that the equation holds for some vector x ≠ 0 is called an eigenvalue of A.
 At that time, vector x is called eigenvector of A.
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Second- and Third-Order Determinants

169/
394



2008_Matrices(2)

Determinant of second- and third order
Determinant of second order

Determinant of third order
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Determinant of second- and third order

11 12 11 12

11 22 12 21

21 22 21 22

det det
a a a a

D A a a a a
a a a a

 
     

 

Determinant of second order

Determinant of third order
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Determinant of second- and third order

11 12 11 12

11 22 12 21

21 22 21 22

det det
a a a a

D A a a a a
a a a a

 
     

 

Determinant of second order

Determinant of third order

333231

232221

131211

aaa

aaa

aaa

D 
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Determinant of second- and third order

11 12 11 12

11 22 12 21
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det det
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D A a a a a
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Determinant of second order

Determinant of third order
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aaa
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31

3332
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21
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2322
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a
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Determinant of second- and third order

11 12 11 12

11 22 12 21

21 22 21 22

det det
a a a a

D A a a a a
a a a a

 
     

 

Determinant of second order

Determinant of third order
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Determinant of Order n 

In D we have n2 entries ajk, also n rows and n columns, and a main diagonal on 

which a11, a12, …, ann stand.

Mjk is called the minor of ajk in D, and Cjk the cofactor of ajk in D

For later use we note that D may also be written in terms of minors

   nkMaD
n

j

jkjk

kj
,,2,11

1






   njMaD
n

k

jkjk

kj
,,2,11

1






  jk

kj

jk MC


 1

Terms
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Determinant of Order n

nnnn

n

n

aaa

aaa

aaa

D











21

22221

11211

det



 A

A determinant of order n is a scalar associated with an n x n matrix A=[ajk], which is 

written

and is defined for n=1 by
11aD 
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Determinant of Order n 

 njCaCaCaD jnjnjjjj ,,2,12211  

For n≥2 by

Here,

  jk

kj

jk MC


 1

 nkCaCaCaD nknkkkkk ,,2,12211  

or

Mjk is a determinant of order n-1, namely, the determinant of the 

submatrix of A obtained A by omitting the row and column of the entry 

ajk, that is, the jth row and the kth column.
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Determinant of Order n 

1) n=1

 11aA

2) n=2
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A
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Determinant of Order n 

1) n=1

 11aA 11det a A

2) n=2
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Adet

Determinant of Order n 

1) n=1

 11aA 11det a A

2) n=2
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2221

1211

11
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aa
aAdet

Determinant of Order n 

1) n=1

 11aA 11det a A

2) n=2
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2221
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11
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aAdet

Determinant of Order n 

1) n=1

 11aA 11det a A

2) n=2
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2221

1211

11
aa

aa
a

2221

1211

12
aa

aa
aAdet

Determinant of Order n 

1) n=1

 11aA 11det a A

2) n=2
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2221

1211

11
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aa
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12
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aa
aAdet

Determinant of Order n 

1) n=1

 11aA 11det a A

2) n=2
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Determinant of Order n 

1) n=1
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Determinant of Order n

3) n=3
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333231
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Determinant of Order n

3) n=3
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Determinant of Order n
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Find minors and cofactors.
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1) 1st row
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 1Determinant :
(Minors and Cofactors of a Third-Order Determinant)
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Find minors and cofactors.
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Find minors and cofactors.
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Find minors and cofactors.
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Find minors and cofactors.
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Find minors and cofactors.
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Find minors and cofactors.
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Find minors and cofactors.
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Find minors and cofactors.
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Find minors and cofactors.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.



















333231

232221

131211

aaa

aaa

aaa

A

333231

232221

131211

21

aaa

aaa

aaa

M 

2) 2nd row

333231

232221

131211

22

aaa

aaa

aaa

M 

333231

232221

131211

23

aaa

aaa

aaa

M 

  2121

12

21 1 MMC 


  jk

kj

jk MC


 1

211/
394



2008_Matrices(2)

Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find minors and cofactors.
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Determinant :
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find determinant
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find determinant
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Determinant :
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find determinant
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find determinant
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Determinant :
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201

462

031

det



A

201

462

031

1





201

462

031

3





201

462

031

0





1) 1st rows

   njMaD
n

k

jkjk

kj
,,2,11

1






(Expansions of a Third-Order Determinant)

230/
394



2008_Matrices(2)

Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find determinant
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find determinant.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find determinant.

201

462

031

det



A

201

462

031

2





2) 2nd rows

   njMaD
n

k

jkjk

kj
,,2,11

1






(Expansions of a Third-Order Determinant)

233/
394



2008_Matrices(2)

Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find determinant.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find determinant.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find determinant.
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Determinant :
(Minors and Cofactors of a Third-Order Determinant)

Find determinant.
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Determinant :
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Determinant :
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Determinant :
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Find determinant.

521

046

003

det





A

521

046

003

3







521

046

003

0







521

046

003

0







52

04
3 543  60

(Expansions of a Third-Order Determinant)

   njMaD
n

k

jkjk

kj
,,2,11

1






249/
394



2008_Matrices(2)

Solving linear systems of two equations

2222121

1212111

bxaxa

bxaxa



 …①

…②

Solve the linear systems of two equations

1. General Solution
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Solving linear systems of two equations

2222121

1212111

bxaxa

bxaxa



 …①

…②

:1222 aa  ②①

Solve the linear systems of two equations

1. General Solution
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Solving linear systems of two equations
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Solve the linear systems of two equations

1. General Solution
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Solving linear systems of two equations
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1212111

bxaxa
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Solve the linear systems of two equations

1. General Solution
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Solving linear systems of two equations

2222121

1212111
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Solve the linear systems of two equations

1. General Solution

 021122211  aaaa
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Solving linear systems of two equations
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Solve the linear systems of two equations

1. General Solution
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Solving linear systems of two equations
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Solve the linear systems of two equations

1. General Solution

 021122211  aaaa  021122211  aaaa
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2222121

1212111

bxaxa

bxaxa



 …①
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Solve the linear systems of two equations

2. Use Cramer‟s rule
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bxaxa
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Solve the linear systems of two equations

2. Use Cramer‟s rule
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Solve the linear systems of two equations

2. Use Cramer‟s rule
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Solve the linear systems of two equations

2. Use Cramer‟s rule
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Solve the linear systems of two equations

2. Use Cramer‟s rule
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bxaxa
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 …①
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Solve the linear systems of two equations

2. Use Cramer‟s rule
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Solving linear systems of two equations
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Solving linear systems of three equations

3333232131

2323222121

1313212111
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bxaxaxa
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Solving linear systems of three equations

Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.

3333232131

2323222121

1313212111

bxaxaxa

bxaxaxa

bxaxaxa
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Solving linear systems of three equations

Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.
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Solving linear systems of three equations

Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.
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Solving linear systems of three equations

Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.
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Solving linear systems of three equations

Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.
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Solving linear systems of three equations

Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.
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Solving linear systems of three equations
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Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.
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Solving linear systems of three equations

Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.
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Solving linear systems of three equations

Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.
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Solving linear systems of three equations

Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.
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Solving linear systems of three equations

33331

23221
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2
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D 

Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.
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Solving linear systems of three equations

Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.
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Solving linear systems of three equations

Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.
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Solving linear systems of three equations

Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.
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Solving linear systems of three equations

32331

22221

12111

2

baa

baa

baa

D 

Note that D1, D2, D3 are obtained by replacing Columns 1, 2, 3.

3333232131

2323222121

1313212111

bxaxaxa

bxaxaxa

bxaxaxa
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x
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Cramer‟s Rule

Cramer‟s Theorem (Solution of Linear Systems by Determinants)

(a) If a linear system of n equations in the same number of unknowns x1, … , xn

nnnnnn

nn

nn

bxaxaxa

bxaxaxa

bxaxaxa















2211

22222121

11212111

has a nonzero coefficient determinant D=det(A), the system has precisely one solution. 

This solution is given by the formulas

D

D
x

D

D
x

D

D
x n

n  ,,,, 2
2

1
1 

Where Dk is the determinant obtained from D by replacing in D the kth column 

by the column with the entries b1, … , bn.
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Cramer‟s Rule 

Cramer‟s Theorem (Solution of Linear Systems by Determinants)
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Cramer‟s Rule 

Cramer‟s Theorem (Solution of Linear Systems by Determinants)
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Cramer‟s Rule 

Cramer‟s Theorem (Solution of Linear Systems by Determinants)
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Cramer‟s Rule 

Cramer‟s Theorem (Solution of Linear Systems by Determinants)
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Cramer‟s Rule 

Cramer‟s Theorem (Solution of Linear Systems by Determinants)

(b) Hence if the system is homogeneous and D≠0, it has only the trivial solution x1=0, … , 

xn=0. If D=0, the homogeneous system also has nontrivial solutions.
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qxaxaxa

pxaxaxa







333232131

323222121

313212111

qapaxaaaaxaaaa

qaxaaxaaxaa

paxaaxaaxaa

1121323111321222111221

11323112221112111

21313212122111121

)()( 





(참고) 3차 연립방정식의 해
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qxaxaxa

pxaxaxa







333232131

323222121

313212111

qapaxaaaaxaaaa

qaxaaxaaxaa

paxaaxaaxaa

1121323111321222111221

11323112221112111

21313212122111121

)()( 





rapaxaaaaxaaaa

raxaaxaaxaa

paxaaxaaxaa

1131333111331232111231

11333112321113111

31313312123111131

)()( 





(참고) 3차 연립방정식의 해
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Solving linear systems of two equations

False statement

11 1 12 2 1

21 1 22 2 2

a x a x b

a x a x b

 


 

Solve the linear systems of two equations

 0D 
11 12

11 22 12 21

21 22

det 0
a a

D A a a a a
a a

    

12 21
11

22

a a
a

a


12 21
1 12 2 1

22

a a
x a x b

a
 22

21 1 22 2 1

12

21 1 22 2 2

a
a x a x b

a

a x a x b


 


  

22
21 1 22 2 1

12

22
1 2 1 2

12

0 0

a
a x a x b

a

a
x x b b

a


 



     


when 22
1 2

12

0
a

b b
a

  22
1 2

12

0
a

b b b
a

  

22
21 1 22 2 1

12

1 20 0 0

a
a x a x b

a

x x


 


    

22
21 1 22 2 1

12

1 20 0

a
a x a x b

a

x x b


 


    

22
21 22 1

12

0 0 0

a
a a b

a

 
 
 
  

22
21 22 1

12

0 0

a
a a b

a

b

 
 
 

  

rank(A)=1=rank(A|B) rank(A)=1≠2=rank(A|B)

rank(A)=1<2 unknowns

Linearly independent equation : 1
Variables : 2

①

②

11 12

21 22

A

a a
A

a a



 
  
 

x 0
11 12

21 22

det 0
a a

A
a a

 

11 12

0 0

A

a a
A



 
  
 

x 0

Homogeneous linear systems 

Trivial Solution  x 0 Nontrivial many solutions

11 1 12 2

21 1 22 2

0

0

a x a x

a x a x
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Theorem 1. Behavior of an nth-Order Determinant under 

Elementary Row Operations
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Theorem 1. Behavior of an nth-Order Determinant under 

Elementary Row Operations

(a) Interchange of two rows multiplies the value of the 

determinant by -1.
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Theorem 1. Behavior of an nth-Order Determinant under 

Elementary Row Operations

(a) Interchange of two rows multiplies the value of the 

determinant by -1.

(b) Addition of a multiple of a row to another row does not 

alter the value of the determinant.
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Theorem 1. Behavior of an nth-Order Determinant under 

Elementary Row Operations

(a) Interchange of two rows multiplies the value of the 

determinant by -1.

(b) Addition of a multiple of a row to another row does not 

alter the value of the determinant.

(c) Multiplication of a row by a nonzero constant c

multiplies the value of the determinant by c.
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Proof. (a) Interchange of two rows multiplies the value of the 

determinant by -1 by induction.
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Proof. (a) Interchange of two rows multiplies the value of the 

determinant by -1 by induction.

The statement holds for n=2 because
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Proof. (a) Interchange of two rows multiplies the value of the 

determinant by -1 by induction.

,bcad
dc

ba


The statement holds for n=2 because
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Proof. (a) Interchange of two rows multiplies the value of the 

determinant by -1 by induction.

,bcad
dc

ba
 adbc

ba

dc


The statement holds for n=2 because
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Proof. (a) Interchange of two rows multiplies the value of the 

determinant by -1 by induction.

,bcad
dc

ba
 adbc

ba

dc


The statement holds for n=2 because

(a) holds for determinants of order n-1≥2 and show that it then holds 

determinants of order n.
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Proof. (a) Interchange of two rows multiplies the value of the 

determinant by -1 by induction.

,bcad
dc

ba
 adbc

ba

dc


The statement holds for n=2 because

(a) holds for determinants of order n-1≥2 and show that it then holds 

determinants of order n.

Let D be of order n. Let E be one of those interchanged. Expand D and E

by a row that is not one of those interchanged
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Proof. (a) Interchange of two rows multiplies the value of the 

determinant by -1 by induction.

,bcad
dc

ba
 adbc

ba

dc


The statement holds for n=2 because

(a) holds for determinants of order n-1≥2 and show that it then holds 

determinants of order n.

Let D be of order n. Let E be one of those interchanged. Expand D and E

by a row that is not one of those interchanged

  ,1
1







n

k

jkjk

kj
MaD  






n

k

jkjk

kj
NaE

1

1
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

  ,1
1







n

k

jkjk

kj
MaD  






n

k

jkjk

kj
NaE

1

1
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

  ,1
1







n

k

jkjk

kj
MaD  






n

k

jkjk

kj
NaE

1

1

Njk is obtained from the minor Mjk of ajk in D by interchange 

of those two rows which have been interchanged in D.

 

300/
394



2008_Matrices(2)

Behavior of an nth-Order Determinant under 
Elementary Row Operations 

  ,1
1







n

k

jkjk

kj
MaD  






n

k

jkjk

kj
NaE

1

1

Njk is obtained from the minor Mjk of ajk in D by interchange 

of those two rows which have been interchanged in D.

Now these minors are of order n-1.
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

  ,1
1







n

k

jkjk

kj
MaD  






n

k

jkjk

kj
NaE

1

1

Njk is obtained from the minor Mjk of ajk in D by interchange 

of those two rows which have been interchanged in D.

Now these minors are of order n-1.

 The induction hypothesis applies
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

  ,1
1







n

k

jkjk

kj
MaD  






n

k

jkjk

kj
NaE

1

1

Njk is obtained from the minor Mjk of ajk in D by interchange 

of those two rows which have been interchanged in D.

Now these minors are of order n-1.

 The induction hypothesis applies

jkjk NM 
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

  ,1
1







n

k

jkjk

kj
MaD  






n

k

jkjk

kj
NaE

1

1

Njk is obtained from the minor Mjk of ajk in D by interchange 

of those two rows which have been interchanged in D.

Now these minors are of order n-1.

 The induction hypothesis applies

jkjk NM 

 





n

k

jkjk

kj
MaD

1

1
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

  ,1
1







n

k

jkjk

kj
MaD  






n

k

jkjk

kj
NaE

1

1

Njk is obtained from the minor Mjk of ajk in D by interchange 

of those two rows which have been interchanged in D.

Now these minors are of order n-1.

 The induction hypothesis applies

jkjk NM 

 





n

k

jkjk

kj
MaD

1

1    





n

k
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kj
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1

1
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

  ,1
1







n

k

jkjk

kj
MaD  






n

k

jkjk

kj
NaE

1

1

Njk is obtained from the minor Mjk of ajk in D by interchange 

of those two rows which have been interchanged in D.

Now these minors are of order n-1.

 The induction hypothesis applies

jkjk NM 

 





n

k

jkjk

kj
MaD

1

1    





n

k
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kj
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1
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Add c times Row i to Row j. 

Let       be the new determinant. Its entries in Row j are 

ajk+caik.
D
~

Proof. (b) Addition of a multiple of a row to another row does 

not alter the value of the determinant.
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Add c times Row i to Row j. 

Let       be the new determinant. Its entries in Row j are 

ajk+caik.
D
~

nnnn

jnjj

inii

n

aaa

aaa

aaa

aaa

D















21

21

21

11211









Proof. (b) Addition of a multiple of a row to another row does 

not alter the value of the determinant.

308/
394



2008_Matrices(2)

Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Add c times Row i to Row j. 

Let       be the new determinant. Its entries in Row j are 

ajk+caik.
D
~

nnnn

jnjj

inii

n

aaa

aaa

aaa

aaa

D















21

21

21

11211









Proof. (b) Addition of a multiple of a row to another row does 

not alter the value of the determinant.
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

Add c times Row i to Row j. 

Let       be the new determinant. Its entries in Row j are 

ajk+caik.
D
~

nnnn

jnjj

inii

n
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aaa
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D
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n
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Proof. (b) Addition of a multiple of a row to another row does 

not alter the value of the determinant.
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injnijij

inii

n
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caacaacaa
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D
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11211
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

We can write         by the jth row.D
~
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

We can write         by the jth row.D
~

   





n

k
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Mcaa

1

1
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

We can write         by the jth row.D
~
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

We can write         by the jth row.D
~
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 

We can write         by the jth row.D
~
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 
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Elementary Row Operations 
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 
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It has aik in both Row i and Row j.

 

Ⓘx(-1)+ⓙⒾ
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 
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It has aik in both Row i and Row j.

Interchanging these two rows gives D2 back, but on the other hand it 

gives –D2 by (a). (D2=-D2=0)

Ⓘx(-1)+ⓙⒾ

ⓙ
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 
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It has aik in both Row i and Row j.

Interchanging these two rows gives D2 back, but on the other hand it 

gives –D2 by (a). (D2=-D2=0)

Ⓘx(-1)+ⓙ

11 12 1

1 2

1 2

0 0 0

n

i i in

n n nn

a a a

a a a

a a a

  

   

  

Ⓘ

ⓙ
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Behavior of an nth-Order Determinant under 
Elementary Row Operations 
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It has aik in both Row i and Row j.

Interchanging these two rows gives D2 back, but on the other hand it 

gives –D2 by (a). (D2=-D2=0)
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Theorem (2.e) A zero row or 

column renders the value of a 

determinant zero
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Theorem (2.e) A zero row or 

column renders the value of a 

determinant zero
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Elementary Row Operations 
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Theorem (2.e) A zero row or 

column renders the value of a 

determinant zero

327/
394



2008_Matrices(2)

Behavior of an nth-Order Determinant under 
Elementary Row Operations 

nnnn

injnijij

inii

n

aaa

caacaacaa

aaa

aaa

D















21

2211

21

11211

~











21 cDD 

0 cD

D

02

1





D

DD

Ⓘx(-1)+ⓙ

Theorem (2.e) A zero row or 

column renders the value of a 

determinant zero
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Ⓘx(-1)+ⓙ

Theorem (2.e) A zero row or 

column renders the value of a 

determinant zero
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Ⓘx(-1)+ⓙ
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Theorem (2.e) A zero row or 

column renders the value of a 

determinant zero
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Theorem 2. Further Properties of nth-Order Determinants
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(f) Proportional rows or columns render the value of a 
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(f) Proportional rows or columns render the value of a determinant zero. 

In particular, a determinant with two identical rows or columns has the 

value zero.
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Rank in Terms of Determinants

Theorem 3. Rank in Terms of Determinants

An m x n matrix A=[ajk] has rank r≥1 if and only if A has an r

x r submatrix with nonzero determinant, whereas every 

square submatrix with more than r rows than A has (or does 

not have!) has determinant equal to zero.

In particular, if A is square, n x n, it has rank n if and only if

0det D
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The central problem of linear algebra is to solve a system of equations. 

Those equations are linear, which means that the unknowns are only 

multiplied by numbers – we never see x times y. 
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Figure 2.1 Row picture : The point (3, 1) 

where the lines meet is the solution
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We are multiplying the first column by x and the second column by y, 
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its columns instead of its rows, you get

b


























11

1

2

2

3

1
yx

y

x










3

1









2

2










11

1










9

3

Figure 2.1 Column picture : A combination of 

columns produces the right side (1, 11).

This has two column vectors on the left 

side. The problem is to find the 

combination of those vectors that 

equals the vector on the right.

We are multiplying the first column by x and the second column by y, 

and adding. With the right choices x = 3, y = 1, this produces 3 (column 1) 

+ 1 (column 2) = b.

The column picture combines the column vectors on the 

left side to produce the vector b on the right side.
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The left side of the vector equation is a linear combination of the 

columns. The problem is to find the right coefficients x = 3 and y = 1. We 

are combining scalar multiplication and vector addition into one step. 

That step is crucially important, because it contains both of basic 

operations :
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The coefficient matrix on the left side of the equation is the 2 by 2 

matrix A : 

This is very typical of linear algebra, to look at a matrix by rows and by 

columns. Its rows give the row picture and its columns give the column 

picture. Same numbers, different pictures, same equations. We write 

those equations as a matrix problem Ax = b.
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1
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y

x
bAxequationMatrix

The row picture deals with the two rows of A. The column picture 

combines the columns. The numbers x = 3 and y = 1 go into the solution 

vector x.
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The three unknowns x, y, z. The linear equations  Ax = b are

2 3 6

2 5 2 4

6 3 2

x y z

x y z

x y z

  

  

  
The row picture show three planes meeting at a single point.

x

y

z

The usual result of two equations in 

three unknowns is a intersect line L of 

solutions.

The third equation gives a third plane. It cuts 

the line L at a single point. That point lies on 

all three planes and it solves all three 

equations.
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C The column picture combines three columns to produce 

the vector (6,4,2)

x

y

z

2 3 6

2 5 2 4

6 3 2

x y z

x y z

x y z

  

  

  

The column picture starts with the vector form of the equations :

Figure 2.4 Column picture : (x, y, z) = (0, 0, 2) because 2(3, 2, 

1) = (6, 4, 2) = b.

The coefficient we need are x = 0, y = 0 and z = 2. This is 

also the intersection point of the three planes in the row 

picture.
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Coefficient matrix unknown vector

Matrix equation :

We multiply the matrix A times the unknown vector x to get the right side 

b.
Multiplication by rows : Ax 

comes from dot products, each 

row times the column x :
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x3row
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Multiplication by columns : Ax is 

a combination of column 

vectors :

)()(

)(

3column2column

1columnAx

zy

x





393/
394



2008_Matrices(2)

Vectors and Linear Equations
- The Matrix Form of the Equations

bAx 























































2

4

6

136

252

321

z

y

x

When we substitute the solution x = (0, 0, 2), the multiplication Ax 

produces b :

)()()( 3column2column1columnAx zyx 
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The first dot product in row multiplication is (1, 2, 3) • (0, 0, 2) = 6. The 

other dot products are 4 and 2. Multiplication by columns is simply 2 times 

column 3.

Ax as a combination of the columns of A.
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