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GZ = (~Ys +Ys)
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GZ =GM sing ,GM =KB+BM -KG
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with respect to IMO regulation
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Sec.1 Calculation of Center of Buoyancy
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Sec.1 Calculation of Center of Buoyancy
- Rotational Transformation of Point and Frame
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(REViEW) (. Righting Moment : Moment to

Transverse R|ght|ng Moment return the ship to the upright floating
position (Righting moment, Moment

\of statical stability))
4 )
 Transverse Righting moment

Trigning = (~Yo +¥g, ) Fg1 =GZ-Fyi
——
Rightinlg arm)

N7

hting Arm (G2)

@ From direct calculation

GZ=-Y;+Vs

We should know v, Yg, in waterplane fixed frame

2 From geometrical figure with
assumption that M does not change
within small angle of heel (about 10°)

GZ =GM -sing

GM is related to below equation by
geometrical figure

GM =KB+BM - KG

\

2

O'x'y'z' : Body fixed frame

Oxyz : Waterplane fixed frame Trighting AN J
G: Center of mass B: Center of buoyancy B,: Changed center of buoyancy : 7
K: Keel Fs : Weight of ship Fg : Buoyant force acting on ship : @ How to calculate yB , ZB in
Z : The intersection of the line of buoyant force through B, with the transverse line ; . 1 ,71
through G : waterplane fixed frame

M : The intersection of the line of buoyant force through B; with the centerline of the ship
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1 . i '
e Question : How to calculate center of the buoyancy(B,) with respect to waterplane fixed frame?

€
Cx.; v'Method 1. calculate center of the buoyancy(B,) with respect to waterplane fixed frame

7 , Z @ External moment (t,) is applied on the
A Z ki () y ship in clockwise. A ship is heeled about
igin O th h le of
FG Tﬂ \ ] origin rough an angle of ¢
b
G
. y
X,X
. 3
B
Base k K 4

Line

O'x'y'z' : Body fixed frame

Oxyz : Waterplane fixed frame
2009 Fall, Ship Stability - Transverse Righting Moment
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1 - : :
e¢. Question : How to calculate center of the buoyancy(B,) with respect to waterplane fixed frame?

Cx.; v'Method 1. calculate center of the buoyancy(B,) with respect to waterplane fixed frame

A 7 (D External moment () is applied on the
Z z7 kl (+) ship in clockwise. A ship is heeled about
/”\ > | origin O through an angle of ¢
-
/ \@ Center of buoyancy is changed from B to Bl)

ﬁ;i; How to calculate center of buoyancy B; with

respect to waterplane fixed frame?
( )
Method 1. Calculate Center of buoyancy B, with

respect to waterplane fixed frame directly
L

v' A, Mz, My (with respect to waterplane fixed frame)

dA = dydz A:jdA
M,,=[ydA M, =zdA

O'x'y'z' : Body fixed frame

. *Integral value(area and 1st moment of area...) have
Oxyz : Waterplane fixed frame 9 ( )

to be calculated for every position when position of
ship is changed.
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1 - - :
e Question : How to calculate center of the buoyancy(B,) with respect to waterplane fixed frame?

€
(;.)} v'Method 1. calculate center of the buoyancy(B,) with respect to waterplane fixed frame

O'x'y'z' : Body fixed frame
Oxyz : Waterplane fixed framg

Wetted surface
at present

AL

Wetted surface

with changed position
AL

position change

2009 Fall, Ship Stability

>y I— >y

(+)
]

y

(@ External moment (z,) is applied on the
ship in clockwise. A ship is heeled about
origin O through an angle of ¢

.

-
\@ Center of buoyancy is changed from B to Bl)

ﬁ;i; How to calculate center of buoyancy B; with

respect to waterplane fixed frame?
-
Method 1. Calculate Center of buoyancy B, with

respect to waterplane fixed frame directly
L

v' A, Mz, My (with respect to waterplane fixed frame)

dA = dydz A:J'dA
M,,=[ydA M,,=[zdA

“*Integral value(area and 1t moment of area...) have
to be calculated for every position when position of
ship is changed.

v'Center of buoyancy with respect to
waterplane fixed frame

M,, M,,
(yBl’ZBl)z( ;:y’ /:, j

Area and moment of area

10

- Transverse Righting Moment have to be calculated again 1124



l, Question : How to calculate center of the buoyancy(B,) with respect to waterplane fixed frame?
(;.; v'"Method 2. calculate center of the buoyancy(B,) with respect to body fixed frame
then transform frame from body fixed frame to waterplane fixed frame

Z
kl (+)

N

O'x'y'z' : Body fixed frame
Oxyz : Waterplane fixed frame

Wetted surface
at present

O

——

\ Z

(+)

20009 Fall, Ship Stability - Transverse Righting Moment

T :
i How to calculate center of buoyancy B; with
respect to waterplane fixed frame?

-
Method 2. Calculate center of buoyancy B,
with respect to body fixed frame, then

 transform B, to waterplane fixed frame

v A M, ,, M, with respect to body fixed frame

dA=dy'dz’ A=|dA
My, =[y'dA M, . =[z'dA

«*Integral value could be used as it is except
intersection region with waterplane area when
position of ship is changed.
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l, Question : How to calculate center of the buoyancy(B,) with respect to waterplane fixed frame?
(;.; v'"Method 2. calculate center of the buoyancy(B,) with respect to body fixed frame
then transform frame from body fixed frame to waterplane fixed frame

T _
i How to calculate center of buoyancy B; with

A o (+) respect to waterplane fixed frame?
N Z y (.
| ] Method 2. Calculate center of buoyancy B,
Z : with respect to body fixed frame, then
\ |  transform B, to waterplane fixed frame )
|
| ! ! - -
+ v A, M,,, M., with respect to body fixed frame
: dA=dy'dz’ A=|dA
My, =[y'dA M, . =[z'dA

I
I «*Integral value could be used as it is except
: intersection region with waterplane area when
® position of ship is changed.
I
I
I

O'x'%y fixed frame | \

Oxyz/ Waterplane fixed frame :

Wetted surface Wetted surface
at present with changed position
AL ZA(+)
(—) (-|-) position change (—)
- e Y
Only changed area and
moment of area have to calculated. 12

20009 Fall, Ship Stability . Transverse Rightina Moment 24




l Question : How to calculate center of the buoyancy(B,) with respect to waterplane fixed frame?
(;.; v'"Method 2. calculate center of the buoyancy(B,) with respect to body fixed frame
then transform frame from body fixed frame to waterplane fixed frame

Z

A g7 YAl () respect to waterplane fixed frame?
I (.
7 | T ] y Method 2. Calculate center of buoyancy B,
: T with respect to body fixed frame, then
| transform B, to waterplane fixed frame
| \ 1 w,
| ! ! - -
+ v A, M,,, M., with respect to body fixed frame
: dA=dy'dz’ A=|dA
My, =[y'dA M, . =[z'dA
I
| «*Integral value could be used as it is except
: intersection region with waterplane area when
® position of ship is changed.
I
: . Isarea invariant with respect to reference
+ Cx‘z frame?
O'x'%y fixed frame I \ Wetted surface area with respect to waterplane fixed frame
Oxyz/ Waterplane fixed frame : Wetted surface W_etted surface N
Wetted surface Wetted surface AR with cha/n\gpzd position
at presentz with chZang(ed)position position change
A A+
" > >
(—) (-|-) position change (—) y :> y
- y Y
Ol S BIEE Bl = - Area is invariant with respect to
moment of area have to calculated (& £ £ 13
20009 Fall, Ship Stability . Transverse Rightina Moment rererence trame. 24

T _
i How to calculate center of buoyancy B; with




l, Question : How to calculate center of the buoyancy(B,) with respect to waterplane fixed frame?
(;.; v'"Method 2. calculate center of the buoyancy(B,) with respect to body fixed frame
then transform frame from body fixed frame to waterplane fixed frame

How to calculate center of buoyancy B; with

A g7 ki (+) respect to waterplane fixed frame?
Z I (-
| T ] y Method 2. Calculate center of buoyancy B,
: ° T with respect to body fixed frame, then
|  transform B, to waterplane fixed frame )
|
# v A M, ,, My, with respect to body fixed frame
: dA=dy'dz’ A=|dA
My, =[y'dA M, . =[z'dA
«*Integral value could be used as it is except
intersection region with waterplane area when
[ 2 position of ship is changed.
| . .
| v'Center of buoyancy in body fixed frame
I
K K+ % (v 2 )= M,, M,,
O'x'y'z' : Body fixed frame I \ BT B A A
Oxyz : Waterplane fixed frame :
U e Are W At v'Center of buoyancy in waterplane fixed
at present with changed position i .
A Z A(_|_) frame : Rotational Transformation
(—) (-|-) position change (—) y ) y'
—_ > B |_ co.s¢ sin¢ B,
y y z —sing cos¢ || z'
B B,
Only changed area and
moment of area have to calculated. 14

2009 Fall, Ship Stability

- Transverse Righting Moment

124



1 . . .
e¢. Question : How to calculate center of the buoyancy(B,) with respect to waterplane fixed frame?

v'Comparison between Method 1 and Method 2

Method 1. Calculate Center of buoyancy B; with
respect to waterplane fixed frame directly

7 A

Method 2. Calculate center of buoyancy B, with
respect to body fixed frame, then transform B, to
waterplane fixed frame

O'x'y'z'

: Body fixed frame

Oxyz : Waterplane fixed framg

2009 Fall

v A M,, M  with respect to waterplane fixed
frame

dA = dydz A=jdA

My, =[ydA M, =[zdA

v’ Center of buoyancy with respect to
waterplane fixed frame
M,, M

,—S+ri'p-5-mbrh ty

(yslvzsl)z( A a%}

- ITransverse Righting Moment

Same

Convenient

—

Oo'x'y'z':
Oxyz : Waterplane fixed frame

Body fixed frame

v A M,,, M., with respect to body fixed frame
dA’ =dy'dz’ M,, =[y'dA M, =[z'dA

v’ Center of buoyancy with respect to waterplane

fixed frame M. . M..
7 n%-) — Ay ’ A,z
A A

(Y's,
v Rotational transformation
COS ¢

y31 _ sin¢ yIBl
Zy | |-sing cosg |l z'y

15
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Rotational Transformation of Point and Frame

(A) Rotation of the point

Given: Coordinate of P with respect to oyz frame
Find : Coordinate of Q which is rotated coordinate of P
about origin O in the yz plane through an angle of ¢.

y

i
Q sing cos¢ || z,

1 |

Rotational transformation of point

20009 Fall, Ship Stability . Transverse Rightina Moment

(B) Rotation of the frame

Given: Coordinate of P with respect to oyz frame
Find: Coordinate of P with respect to oyz which is rotated
frame about origin O' from 0'y'z' through an angle of ¢.

[y;}:{cow sinq{yp} 2D
Z, —sing cos¢ || z,

A |
Rotational transformation of frame

e 2] e
Z, sing Ccos¢ || z,

A |
; : 16
Rotational transformation of frame /124




Rotational Transformation of Point and Frame

(A) Rotation of the point

(B) Rotation of the frame

Given: Coordinate of P with respect to oyz frame Given: Coordinate of P with respect to oyz frame
Find : Coordinate of Q which is rotated coordinate of P | Find: Coordinate of P with respect to oyz which is rotated
about origin O in the yz plane through an angle of ¢. frame about origin O' from 0'y'z' through an angle of-¢.

0]

<
©
o‘
/
-U N ~ 4
<
U
<

<

Yo | |COS¢ —sing || Yo
Zo | |sing cos¢ || z,

\Rotatlonal transtormation of point

P .(2-D
Rotational transformation of point through an angle of ¢ equals to |:Z; :| sin ¢ COS ¢ :||:ZP :| }

rotational transformation of frame through an angle of -¢.

20009 Fall, Ship Stability . Transverse Rightina Moment

Yo | | COS¢ sing |y, .
> LJ{—siM cosqﬁ}{zp} 2

\ @ If we substitude -¢ into ¢
cos¢ —sing || Ve v

17
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(Proof) Rotational Transformation of Point

Given: Coordinate of P with respect to oyz frame
Find : Coordinate of Q which is rotated coordinate of P about origin O in the yz plane through an

angle of ¢.

0 | | Yy

(® Coordinate of point P, Q is expressed by
an angle

Ve =|rp|cOS Yo = Fo|cOS(a + 8)

Zo = ‘rQ‘sin(a +¢)
@ Summation formula of trigonometric function

sin(a + @) =sin a CoS ¢ + COS x SiN ¢

Z, =|rp|Sine

cos(a + @) = COSa COS ¢ —Sin ¢ Sin ¢

2009 Fall, Ship Stability - Transverse Righting Moment

® Let coordinate of Q be expressed by difference formula
of trigonometric function.

Yo =|ro|cos(a +¢)
=|ry|cos e cos g —|ry[sinasin ¢
= (|r| cos)cos g —(|r,|sina)sin g (re] =|ro)
=Y, C0S¢—2,Sing

Z, :‘rQ‘sin(a+¢)
=ro|sin & cos ¢+ |ry|cos arsin ¢
:(]rp\sina)cos¢+(]rp\cosa)sin¢ ,(\rp\z‘rQ‘)

J

=7, C0S@P+ Y, Sing

Yo | |cOs¢
Zo | |sing

@ In the matrix form

—sin ¢ Yp
cos¢ || z,



(Proof) Rotational Transformation of Frame

Given: Coordinate of P with respect to oyz frame
Find: Coordinate of P with respect to oyz which is rotated frame about origin O' from o'y'z' through
an angle of -¢.

Z ' 3 Let coordinate of P be expressed by difference formula of
trigonometric function.
e ~..__P Yp =|Ip|COS(a + @)
W4 =|r,|cosa cos ¢ —|r,|sin asin ¢
7 =(\rp\cosa)cos¢ (Jrs|sina)sing
a y =Y, COS¢—Z,Sin @
0] _ [ Yp
Ye , _
y z;, =|ro|sin(a + @)
(™ Coordinate of point P is expressed by an angle = ‘rP‘Sin o COS¢+ ‘rp ‘ cosasing
, = ([ro|sina)cos g + (|1, [cos ) sin ¢
Yo :‘rp‘COSa Ve =‘rP‘COS(a+¢) .
. _ =7,C0S¢+Y,SINg
Z, =|r,|sina zp, =|r,|sin(a + ¢) U
@ In the matrix form
@ Summation formula of trigonometric function ' _
. . . COS —SIn
sin(a + @) =sin a c0S ¢ + COS a Sin ¢ Yo |_ _ ¢ P Ve
Z, sing cos¢ || z,

cos(a + @) = COS x COS ¢ —Sin ¢ Sin ¢

2009 Fall, Ship Stability - Transverse Righting Moment
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Sec.1 Calculation of Center of Buoyancy

- Example) Calculation of Center of Buoyancy of Ship with
Constant Section
Method @ Direct calculating center of buoyancy in waterplane fixed frame

2009 Fall, Ship Stability

T T m— SR Seou/ / 20
= ] National Advanced Sh/p Design Automnation Lab.  [124
L Univ. http.//asdal.snu.ac kv



Example) Calculation of Center of Buoyancy of Ship with Constant Section
: Method @ Direct calculating center of buoyancy in waterplane fixed frame

Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin O through an
angle of -30°. Calculate center of buoyancy with respect to waterplane fixed frame
* Given : Breadth (B):20, Depth (D):20, Draft(T) 10, Angle of Heel(¢) : -30
« Find : Center of buoyancy (yg, z5) in Waterplane fixed frame

G: Center of mass K:Keel
B: Center of buoyancy B, : Changed center of buoyancy

Section view
Z,Z ‘A 20

20

20009 Fall, Ship Stability - Transverse Righting Moment
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Example) Calculation of Center of Buoyancy of Ship with Constant Section
: Method @ Direct calculating center of buoyancy in waterplane fixed frame

Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin O
through an angle of -30°. Calculate center of buoyancy with respect to waterplane
fixed frame

* Given : Breadth (B):20, Depth (D):20, Draft(T) 10, Angle of Heel(¢) : -30°
* Find : Center of buoyancy (y,,z,) in Waterplane fixed frame

G: Center of mass K:Keel
B: Center of buoyancy B, : Changed center of buoyancy

Sol.) [ P Q RS with respect to waterplane ]
fixed frame

IVIA,y MA,Z
[ (Ye,r25,) :[A’Aj]

is calculated by rotational transformation from  P'(x;, y5)

P(Xs, Ye)
Xp | ( €os(30) sin(30) \( X
A _(—sin(SO) cos(30)j A

(0866 05 (-10) (-13.66
| -05 0.866/| -10) | —-3.66

Q(Xq:Yo): R(Xr.Yr): S(Xs,Ys) are calculated in the same way.
X cos(30) sin(30) \( 10 - 3.66
Yo ) \—sin(30) cos(30)){ -10) | -13.66
Xz | _( cos(30) sin(30) \(10) (13.66
Yo ) \—=sin(30) cos(30)/\10) | 3.66
Xs | ( cos(30) sin(30) )(-10) (-3.66
ys ) \—=sin(30) cos(30))\ 10 | (13.66

2009 Fall, Ship Stability
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Example) Calculation of Center of Buoyancy of Ship with Constant Section
: Method @ Direct calculating center of buoyancy in waterplane fixed frame

Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin O

through an angle of -30°. Calculate center of buoyancy with respect to waterplane
fixed frame

* Given : Breadth (B):20, Depth (D):20, Draft(T) 10, Angle of Heel(¢) : -30°
* Find : Center of buoyancy (y,,z,) in Waterplane fixed frame

G: Center of mass K:Keel
B: Center of buoyancy B, : Changed center of buoyancy
| 7 v (-3.66, 13.66)
s
SO .) [ Area ] [ (yBlazBl):(;vyapész] S Z

Intersection point between straight line and vy
axis have to be calculated in order to know area.
Equation of straight line P,;S; have to be
calculated in order to know intersection point.

T

Equation of straight line through two points is

as follows. P
B,
LS v (y=w) (-13.66,-3.66

Substituting two points of P;, S, into equation of straight line

Q

2—(-3.66) = 13.66-(=3.66) (y - (~13.66)) (3.66,-13.66)
(~3.66) — (~13.66)
5221732y +20 —pmr > T(-11.55,0)

Equation of straight line of Q,R, is obtained in the same way

721732y 20 —nersection ;11 55,0)

. - point U
20009 Fall, Ship Stability - Transverse Righting Moment
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Example) Calculation of Center of Buoyancy of Ship with Constant Section
: Method @ Direct calculating center of buoyancy in waterplane fixed frame

Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin O
through an angle of -30°. Calculate center of buoyancy with respect to waterplane

fixed frame
* Given : Breadth (B):20, Depth (D):20, Draft(T) 10, Angle of Heel(¢) : -30°
* Find : Center of buoyancy (y,,z,) in Waterplane fixed frame

G: Center of mass K:Keel
B: Center of buoyancy B, : Changed center of buoyancy
Sol ) 7 v (-3.66, 13.66)
0 . _ Ay Az
[Area ] [(VB“ZB”‘(EAJ ’ ré:]] >

Divide area into 4 part, A;,A, Az A,
Then calculate area of A,.

Area, _—| ~11.55—(~13.66)|x|-3.66] A

= 3.867 P
(-13.66,-3.66

Area of A,, A;, A,can be calculated in the same way.

AreaAZ =55.66,

(3.66,-13.66)
AreaAs =86.6
AreaA4 =53.87

2009 Fall, Ship Stability - Transverse Righting Moment
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Example) Calculation of Center of Buoyancy of Ship with Constant Section
: Method @ Direct calculating center of buoyancy in waterplane fixed frame

Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin O
through an angle of -30°. Calculate center of buoyancy with respect to waterplane

fixed frame
* Given : Breadth (B):20, Depth (D):20, Draft(T) 10, Angle of Heel(¢) : -30°
* Find : Center of buoyancy (y,,z,) in Waterplane fixed frame

G: Center of mass K:Keel
B: Center of buoyancy B, : Changed center of buoyancy

, YN

Centroid of Al(XC_p&, yc_pl)can be calculated as follows

X, p =—11.54+ (—%(—11.54— (—13.66))]

A
=-12.25
2 P
Yo o =—3.66- (§) =-2.44 (-13.66,-3.66

Centroids of A,, A;, A, are calculated in the same way.

(3.66,-13.66)

(%_p» Yo )= (~3.96,-1.83)

(cA3’yc A3) (211 699)

(X _p+ Ve, ) = (6:29,-4.55)

2009 Fall, Ship Stability - Transverse Righting Moment
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Example) Calculation of Center of Buoyancy of Ship with Constant Section
: Method @ Direct calculating center of buoyancy in waterplane fixed frame

Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin O
through an angle of -30°. Calculate center of buoyancy with respect to waterplane
fixed frame

* Given : Breadth (B):20, Depth (D):20, Draft(T) 10, Angle of Heel(¢) : -30°
* Find : Center of buoyancy (y,,z,) in Waterplane fixed frame

G: Center of mass K:Keel
B: Center of buoyancy B, : Changed center of buoyancy

(-3.66, 13,

Sl [ 15t moment of area J[I_G/;jz';)]{M:y e

1st moments of area are calculated with areas
and centroids which are calculated in previous.

alcs ¥e & Ar('e\g%/c Argg/;fzc A4
Ay 3.87| -12.25 -244| -47.38 -9.44
Ay 55.66 -3.96 -1.83| -220.24| -101.85
As 8660 -211] -6.99 -183.01 -605.62 (3.66,-13.66)
Ay 53.87 6.29 -4.55| 338.78| -245.28
Sum 200.00 -111.85| -962.19

Centoid of total area is calculated as follows.

M., M,, (—111.85 —962.)
25 ) = L = , —0.56,-4.81
(e, 25,) [ A A j 200 ' 200 ( )

20009 Fall, Ship Stability - Transverse Righting Moment
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Example) Calculation of Center of Buoyancy of Ship with Constant Section
: Method @ Transformation of center of buoyancy from body fixed frame to waterplane fixed frame

Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin O p
through an angle of -30°. Calculate center of buoyancy with respect to waterplane XL ?Z 20 |
fixed frame _ SIS\ ! | R
* Given : Breadth (B):20, Depth (D):20, Draft(T) 10, Angle of Heel(¢) : -30° F i
* Find : Center of buoyancy (y,,z,) in Waterplane fixed frame : /y'
G: Center of mass K:Keel 20 I
B: Center of buoyancy B, : Changed center of buoyancy I
4= F— >
) M, M, I y’
Sal. [Area J (y'BuZIBl)Z( A’y A ] Bi
/ ’
- |
I
e *
* Total area before heel P Ki \ Q
I

A=20x10=200

» Changed areas after heel

A, A= %leloxtan 30 =28.87

» Total area after heel

)
=200-28.87 +28.87 = 200

o~ . : :
) Areais invariant with respect
to frame.
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Example) Calculation of Center of Buoyancy of Ship with Constant Section
: Method @ Transformation of center of buoyancy from body fixed frame to waterplane fixed frame

Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin O p
through an angle of -30°. Calculate center of buoyancy with respect to waterplane XL ?Z 20 |
fixed frame _ SIS\ ! | R
* Given : Breadth (B):20, Depth (D):20, Draft(T) 10, Angle of Heel(¢) : -30° F i
* Find : Center of buoyancy (y,,z,) in Waterplane fixed frame : /y'
G: Center of mass K:Keel 20 I
B: Center of buoyancy B, : Changed center of buoyancy I
4= F— >
Sol.) [ Centroid ] B: y
’
- |
_ v l
\
» Centroid of total area before heel P K: Q

(yc_A’ ZC_A) = (0’ _5) 20

* Centroids of changed area after heel

(Ye_a,1Ze_n) = (-%XlO, —%xletan 30°) _
~ (-6.67,-1.92) .

(Ye_n, Zc_a,) = (%XlO, %xlOX tan 30°)
= (6.67,1.92)

28
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Example) Calculation of Center of Buoyancy of Ship with Constant Section
: Method @ Transformation of center of buoyancy from body fixed frame to waterplane fixed frame

Question) A ship with a breadth 20m, depth 20m, draft 10m is heel about origin O
through an angle of -30°. Calculate center of buoyancy with respect to waterplane
fixed frame S

* Given : Breadth (B):20, Depth (D):20, Draft(T) 10, Angle of Heel(¢) : -30° F
* Find : Center of buoyancy (y,,z,) in Waterplane fixed frame

Rz 220
\

G: Center of mass K:Keel 20
B: Center of buoyancy B, : Changed center of buoyancy

M'y, M.,
Sol.) [lst moment of area J (y'Bl.Z'Bl)=(—‘,—'

o

A A

1st moments of area are calculated with areas
and centroids which are calculated in previous.

e\

_U
A

!

MA,y’ MA,Z

Area e = Areaxy | Areaxz

A 200.00 0.00 -5.00 0.00] -1000.00
Al -28.87 -6.67 -1.92 19245 55.56
A2 28.87 6.67 192 19245 55.56
Sum 200.00 384.90| -888.89

Centroid of total area after heel with respect to body fixed frame is as follows

M., M, 384.90 —888.89 { ]
b Zp) = Y A2 = : —(1.92,-4.44
(¥, 25,) [ A A j 200 200 j )

Rotational Transform coordinate of centroid of total area with respect to body fixed frame to
transformation centroid with respect to waterplane fixed frame by rotational transformation

Yo, | (cos® sin@)( Y ) ( cos(30°) sin(30°))( 1.92
(Z j_(—sine cosej(zglj_(—sin(’&@’) cos(30°)j[_4_44J |:>Same result

B,

29
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Example) Calculation of Center of Buoyancy of Ship with Constant Section
: Method @ Transformation of center of buoyancy from body fixed frame to waterplane fixed frame

Method @ Direct calculating center of buoyancy in
waterplane fixed frame

Calculation Result

Yy —0.56
(%)=[ j<
Zg —-4.81

Same

; ? R
Method @ Transformation of center of buoyancy I
from body fixed frame to waterplane fixed frame : /yv
20 :
4= F— >
Calculation Result : | y’
|
Ye, | (—0.56 ’
{281]_[—4.81j - A |
- *
P Ki N Q

30
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Sec.1 Calculation of Center of Buoyancy

- Calculation of Center of Buoyancy of Ship with Various Station
Shape

2009 Fall, Ship Stability

31
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Calculation of Center of Buoyancy of Ship with Various Station Shape
- Introduction

A z How to calculate Yg ,Zg in i
* M :
‘h @) \bﬁy waterplane fixed frame ?
lr’ T ,
: A z' z'
| \
rd y Z\\‘ i y.
G , — Gp\r CY B,
r.\ ! ZBl y Blsl !
By\ ! e
B~ ] _ Bp~\ ve
e B \ ~
K : K[\
O'x'y'z' : Body fixed frame C
Oxyz : Waterplane fixed frame Trighting ¢
g . Method (D Direct calculating center of I\ﬂebthod @ T]Eansf([))rn;at:c(_)n ((:je?ter
« Righting Moment : Moment to buoyancy in waterplane fixed frame OF BRG] r(_)m DB/
b to waterplane fixed frame
return the ship to the upright floating P
position (Restoring moment, Moment S
of statical stability)) < 7
N\ ) ’!E
e N ;
. i €,
Transverse Restoring moment How to calculate center of buoyancy of
Trighting _( yG + yBI) FB I =GZ. FB I
;YrTﬁ/n arm 1 1 1 1 ?
\ s o) ship with various sections
(- Righting Arm (GZ2) A
(@ From direct calculation
GzZ= Yo Y
\ We should know yg, yg; in waterplane fixed frame

@ From geometrical figure with
assumption that M does not change
within small angle of heel (about 10°)

GZ =GM -sing

2009 Fall GM is related to below equation by
e geometrical figure

GM =KB+BM —-KG

pment
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VCB(Vertical Center of Buoyancy)
Step@) Area, 15t M o m e nt Of Area 1) James M. Gere, “Mechanics of materials”, THOMSON, pp.828-850, 6t Edition

4 N

Z\ dA E
E v 1st moment of area with respect to z axis, M,
AN R Z' |
A & s § M,, =[ydA=[[ydydz
. idy :
E i : = yC . A
Y. y' Y i v 1t moment of area with respect to y axis, M,
(Y., zl) :centerof A i
N . N MAzzjszzjjzdydz
v’ Differential element of area, dA [:> ’
dA = dy dz =t oA

\ /
< L
v Centroid G

| M M
i GZ( AA\,y; AA\'ZJ:(yc’ c)

o - ﬁ %@QN’ ,@ 33
—- http//sg’fhpD sign Automation Lab. /124

v'Area, A
A= [dA= [ dy'dz

n
:ZAA‘ AAi : Area of i-th el t
\ — (AAi : Area of i- eemen)/

2009 Fall, Ship Stability - Transverse Righting Moment




VCB(Vertical Center of Buoyancy)
step@ Sectional Area (A,,), Displacement Volume

A \

s

Z P
\(* v’ Sectional Area
under water - 1 1
hull form i ’m W A= j dA = jj dy dz
' L )

4 )
v’ Displacement volume

Oxyz : Waterplane fixed
frame

l 5, \Y% :jdv ::”dx'dy'dz'

= (( [foydz )ax

— Volume(V) )
/> = A(X)

LV = [ AQQdx’

AP L X After calculation of each station area,
' Eachstation  jptegral Volume displacement volume can be calculated by
in Tongitudinal integral of section area over the length of ship
A direction \Y4 -

2009 Fall, Ship Stability - Transverse Ri
oy o o g — =

hting Moment
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VCB(Vertical Center of Buoyancy)

step® Vertical Moment of Volume, Vertical Center of Buoyancy(VCB)

A

under water

hull form " [
Y
\ )
e

IS -

: Waterplane fixed frame

Area of this Curve

— 1t Moment of
Volume(YV)

v,z

[

\-

v'Vertical Moment of Volume

M., =[zdv
= 'ﬂzdxdydz

::(ﬂzdydz )dx

— M Az (X)

M,, : Vertical moment of area about y axis

* Mg, =[M,,(xdx

After calculation of each vertical moment of station
area about the y axis(M,,), vertical moment of
displaced volume can be calculated by integral of
vertical moment of section area over the length of ship

L Ny 1

*—@ M
MA3,Z
M
MAz,z An, z
MAl,z

AP L

vertical moment Vertical
of station area Integral moment of

about the y axis in longitudinal volume

direction
M Az’ M v,z'

20009 Fall, Ship Stability - Transverse Righting Moment

-

v Vertical Center of Buoyancy

MVZ
VCB = ’
V

J
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D Zill,C. Advanced Engineering Mathematics, p319, Jones and Bartlett, 3™

Area of Triangle by Vector

y“ * Given : Position vector r, ry, I, of vertex of triangle
 Find : Area of triangle
(X2, Y,) 1
2172
[ Area(r)=§\(r1—r0)><(r2—ro)\ ]
P
27T (X0, Y1) | I K
//i/// . =1x-% Y-Y O
0 - -, X X, =X Y,—Y, O
1
(XO’ yO) :E‘(Xi_xo)(yZ_yO)_(XZ_XO)(yl_yO)‘

Cross Product”
axb= (HaH b sin 9) n

- Area of parellelogram

A=[ax]

- Area of triangle with side a and b
A=~Jaxb]

2009 Fall, Ship Stability

- Transverse Righting Moment
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D Zill,C. Advanced Engineering Mathematics, p319, Jones and Bartlett, 3™
? ]

Area of Triangle
by Rotational Transformation

€. Is a area changed after rotation about
C;‘; origin O?

e Given : Area before rotation

* Find : Area after rotation

© Area(r) =2 |6 -r)x(r, - 1)

:%‘(xl ~%)(Y2 = Yo) = (% = %) (¥, = o))
@ Area(r') = %\(r'l— r'y)x(r',— r'o)‘

:%‘(x'l—x'o )Y =Y'o) = (X=X ) (YY)

----------------------------------------------------------------------------------------------------

[x'o X', x'z}_[cose —sine}[xo X, X,
Yo Y1 Y, sin@ cos@ ||y, Y. VY,

=—|((x100549 y, Sin @) — (X, cos & -y, sin &))((x, sm¢9+yzcose) (X, Sin &+ y, cos 9))

—((x,cos@—y,sin@)—(x,cosd—y,sinB))((x sin8+y, cosd)—(x, sm¢9+yocos¢9))|
:_|((X1_X0)COS‘9 (Y1 = ¥o)SINO)((X, — X,)Sin @+ (Y, — Y,) cos F)

_(( 2 o)COSQ_(yz_yo)Sme)((X1_ 0)3|n0+(Y1_YO)C059)|
— (0% =X DSiN 0-+ (% — X,z — V) 0057 0~ (5 = X)) (¥~ Yo )i 0~ (3, = Y )y ~¥5)SITTE05 0)
— (X =X =T, Cos@sine—(xz—Xo)(yl—yo)cosze+(x1—xo)(yz—yo)sin29+(y1—yW)|

=% {cos? 0+sin” OH{04 = %)(¥> = Yo) = (¥ = ¥o) (Y2 = Vo) | a7

20009 Fall, Ship Stability - Transverse Righting Moment 24




Area of Triangle

by Rotational Transformation

© Area(r) =-|( ~ 1) x(r, =)

(Xl o Xo)(Yz - yo) - (Xz o XO)(yl - yo)‘

(r=ri)x(r,—r")|

{cos” 0-+in® H{04 = )(¥2 = ¥) = (%= Yo Yo = Yo)} - T

(% = %) (Y2 = Yo) — (s = Vo) (Y2 = Yo)|

(Xll_xlo )(ylz_y'o ) - (Xlz_x|o )(yll_y'o )‘

D Zill,C. Advanced Engineering Mathematics, p319, Jones and Bartlett, 3™

. Given : 3|H#3t M X
«Find : | M@ & o

ol L4 l0 X

~

. Area(r) = Area(r)

2009 Fall, Ship Stability

- Transverse Righting Moment

Area(Rr) =

Area(r’) = Area(r)

( R : Rotational

transformation matrix))

e

Areais invariant with respect to frame.
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D Zill,C. Advanced Engineering Mathematics, p319, Jones and Bartlett, 3™

1st Moment of Area
by Rotational Transformation

1 * Given : Position vector of vertex of triangle | Area of triangle Fbor,
y  Find : 1t moment of area of triangle

1
Area(r) = E\(rl —1y)x(r, = 1,)
(X2 ) y2) Position vector of centroid of triangle r;r,r,

1
I :§(I’1—I—I’2 +I’3)

1st moment of area of triangle r,r,r, with respect to x anm
y axis

M(r)=r.-A
M, :deA:dexdy:

+ X, + X
Xl 2 BA

_ _ _ Yt Tty
\_ I\/Iy_fydA_jydxdy— L 32 3A/

Ppsition vector of centroid of Let cent of side BC as D !
triangle ABC. L |

ﬁ = E(B + 6)
Now, G is the point of internal division with ratio of
2t01

oG - 2-OD+1-OA: 20D + OA
2+1 3

5:%{2x%(6+6)+5}=%(5+6+6)

O @12)5te| M, 425710-L+40,2005, K| & LA, pp.15 ' 39
/124
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1 Zill,C. Advanced Engineering Mathematics, p319, Jones and Bartlett, 3

1st Moment of Area
by Rotational Transformation

* Given : Position vector of triangle, angle of rotation 4

ymFind : 1st moment of area of triangle after rotation
about origin O

@ 1t moment of area of triangle before rotation
1
Area(r) — E‘(rl - ro) X (rz - ro)‘

1
:g(rl"'rz "'rs)

Moment(r) =r. A
@ 15t moment of area of triangle after rotation
Area(r") = Area(r) ,(— A'=A)
I ' 1
I =§(I’ o +r 3)
X 1
=§(Rr1+Rr2+Rr3)
1
fo =§R(r1+r2+r3)
=R, i Moment(r)
e COSH_SmH Moment(r) =r'A" < | - = ¢ | - A
LSS rlz]:[sine cosé’}[rO i) =Rr. A <
Xo Xy X,| [cos@ —sin@x, x x| i =R Moment(r)
Yo Vi Y] [sin@ coso |y, vi v, i

2009 Fall, Ship Stability - Transverse Righting Moment
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D Zill,C. Advanced Engineering Mathematics, p319, Jones and Bartlett, 3

1st Moment of Area
by Rotational Transformation

* Given : Position vector of triangle, angle of rotation @

* Find : 1st moment of area of triangle after rotation
about origin O

@ 1t moment of area of triangle before rotation

Yy

1
Area(r) = E‘(rl — 1) x(r, - ro)‘
I =%(r1+r2 +1;)
Moment(r) =r. A

@ 15t moment of area of triangle after rotation

Area(r') = Area(r) ,(—> A'=A)

' r. =R,
" Moment(r') =r A’
=Rr. A
=R Moment(r)
(R -Moment(r) = Moment(R ) )
et e eee s e R R ARt e et en e =Rr. A
r'=R-r . :
. v e r'z]z{c?se —sm@}[ro nor] ( R: Rotat_lonal _
sing  cosé : \_ transformation matrix)  /
X'o X X,| [€c0s@ —sin@| X, X X, | i
|:y'0 v y'2:|_[sin¢9 Cos@}[yo V. y2:| o 15t moment of area is invariant with

respect to frame.

o]
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Sec.1 Calculation of Center of Buoyancy

- Calculation of Center of Buoyancy of Ship with Various Station
Shape

2009 Fall, Ship Stability
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Example) Calculation of Center of Buoyancy of Ship with Various Station

Shape

Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this
ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily,
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed

frame.
* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30

* Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame

le— 20 |

! i

el

| \ | 20

iE
N

| 20 | 20

2009 Fall, Shlp Stablllty - Trgsverse Righting Moment
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Example) Calculation of Center of Buoyancy of Ship LY

with Various Station Shape

@ Sectional area of each section__y, ® Displacement volume
(Body fixed frame) (Body fixed frame)

A(X') = jdA de dz'L---: V=[dv
_______ : 'J________
: = J dz' dy'dx’
T, FRTTT
= A(X") dx’
@ 1st moment of area of @ 15t moment of
each section —>  displacement volume
(Body fixed frame) (Body fix_ec_j _f[a_nje_)_ _
M, :J y'dy’dz'i-----:“"> M, :” y’dz’dy“:dx’
=y - A(X) = [~ (v A dx
o CHEHO| CHot ZRHE S
do|gto= Mgt
M,, :J z'dy’dz'---- M, Z,:ﬁ”z’ dz’dy'idx’
—————————— p— A —
=17, A(X) j (2. A(X'))dx’
CA(X) - Sectionalareaatx (Y, 2, ) : Center of displaced |

— ) ; volume
(Y., z) : Centroid of section at x'

20009 Fall, Ship Stability - Transverse Righting Moment

® Center of buoyancy
(Body fixed frame)

.F.PA 'd’
5 A

F.PA 3. 5 dy’

:J‘A.P (X)'ZC X
F.PA N dx!
J.A.P (X)

@
® Center of Buoyancy

(Waterplane fixed frame)

Yoo | _(cosg sing)( Vo)
Zy —sing CcoS¢ Vc/,,;:




Example) Calculation of Center of Buoyancy of Ship
with Various Station Shape

Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this
ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily,
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed

frame. 20
* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame

W

£0[)

- Transverse Righting Moment

20009 Fall, Ship Stability
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Example) Calculation of Center of Buoyancy of Ship
with Various Station Shape

~ |20

Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this

ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily, T
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed Al
frame %
20| ¥ .
* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30 i[
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame / ( ; ,

In the same way of previous example, calculate center of buoyancy with respect to body
fixed frame at first, then calculate center of buoyancy with respect to waterplane fixed

gy frame by rotational transformation.
' [ Coordinate of Py, P,, Q,, Q, of section A3 ]
* Coordinate of P;, Q, is known as (-5,0), (5,0) by geometric shape.

Calculate equations of straight line PK, KQ in order to know P,,Q,

£0[)

The equation of straight line PK z'=—-2y"—10

The equation of straight line KQ z'=2y’—-10

* The equation of line of waterplane with respect to body fixed frame is as follows,
because waterplane is inclined through an angle of 30°.

z’=tan30y’' =0.5774y’
* Intersection point P,,Q, betwwen waterplane and straight line PK, KQ can be calculated as follows
P,(-3.88, -2.24), Q,(7.03, 4.06)

% Area below waterplane can be calculated also by Gaussian Quadrature. | [

< Section A; >
2009 Fall, Ship Stability - Transverse Righting Moment
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Example) Calculation of Center of Buoyancy of Ship
with Various Station Shape

~ |20

Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this
ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily, T
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed
frame.

20
* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame

Pl('S,O), Q1(5,0)

£0|
) P,(-3.88, -2.24), Q,(7.03, 4.06)

D-A; : Sectional area of A

* Total sectional area before heel

AKX _J-d-A-'---- A, ,=05x10x10="50
- ﬂ dy’ dz? » Changed area after heel

_ 1
=2 A0 AL =-|(R,-0)x(P,-0) A =2](@,~0)x(@,-O)

I ] k i j Kk
B R b 5 o0
A ) 5060—3.88 ~2.24 0 703 4.06
Ay, A~ - =10.15
| « Total sectional area after heel
A, =50-5.60+10.15 = 54.55
A3_0 If a ship is not a wall sided ship,

B . A (X") :Partial area of section at x'
\~/  area below waterplane is different. i (X)

< Section A; >
2009 Fall, Ship Stability - Transverse Righting Moment k(X ) Sectional area at x’
[ z ’ .- - . - G - [z - -
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Example) Calculation of Center of Buoyancy of Ship
with Various Station Shape

~ |20

Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this
ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily, T
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed
frame.

20
* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame

£0]) ] P,(-5.0), Q4(5,0)

[ Centroid of A; P,(-3.88, -2.24), Q,(7.03, 4.06)

Cetroidof A, , =(0,- ><( 10))

E = (01_?)

Cetroidof A, | = (0_5_3-88 ’ 0+0—2.24)
_ 3 e
i =(—2.96, —0.75)
Cetroid of A, 2=(O+7'03+5,0+0+4-06)
| - 3 3
5 ~ (4.01, 1.35)

< Section A; >
2009 Fall, Ship Stability - Transverse Righting Moment
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Example) Calculation of Center
of Buoyancy of Ship with Various Station Shape

~ |20
Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this
ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily, 7
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed
frame.
20
* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame
£0[) @- A; : 1st moment of area of section A,
s, * Calculate 1%t moment of area in order to know centroid of section A; with respect to body fixed frame
MMy dydz" Area | Viai| Zioi|. m Aot
y ay az: e 3" |Area*y'c 3 i| Area*z'c 3
__________ |
) Ak (X') @ Az o 50.00 0.00 -3.33 0.00 -166.67
@ Az 560 -2.96 -0.75 -16.57 -4.18
!
C ki Ak_i (x ) ® Az 10.15 401 1.35 40.69 13.73
®-@+@ 5455 57.26 -148.76
M , © 1 moment of area of M, : 1t moment of area of
" section A, about z' axis " section A, about y' axis

* Centroid of section A; with respect to body fixed frame is calculated as follows

M M,
(yé3izé3):[A i A gl J
rea, Area,
57.26 —-148.76
< Section A; > = [54.55 5155 j =[(1.05, —2.73)]

20009 Fall, Ship Stability - Transverse Righting Moment
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Example) Calculation of Center
of Buoyancy of Ship with Various Station Shape

~ |20

Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this
ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily, 7
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed
frame.

* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame

20

£0]) A, D-A, - A, A, ttHO| HA S HHAMTX} 2

* Calculate 1%t moment of area in order to know centroid of section A, with respect to body fixed frame

---------- - , : M M,z
MAk,y’ =EI y’dy’dz’i Area Ye o %o i Area/j‘g)’/y';_z_i Area*/;:c_z_i
;T Aso 200.00 000  -5.00 0.00| -1000.00
= Yo« AdX) Ass -2887]  -667  -192] 19245 5556
=Zyé ) i'Ak i(x') As 2 28.87 6.67 192 192.45 55.56
{V - B Sum 200.00 38490, -888.89
M IR e G A 6l M, @ 1% moment of area of
> Y Section A, about Z' axis ~ section A, about y' axis

* Centroid of section A, with respect to body fixed frame is calculated as follows

A; o M,, M,, 384.90 —888.89
— (Ve 202 _5) =| oot =2 =( = : j[: (1.92,—4.44})
< Sectipn A, >\ Area, ' Area, 200 200
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Example) Calculation of Center of Buoyancy of Ship
with Various Station Shape

~ |20

Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this

ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily, T
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed Al
frame %
20| ¥ .
* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30 i[
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame / ( ; ,

£0[)

[ Coordinate of R, R,, S;, S, of section A, ]

* Coordinate of R;, S; is known as (-7.5,0), (7.5,0) by geometric shape.
» Calculate equations of straight line RR3, SS; in order to know R,,S,

The equation of straight line RR, z2'=-4y'-30

The equation of straight line SS, z'=4y'-30

» The equation of line of waterplane with respect to body fixed frame is as
follows, because waterplane is inclined through an angle of 30°.

z’=tan30y’' =0.5774y’

* Intersection point R;,S; between waterplane and straight line RR;, SS; can be calculated as follows
P,(-6.55,-3.78), Q,(8.77,5.06)

< Section A; >

¥ Univ.
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Example) Calculation of Center of Buoyancy of Ship
with Various Station Shape

~ |20

Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this
ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily, T
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed
frame.

20
* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame

P,(-7.5,0), Q,(7.5,0)

£0|
) P,(-6.55,-3.78), Q,(8.77,5.06)

@- A;: Sectional area of section A;

* Total sectional area before heel

A (X) = |dA’ A, ,=0.5x(15+10)x10 =125

= ” dy’ dZ bl Changed area after heel

:ZAk_i(X)Al_l |(P ~0)x(P,-O)| A1_2=%|(Q1—0)><(Q2—0)|

i ik i ik
D R =0 75 0

0 -6.55 -3.78 0 8.77 5.06
=14.19 =18.98

» Total sectional area after heel

A =125-14.19+18.98 =129.79

.~ If a ship is not a wall sided ship,
area below waterplane is different.

b 2 Seoul 52
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Example) Calculation of Center of Buoyancy of Ship
with Various Station Shape

~ |20

Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this
ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily, T
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed
frame.

20
* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame

=0 ] P,(-7.5,0), Q,(7.5,0)

[ Centroid of section A; P.(-6.55,-3.78), Q,(8.77.5.06)

Cetroid of A, , = (0, (15x10)x (-5) +(0.5x 2.5><10)><10><(2/3))
i i 125
i = (0,-4.67)
i Cetroid of A, , :(0—7.5—6.55,0+O—3.78)
: | - 3 3
N ‘: = (-4.68, —1.26)
YR . 2 —--» A,
| A ! _ _ _ _
g 1 y: 11 i Cetroid of A, 2=(O+75+877’O+O+506)
1 : i - 3 3
N i = (5.42, 1.69)
s 10/1 i
< Section A; > Al_O ;

2009 Fall, Ship Stability - Transverse Righting Moment
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Example) Calculation of Center

of Buoyancy of Ship with Various Station Shape |20
Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this
ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily, 7
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed
frame.
20
* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame
£0[) | @- A;: 1St moment of area of section A;
s, i« Calculate 1%t moment of area in order to know centroid of section A, with respect to body fixed frame
M Ay ZJ y'dy dZ: Area Yoai| e Area*y'c 1 j|Area*z'c 1
_ _'_?,_A_(_x_’)_ o @ Axo 125.00 0.00 -4.67 0.00] -583.34
i =Y @ A 14.19 -4.68 -1.26 -66.48 -17.90
i = Z y(’: . Ai (x') ® A 18.98 5.42 1.69 102.90 32.02
i - D-@+® 129.79 169.38| -533.42
Tt 1: M Ay - 1 moment of area of MA 1 1% moment of area of
A i "7 section A, about z' axis """ section A, about y" axis
A 12 . * Centroid of section A, with respect to body fixed frame is calculated as follows
11 :
l M,, M,
i (yé_l,Zé_l):(A Ay A G ]
: rea, rea,
| 169.38 —533.42
< Section A; > A1_o | = [129_79 '’"129.79 j :[(1-31’ _4-11)]

20009 Fall, Ship Stability - Transverse Righting Moment
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Example) Calculation of Center of Buoyancy of Ship
with Various Station Shape

~ |20

Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this
ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily, T
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed

frame. 20

* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame

£0[|) | ® Displacement Volume

\% :.'dv = dex’dy'dz’

Area of this curve

Area — Volume(/) :[ dz’ dyi dx’

* Displacement volume can be calculated by
integral of sectional area in longitudinal direction

V= joso A(X') dx’ = 7,304

20009 Fall, Ship Stability - Transverse Righting Moment
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Example) Calculation of Center of Buoyancy of Ship
with Various Station Shape

Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this
ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily, 7
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed
frame.

20

* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame

£0| .
) @-1 : Transverse moment of displaced volume | (Body fixed frame)

|

_ b ' ’ n '

M, M,y | M., = [[[ v dy dz’dx
Area of this curve Fp "7 T7C

— Transverse moment = (y.-A(x))dx'
of volume A"P v
y :IMA,y'dXI BRAZ
After calculation of each transverse moment of sectional area about the z’

-V

X axis(M, ), transverse moment of displaced volume can be calculated by
integral of transverse moment of section area over the length of ship

!
M Ay - Transverse moment of area about 2" axis V y = I M Ay’ ,dx —'_ }2_45_5_ _'

M A,z - Vertical moment of area about y* axis

20009 Fall, Ship Stability - Transverse Righting Moment
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Example) Calculation of Center of Buoyancy of Ship
with Various Station Shape

Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this
ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily, 7

calculate y and z coordinates of center of buoyancy with respect to waterplane fixed
frame.
20
* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame

£0|) . .
@-2 : Vertical moment of displaced volume | (Body fixed frame)

_ F.P ’ A / d /
= (@ A(x))dx
=2V

Area of this curve
— \ertical moment
of volume

M. =M 1 After calculation of each vertical moment of sectional area about the y
vz Az axis(M, ), vertical moment of displaced volume can be calculated b
Az/r y
integral of vertical moment of section area over the length of ship

M Ay : Transverse moment of area about z' axis

M A,z - Vertical moment of area about y* axis

20009 Fall, Ship Stability - Transverse Righting Moment
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Example) Calculation of Center of Buoyancy of Ship
with Various Station Shape

~ |20

Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this
ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily, 7
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed

frame. 20
* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame

£0]) .
® Center of buoyancy (Body fixed frame)

*Center of buoyancy can be calculated if we divide transverse, vertical moment of displaced volume by displaced volume.

ch = : - TCB = nyy- VCB = Mv,z'
Y j‘j dx’dy’:dz’ (Yoo Z7,6) = L VCB ==

. (12455 80.794) 1775
7,304 ' 7,304 ) |

___________

e =Ty T f dx’ dy! dz’
'.[ y' * Center of buoyancy with respect to waterplane fixed frame have

to be calculated.
— Rotational transformation

Advanced Ship Design Automation Lab.

2009 Fall, Ship Stability - Transverse Righting Moment
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Example) Calculation of Center of Buoyancy of Ship
with Various Station Shape

~ |20

Problem) There is ship (L x B x D : 50 x 20 x 20) with various station shape. When this

ship is heeled about x axis in counter-clock wise through an angle of 30° compulsorily, T
calculate y and z coordinates of center of buoyancy with respect to waterplane fixed Al
frame. AN
20| ¥ .
* Given : Length(L) : 50, Breadth(B) : 20, Depth(D) : 20, Draft(T):10, Angle of Heel(¢) : -30 i[
« Find : Center of buoyancy (y- .,z ) after heel in waterplane fixed frame / ( ; ,

£0])
® Center of buoyancy (waterplane fixed frame)

» Center of buoyancy with respect to waterplane fixed frame have to be calculated.
— Rotational transformation

yv,c _ COS¢ Sin¢ y’V,c
Z,. ) \-sing cosg)| zi .

Yoo | ( COosg sing( 1.71
z,.) \-sing cosg )\ -421) |

_(cos(30) sin(30)\( 1.71) {-0.63);
) (—Sin(30) 008(30)j(—4.21j {—4.50] !

2009 Fall, Ship Stability - Transverse Righting Moment
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Sec.2 Calculation of BM, GZ in Wall Sided Ship

20009 Fall, Ship Stability
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Transverse Righting Moment

Trestoring — GZ- I:B
GZ =GM -sing

O'x'y'z' : Body fixed frame

Oxyz : Waterplane fixed frame Trighting

G: Center of mass B: Center of buoyancy B,: Changed center of buoyancy

K: Keel Fs : Weight of ship Fg : Buoyant force acting on ship

Z: The intersection of the line of buoyant force through B, with the transverse line
through G

M : The intersection of the line of buoyant force through B; with the centerline of the ship

2009 Fall, Ship Stability - Overview of Ship Stability

Vs

» Righting Moment : Moment to
return the ship to the upright floating
position (Righting moment, Moment
of statical stability))

b J
( 2
* Transverse Righting moment
z-righting - (_yG + yBl) ) FB | = GZ- FB I
H_/
L Rightin!g arm)

/ \ 4
 Righting Arm (GZ2)
@ From direct calculation

N7

\

GZ=-Y;+Vs

We should know V.., Ve in waterplane fixed frame

\S

(@ From geometrical figure with

assumption that M does not change
within small angle of heel (about 10°

GZ =GM -sing

GM is related to below equation by
geometrical figure

GM = KB +HBM |- KG

KB : Vertical center BM : Transverse Metacenter Radius

of buoyancy
KG : Vertical center of mass of ship

KB, BM is determined by the shape of ship

KG is determined by loading condition of cargo ,1§§



Calculation of BM (1)

(BM : Transverse Metacentric Radius)

Let's derive BM in case of simple section like

(+)
y a wall sided ship.

J

= Wall sided ship

- When a ship is in upright position, a
ship which have perpendicular side shell
to waterplane is called “wall sided ship”.

Lo,y | Assumption

~~ 4 1. Wall sided ship
= Submerged volume is same with
emerged volume when the ship is

heeled. ( A ship is heel without change

of displacement volume )

1

q:_ T restoring
O'x'y'z" : Body fixed frame FB 2 A main deCk IS n0t ﬂOOded.
Oxyz : Waterplane fixed frame , G: Center of mass
Z rThe-intersection-of-the-line-of-buoyant-force ' B: Center ofb . -
through B1 with the transverse line through FG:\/eVr;iZL(t)of:E?/;r(]:\);V) 3 Center Of rotatlon |S not Changed
G
B,: Changed center of buoyancy Fg : Buoyancy (=pgv)

d

B,: The intersection of the line of buoyant force through B1 with the transverse line through (M IS not Changed) 63

M : The intersection of the line of buoyant force through B1 with the centerline of the ship /124



Calculation of BM (2)

(BM : Transverse Metacentric Radius)

(+)

T

restoring

O'x'y'z" : Body fixed frame F B

Oxyz : Waterplane fixed frame , G: Center of mass

Z rThe-intersection-of-the-line-of-buoyant-force 1 B: Center of buoyancy
through B1 with the transverse line through F.. : Weight of ship (W)
G e

B,: Changed center of buoyancy Fg : Buoyancy (=pgV)

B,: The intersection of the line of buoyant force through B1 with the transverse line through B

M : The intersection of the line of buoyant force through B1 with the centerline of the ship

The shape of displacement volume is
changed as a ship is heeled.

Relation between moving distance of center
of changed displacement volume and
moving distance of center of center of
buoyancy is as follows.

pgV-BB,=pgv-qg, >
pYV
BB, =2_.
1 pgv ggl
(99, =20g,)
V
BBlzg-ZOgl

V : Displacement volume

Vv : Changed displacement volume

BB;: Moving distance of center of
buoyancy

00, : Moving distance of center of
changed displacement volume

64
124



o Yy.¢: ¥ coordinate of changed displacement volume Assumption
Calculation of BM (3) 1. Wall sided ship.
(BM : Transverse Metacentric Radius) 2. A main deck is not flooded.
3. Center of rotation is not
changed

\"
BB, =209,

@ /B,BB, = /g,0L,

BB, cos(«£B,BB,) :%- 20g, cos(£g,0L,

BB,

BB, = VYo
L.H.S R.H.S
BB, = BM -sin|¢|
. - In this case, an angle of heel is (-
O'x'y'z" : Body fixed frame FB 9 )
Oxyz : Waterplane fixed frame , G: Center of mass -
Z The-intersection-of-the-line-of-buoyant-force : B: Center of buoyancy BBZ - — B M -SIN ¢
through B1 with the transverse line through F. : Weight of ship (=)
G : T
B,: Changed center of buoyancy Fg : Buoyancy (=pgV) V : Displacement volume

Vv : Changed displacement volume
BB;: Moving distance of center of buoyancy 65
M : The intersection of the line of buoyant force through B1 with the centerline of the ship g9, : Moving distance of changed displacement volume /124

B,: The intersection of the line of buoyant force through B1 with the transverse line through B



Calculation of BM (4)

(BM : Transverse Metacentric Radius)

(R.H.S)
2 |_ - =1
o VY
Represent center of buoyancy with respect to waterplane
fixed frame(yV,C,ZV,c) as one with respect to body fixed framel
yv,c . COS¢ _Sin¢ y\’/c /
z,.) \sing cosg )\ 2, ,
)’ Yoo = Yic:COSP—127, -Sing
y
2 :
—-V-(y,.-COSp—12,,-Sing)
Y
2 -=--- 2r-=--
ZLy.y' -COS¢ — —rV-Z! -sing
V___\L(L Vu.__J(SZI

Transverse moment of volume with Vertical moment of volume with
respect to body fixed frame. respect to body fixed frame.

Yy Yy coordinate of center of changed displacement volume

V. : Changed displacement volume

2009 Fall, Ship Stability

- Transverse Righting Moment : ) V : Dlsplacement volume

Tt " »
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Calculation of BM (5)

(BM : Transverse Metacentric Radius)

(R.H.S)
2 vy
[ V,C
\%
_ Beeooe 2r=--
| — —rv-7" Lgj
._V__m_ COS ¢ rV-Z, SINg
\%
Transverse moment of volume Vertical moment of volume with
with respect to body fixed frame. respect to body fixed frame.
&?‘ How to calculate 15t moment of volume?
: It can be calculated by integral of 1t moment of area over the the length of ship.
Xg ,
nyy, =V- y\;c = J.'” y' dy' dz'dx' = J. A(X') yé dx’ »Y¢ : Transverse center of section
);A with respect to body fixed frame
MV s =V Z\; : = J:” z' dy' dz'dx’' = J ] A(X') Zé dx’ ,Zé : Vertical center of section
: : X

with respect to body fixed frame

:écosﬁ:: (A(x').yé)dx’—ésin ¢IXXAF (A(X')-z.) dx’

Yy Yy coordinate of center of changed displacement volume
V. : Changed displacement volume

2009 Fall, Ship Stability V  :Displacement volume
[ z ’ | T = £ = — .
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Calculation of BM (6)

(BM : Transverse Metacentric Radius)

(R.H.S)

2

g'v yv,C

Ziyes - Zigsing

Transverse moment of volume
with respect to body fixed frame.

= écos ¢LXAF (A(X)-y.)dx'— ésin ¢J‘XXAF (A(X)-z.) dx’

Vertical moment of volume with
respect to body fixed frame.

: Changed displacement volume

: Displacement volume

: y coordinate of center of changed displacement volume

&)‘; How to calculate sectional area?
In case of triangular section
’ Y 7 g _ y p-ywang o,
A(x)_jdA_jO jo dz' dy _jo jo dz’ dy
y
y 1 1
:—j (y'tang)dy’ =—| =y“tang | =—=y"“tang
0 2 7 2
&7‘ How to calculate centroid of section?
! 2 !/
Y. = g Yy , ZC = —g y "tan ¢ ,(In case of triangular section)
\

2 = 1 2 2 ' ' 2 - Xg 1 12 1 ' '
=——CO0S —v“tang-—vy' |dx’ — —sin —v'“tang-=y'tan¢g |dx
= ¢LA[2V ¢3yj = ¢IXA(2y $2Y ¢j

2009 Fall, Ship Stability
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Calculation of BM (7)

(BM : Transverse Metacentric Radius)

(R.H.S)
2 » Yy 1y coordinate of changed displacement volume
— .V yv 5 ,V. 1 Changed displacement volume
V ’ 'V : Displacement volume
_ il iR
— V'-V- Y, ¢ COS@ + VI V-Z,,-Sing
Transverse moment of volume Vertical moment of volume with
with respect to body fixed frame. respect to body fixed frame.
2 Xg 2 . Xg
= —cos¢j (A(X)-y!)dx' —=sin ¢j (A(X)- z;) dx’
\V4 0 V XA

1 1 .
———cosgtangl. ———singtan® @ |

::—l(sin¢ l, +%sin¢5tan2 ¢ IT)

I
I

I Y, :Yy coordinate of center of changed displacement volume
! ,

Y

I

______________________ V. : Changed displacement volume
2009 Fall, Ship Stability V  :Displacement volume
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Calculation of BM (8)

(BM : Transverse Metacentric Radius)

~ \> y /I

1 i

i T restoring i

O'x'y'z" : Body fixed frame F B i
Oxyz : Waterplane fixed frame , G: Center of mass !
Z rThe-intersection-of-the-line-of-buoyant-force=— B: Center of buoyancy !
through B1 with the transverse line through F.. : Weight of ship (W) :

G e '
B,: Changed center of buoyancy Fg : Buoyancy (=pgv) !
B

B,: The intersection of the line of buoyant force through B1 with the transverse line through

M : The intersection of the line of buoyant force through B1 with the centerline of the ship

Assumption
1. Wall sided ship.
2. A main deck is not flooded.

3. Center of rotation is not
changed

 Derivation of BM

L.H.S R.H.S

2
BB, = 5 VY,

(L.H.S) BB, =—BM -sin¢

2 1/( . 1. \
R.H.S) — -v- ———|sing |I. +=singtan® @ |
( ) V yv,c V( ¢ T 2 ¢ ¢ T/

—BM -sing= —é(sinqﬁ I +%sin gtan’ ¢ 1.)

1 1
BM :g( IT +§tan2¢ IT)

| 1
BM =T (1+=tan?
v( > P)

70
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. Assumption
Calculation of BM (9) 1. Wall sided ship.
(BM : Transverse Metacentric Radius) 2. A main deck is not flooded.

3. Center of rotation is not
changed

4. An angle of heel ¢ is small.

(+)
y

] * Derivation of BM in case of small angle of heel

if gissmall _

| 1 tan2¢z¢2=0:_ | :

BM =T (1+=tan’¢)| == ' BM=—L| !
v 2 I Vi

If we assume that ¢ is small,

BM = 1T
v

which is generally known as BM.

That BM does not consider change of center
of buoyancy in vertical direction.

In order to distinguish those, we will indicate
two as follows

1

q:_ T restoring
O'x'y'z" : Body fixed frame F B
Oxyz : Waterplane fixed frame , G: Center of mass |T 1 .
Z': The intersection of the line of buoyant force ! B: Center of buoyancy BM, =—(1+—= tan® ¢)| (Considering change of center
EBhrough B1 with the transverse line through F. : Weight of ship (=W) V of buoyancy in vertical direction)
. Fg : Buoyancy (=pgV) .
B,: Changed center of buoyancy B yancy (=pg BM — IT (Not considering change of center
B,: The intersection of the line of buoyant force through B1 with the transverse line through B - ; of buoyancy in vertical direciio))

M : The intersection of the line of buoyant force through B1 with the centerline of the ship /124




5 ETV I T e Assumption
Calculation of GZ BMo=3 (1+510°9) | "\wall sided ship.
(GZ : Righting arm) B_=I—T 2. A main deck is not flooded.
\ 3. Center of rotation is not
. changed

« Derivation of GZ
GZ = KN —KGsing
= KM sing — KGsin ¢
= (KB +BM, )sing —KGsin ¢

L, 1.,
l (BMO:$(1+2tan ¢)j

= (KB+|€T(1+%tan2 $))sin g— KGsin ¢

Vi
: IT - l IT 2 -
| = (KB +——-KG)sing+——tan“ ¢sin ¢
; Y 2V
: |
A G
T restoring i 1
i ! : .
O'X'y'z' : Body fixed frame | = (KB + BM —KG)sing+—BM tan” ¢sin ¢
Oxyz : Waterplane fixed frame , G: Center of mass ! 2
Z Therintersection-of-the-line-of-buoyant-force— B: Center of buoyancy ) 1
EBhrough B1 with the transverse line through Fe : Weight of ship (EW) i — GM sin ¢+_ BM tanz ¢Sin ¢
B,: Changed center of buoyancy Fg : Buoyancy (=pgV) : 2
B,: The intersection of the line of buoyant force through B1 with the transverse line through B ¥ S . . .
o : , ’ ° : , , ’ @ s« Righting arm in wall sided ship! 72
M : The intersection of the line of buoyant force through B1 with the centerline of the ship \ /124



[Ref.) Calculation of BM — another metnod t1)

BM : Transverse Metacenter Radius

Assumption

1. Wall sided ship.

2. A main deck is not flooded.

3. Center of rotation is not changed

Displacement volume of WOW,

Is same with displacement volume LOL,

K1
1 - .
T _ Assumption 4. An angle of heel ¢ is small
ot 1t - : (I:_ restoring
O'x'y'z' : Body fixed frame F
Oxyz : Waterplane fixed frame
: B G: Center of mass BBZ BB]_ V- ggl

Z : The intersection of the line of buoyant force ! B: Center of buoyancy B = ~ =

through B1 with the transverse line through - Wei - .

G F : Weight of ship (=W) tan ¢ tan ¢ V tan ¢
B,: Changed center of buoyancy Fg : Buoyancy (=pgv)

- B, The point at which a vertical line through B1 crosses parallel line with line WL through B

b 2 Seoul 73
iy Netional Advanced Sh/p Design Automation Lab. /124
Univ. http.//asdal.snu.ac kv

M : The intersection of the line of buoyant force through B1 with the centerline of the ship



. BB BB _ v-gg Assumption

ang tang V-tang . i iD.
[Ref.) Calculation of BM — anotner mtethodt[21
B

V.99, 3. Center of rotation is not changed

— "tan
2y y'tan ¢

Differential area of ship = dx’
Differential volume of WOW, and LOL,

dv =%y’- y'tan ¢ - dx’
Because ¢ is small

2
99, =2-Og z2-§y

v-gg, = [dv-gg, = tang- j y"dx’
=tang- 1, , ( ——Iy“dX]

I : 2" moment of waterplane area about X" axis
with respect to body fixed frame.

T

restoring ~ mmmmT oo oo m oo

O'x'y'z" : Body fixed frame FB BM _ Vv ggl _ IT tan ¢ _ IT
Oxyz : Waterplane fixed frame G: Center of mass - — —
Z: The intersection of the line of buoyant force E B: Center of buoyancy V : tan ¢ V : tan ¢ V

tGhrough B1 with the transverse line through Fs : Weight of ship (EW)
B,: Changed center of buoyancy Fg : Buoyancy (=pgv) IT
B,: The point at which a vertical line through B1 crosses parallel line with line WL through B BM -
M : The intersection of the line of buoyant force through B1 with the centerline of the ship V 1121




Ref) Transverse Moment of Inertia (I-)

2" moment of waterplane area about x' axis is as follows

! %LL{V’(XWX’

2009 Fall, Ship Stability

- Transver

se Righting Moment



Sec.1 Calculation of Center of Buoyancy

Sec.2 Calculation of BM, GZ in Wall Sided Ship

Sec.3 Inclining Test

Sec.4 Transverse Stability of ship (Unstable condition)

Sec.5 Transverse Righting Moment due to Movement of Cargo
Sec.6 Calculation of Heeling Angle due to Shift of Center of Mass

2009 Fall, Ship Stability

o

Bhps Seou! S DAL 76
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T restoring — GZ- FB

Inclining Test (1) SRR

GIVEN
( )
e Draft
= Weight of ship(W)
e Hydrostatic values (KB,BM)
= Angle of heel ¢ when cargo is moved \VA
rightward through a distance ‘d’ -
\ S
FIND
= KG (Transverse center of gravity)
%0_09 Fall, Sip Stability - Inclining Test _ _ : _ _ -
PR —— T ey g - S/’ @%"BAZLWDW"? —




T restoring — GZ- FB
GZ =GM -sin¢

GM = KB + BM —KG

Inclining Test (2)

Shift of center of total mass

GG, = W4
W

Transverse heeling moment

W -GG, cos ¢

Transverse righting moment
F,-GZ = F,-GM sin¢
Static equilibrium of moment
M -GG, cosg = £ -GM sin g
GG w.d
tang W -tang

O'x'y'z' : Body fixed frame
Oxyz : Waterplane fixed frame

-.GM

G: Center of total mass
B: Center of buoyancy
Fs : Total weight (=W) KG
Fg : Buoyant force (=pgV=Ag)

d : Moving distance of cargo GM — KB + BM - KG

@ An angle of heel
M : Metacenter = If we know an angle of heel ¢, KG M w-d
= + e
we can calculate KG. I >IB W tan ¢
2009 Fall, Ship Stability known known
. T T e R - o B seou/ SDAL 78
- Q%aa e  — s S o = () i @ﬁ%ﬁ;@iﬁﬁ%@ﬂﬁ” R /124




Sec.4 Transverse Stability of ship (Unstable condition)

2009 Fall, Ship Stability

METR Seoul
'?F A National 79
L Advanced Ship Design Automation Lab.

TR S e e ation Lab.— [124



Transverse Stability(1)

Feo

)
ZAZ’ z
G K ; >y
=
X, X'
A ~
10,0 > Y
y /
k B
K
G: Center of mass
O'x'y'z" : Body fixed frame F B: Center of buoyancy
Oxyz : Waterplane fixed frame B Fe: Weight of ship (=W)

2009 Fall, Ship Stability

P =E

- Transverse Righting Moment

Fg : Buoyant force acting
on ship (=pg+V)

Heel case in ship hydrostaics (¢ :angle of heel)

O = MGravity (¢+ A¢) + M Buoyancy (¢+ A¢) + I\/Iexternal
0=ry xFg i (@+A0)+1ry xF (p+AD)+M

ravity Buoyancy external

~

(® Y F=F;+F; =0

(static equilibrium of force)
g J

4 )
@ Center of mass(G) and center of
buoyancy (B) are in the same vertical
line which is perpendicular to
waterplane - Transverse moment
arms about origin Origin O about z
axis are same. (static equilibrium of

mo t)
__§ﬂ16+8

=I,xF; +r;xF;

O O
P’TIUUNX

© o o

/

80
Advanced Ship Design Automation Lab.
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Transverse Stability(2)
e

Zr bz Wl

G: Center of mass
B: Center of buoyancy
Fs : Weight of ship (=W)
Fg : Buoyant force acting
on ship (=pg+V)

O'x'y'z' : Body fixed franfe. F
Oxyz : Waterplane fixed frame B
2009 Fall, Ship Stability

- Transverse Righting Moment

e N
3 External moment (t,) is applied on

the ship in clockwise.

(Negative moment is applied)

- J
-

@ A ship is heeled about origin O
through an angle of ¢.

- J

J

/® Center of buoyancy is changed )

\ from B to B,. )

B,: Changed center of buoyancy

81
Advanced Ship Design Automation Lab.
@hn;’?/'}fﬁdazs%aﬁ'rg" utomation Lab. — [124



Transverse Stability(3)

G: Center of mass
rB £ B: Center of buoyancy
1 . . . . —
O'x'y'z' : Body fixed frame F Fe - Weight of ship (=W)
0 - \Waterpl Foon| B Fg : Buoyant force acting
xyz : Waterplane fixed frame on ship (=pg)

Z : The intersection of the line of buoyant force through B1 with the transverse line through G

4 )
® Moments due to weight of

ship and buoyant force are
calculated as follows

dorer o+

=rG><FG+rBl><FB

M : The intersection of the line of buoyant force through B1 with the centerline of the ship  B,;: Changed center of buoyancy /124



Transverse Stability(4)

Theeling

4 I
® Moments due to weight of
ship and buoyant force are
calculated as follows
dorer o+
=T, x5 +rBl><FB
nti= (Yo + Ys)-Fa
(GZ=-y;+VYg)

If yo is larger than y,
(= yg is located in right side more than yg)

(= Center of mass is located in a high level )

Because GZ=(-ys+Ys) is (-)

—— o ——

rBl - £
O'x'y'z' : Body fixed frame
Oxyz : Waterplane fixed frame

G: Center of mass

B: Center of buoyancy

Fs: Weight of ship (=W)

Fg : Buoyant force acting
on ship (=pg™v)

Z : The intersection of the line of buoyant force through B1 with the transverse line through G

M : The intersection of the line of buoyant force through B1 with the centerline of the ship  B,;: Changed center of buoyancy

Heeling moment about origin O in (-i

direction is applied on a ship.
(A ship become heeled more
. unstable condition) )

83
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Transverse Stability(5)

Theeling

r
B

O'x'§'z' : Body fixed frame q:‘ F

Oxyz : Waterplane fixed frame B

G: Center of mass

B: Center of buoyancy

Fgs : Weight of ship (=W)

Fg : Buoyant force acting
on ship (=pg+v’)

Or, Substituting -Fg into Fg
~T= (Y — Vg ) Fo

Thought ‘GZ=(ys-yg)’ is positive, but
Fs is applied in —k direction

I) direction is applied on a ship.
(A ship become heeled more
: unstable condition)

Z : The intersection of the line of buoyant force through B1 with the transverse line through G
M : The intersection of the line of buoyant force through B1 with the centerline of the ship  B,;: Changed center of buoyancy

\

4 I
® Moments due to weight of
ship and buoyant force are
calculated as follows
dorer o+
=T, x5 +rBl><FB
nti= (Yo + Ys)-Fa
(GZ=-y;+VYg)

Heeling moment about origin O in (-

84
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Sec.5 Transverse Righting Moment due to Movement of Cargo

2009 Fall, Ship Stability

T “ A o ¢ - 2 T
e - B (B 3 . T e - 2k Ty seou/ S DAL 85
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Transverse Righting Moment due to Movement of Cargo | Heel case in ship hydrostatics (4. Angle of Heel)
Casel : Considering weight of ship and weight of cargg My gy 1M Buoyaney + 1M £ static =0
Sepa rately (1) rG X kl:gravity + r-B x kFBuoyancy +1 MT,Ext,static =0
, case1) Considering weight of ship and
7 7’ Kl () weight of cargo separately
J y 4 N\
Wp > @ Y F=(W-w;)+w, +F,
L =(0 (static equilibrium of force) )
P (@ Center of mass of ship(G ) and centeb
W-w of buoyancy (B) and center of mass of
P cargo are(Gp) in the same vertical line
G which is perpendicular to waterplane >
@X,X' Sy y components of moment arms about
0,0 , origin O about z axis are same. (static
y equilibrium of moment)
drerrg+ g+
B _
k ——I’Gx(W—WP)+rB><FB+rGP><WP
/) i K
K =0 0z, |=0
0 0 (VVZ_WP)
O'x'y'z" : Body fixed frame F . .
Oxyz : Waterplane fixed frame B G: Cé—‘nter OffmaSS Offship i ] kK i j k
Gp: Center of mass of cargo _ _ _ —
B: Center of buoyancy, K : Keel T, =0 0 26, =0 1,=10 0 z5=0
W : Total Weight J 00 W, 00 FB
W -w;: Weight of ship
2009 Fall, Ship Stability T : Moment due to weight of ship w; : Weight of cargo ZTT—TT G + pt 3
[ ’ g Tp - Moment due to weight of cargo Fg : Buoyant force acting -
5 : Moment due to buoyancy on ship (=pgv’) =0+0+0=0 /124




Transverse Righting Moment due to Movement of Cargo
Casel : Considering weight of ship and weight of carg

separately (2)
I, XWp

z
I 7 77/ ki (+)
4 % Z ] y
Wp ) Wpl :,
1 1
s el )
W-w,, rs,,
G!
gl Ax y
"0.0 —> /
£
B‘V
- _/
K

O'x'y'z" : Body fixed frame
Oxyz : Waterplane fixed frame

Fg

T - Moment due to weight of ship
Tp - Moment due to weight of cargo

2009 Fall, Ship Stability
“ 3 T : Moment due to buoyancy

G: Center of mass of ship

Gp: Center of mass of cargo

B: Center of buoyancy, K : Keel

W : Total Weight

W -w;: Weight of ship

wp : Weight of cargo

Fg : Buoyant force acting
on ship (=pg+v)

Heel case in ship hydrostatics

rim

(¢: Angle of Heel)

M-
+ IlMT,Ext,staticl_ O
+ I|MT,Ext,static|: O

I | M T,gravity| T,Buoyancy

'y xkF Hry x KR,

1_G _grgvitl _ uoyancy

(/39 A moment due to weight of cargo

The cargo is moved right side.
Moment due to weight of cargo
about origin O is as follows

\ 0 0 Wy

(Heeling moment) /
\

P
@ A moment due to weight of ship
Moment due to weight of ship about
origin O is as follows

® A ship is heeled in clockwise direction

by a moment due to weight of cargo.

87
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Transverse Righting Moment due to Movement of Cargo

Casel : Considering weight of ship and weight of cargo

separately (3) T=IX F| Heel case in ship hydrostatics (¢: Angle of Heel)
r — - AN S N 2 :

rGPl X WP rG X FG E dp:l © I | MT,gravity.+ ! IvlT,Buoyancy i'_ !:MT,Ext,static T 0
rG ! !_ Ig X kl:gravity _._rE_, il_(F_Bup)@nc_yj_ IlM TLExt static = 0

e . N

® Center of buoyancy is changed
| from B to B,. )
\

d Q F G: Center of mass of ship
| r B Gp: Center of mass of cargo
By | B: Center of buoyancy, K : Keel
O'x'y'z' : Body fixed frame B, : Changed center of buoyancy
Oxyz : Waterplane fixed frame W Total Weight

W -wp: Weight of ship
wp : Weight of cargo

Fg : Buoyant force acting
on ship (=pgV)

T - Moment due to weight of ship
Tp - Moment due to weight of cargo
75 - Moment due to buoyancy

/@ If we assume that moment due to
weight of ship, moment due to weight
of cargo and moment due to buoyancy
are in static equilibrium at an angle of

-
I I
3% FEfZ —I_l-.rGP.L >iV_VP'

] k
Ti; =10 Yo Zg = Yo '(sz Wp)
0 0 W,-w) T v

Position of G with respect to waterplane
fixed frame is changed as a ship is heeled.
-> Heeling moment is caused.

i N R T ¢
=0 VYo, Zs,| Te={0 Vs, Zg
0 0 w 0 0 K
=1(Ye,, *Wp) =i(Yg, - Fs)
ZTi: Yo - (W, —wp )i+ (yc;F,1 ‘W)
+1(Ys, - Fs)

—0 ,(Ina static equilibrium of moment),34




Transverse Righting Moment due to Movement of Cargo
Casel : Considering weight of ship and weight of cargo

separately (4)

Heel case in ship hydrostatics (¢: Angle of Heel)

Fm——m—— = === e e D 1

| | I\/IT ,gravity + i I\/IT ,Buoyancy | + I I\/IT Ext,static T 0
!_ rG X kFgravny r_ i l_(F_Bu_oany_,'}_ IlM T—E)ﬁ-STAII(‘_t 0

Ve

@ If we assume that moment due to
weight of ship, moment due to weight of
cargo and moment due to buoyancy are
in static equilibrium at an angle of heel ¢

A R
— |
= X (W—wp )+ xF.
L v oA _
|—t rGF’_l ELNJP -

If we consider components of moment due to
weight of cargo

] k

T, =10 Yo,, Zo,,

0O 0 w
=1(Ys,, *Ws)

O'x'y'z" : Body fixed frame
Oxyz : Waterplane fixed frame

T - Moment due to weight of ship
Tp - Moment due to weight of cargo
75 - Moment due to buoyancy

2009 Fall, Ship Stability

G: Center of mass of ship

Gp: Center of mass of cargo

B: Center of buoyancy, K : Keel

B, : Changed center of buoyancy

W : Total Weight

W -wp: Weight of ship

wp : Weight of cargo

Fg : Buoyant force acting
on ship (=pgV)

Remind! : Rotational transformation!

=1i(Yg,, COSP+2¢ Sing)w;

Moment arm due to weight of cargo with respect to
waterplane fixed frame also can be represented by
moments arm in body fixed frame by rotational
transformation

T <% seoul 89
;’ ] National Advanced Ship Design Automation Lab. /124
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Transverse Righting Moment due to Movement of Cargo
Casel : Considering weight of ship and weight of cargo
separately (5)

The cargo is moved to centerline of
ship again.

~

-
® D TET + g+ 5

Because moment due to weight of cargo

is decreased from static equilibrium of

moment,

moment due to buoyancy is larger than

heeling moment.

A ship returns to upright floating

position due to transverse righting
\_moment. )

G: Center of mass of ship
Gp: Center of mass of cargo
| B: Center of buoyancy, K : Keel

O'x'y'z' : Body fixed frame B, : Changed center of buoyancy
Oxyz : Waterplane fixed frame W : Total Weight
W -wp: Weight of ship
2009 Fall, Ship Stability T : Moment due to weight of ship w; : Weight of cargo .
i e Tp - Moment due to weight of cargo Fg : Buoyant force acting

- - b 2R Seoul 90
: on ship (=pg™ g ‘ﬁ_ B National Ad dSh Design Automation Lab.
75 - Moment due to buoyancy p (=pg ) ; : 3 P htt;a/%ﬁdals;ﬁ/ agi/gn utomation Lai /124



Transverse Righting Moment due to Movement of Cargo
Casel : Considering weight of ship and weight of cargo

separately (6)

Fg

2,2/ J @
] y
WP T
P
W-WP
G
el xx' -
T0,0' 7y/
y
I
B‘V
N .
K

O'x'y'z'

: Body fixed frame

Oxyz : Waterplane fixed frame

2009 Fall, Ship Stability

T - Moment due to weight of ship
Tp - Moment due to weight of cargo
75 - Moment due to buoyancy

G: Center of mass of ship

Gp: Center of mass of cargo

B: Center of buoyancy

W : Total Weight

W -w;: Weight of ship

wp : Weight of cargo

Fg : Buoyant force acting
on ship (=pg+v)

A ship is rotated in counter-clock wise
Ldirection.

/® Center of mass of ship(G ) and center )
of buoyancy (B) and center of mass of
cargo are(Gp) in the same vertical line
which is perpendicular to waterplane. It
becomes in static equilibrium of moment.

drerT o+ g+ o,

= x(W—wp )+ 1y xFy +rg xw,

1] k
T, =0 O Z =0
O O (\NZ_WP,Z)
I J kK I ] k
T, =|0 zGP=O,1-B=O 0 z;|=0
00 w, 0 0 K
D TBT+ ot g
\_ =0+0+0=0 y,

. ST <5 seoul 91
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Transverse Righting Moment due to Movement of Cargo
Case2 : Considering Weight of Cargo is included in Weight

of Ship (1)

Z/

Fg

Case2 : Considering Weight of Cargo is
included in Weight of Ship

e N
® > F=F,+F, =0
' (FG = WShip + WWeight)
L (static equilibrium of force) )
\

/@ Center of total mass(G) and
center of buoyancy (B) are in the
same vertical line which is
perpendicular to waterplane 2> vy
components of moment arms about
origin Origin O about z axis are
same. (static equilibrium of moment)

drer o+

O'x'y'z" : Body fixed frame
Oxyz : Waterplane fixed frame

2009 Fall, Ship Stability

T : Moment due to total weight
75 - Moment due to buoyancy

G : Center of total mass

G,: Changed center of total mass

B: Center of buoyancy

B,: Changed center of buoyancy

Fg: Total weight (=W=Wgpn+Wiyeighe)

Fg : Buoyant force acting
on ship (=pgv)

i j kK T T
T,=0 0 z5| ,7z =0 0 1z,
0 0 K 0 0 K
\ = =0
DT o+
L =0+0=0 )

92
Ad d Ship Design Automation Lab.
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Transverse Righting Moment due to Movement of Cargo
Case2 : Considering Weight of Cargo is included in Weight

of Ship (2)

Z
I’GleG . Z/ K (+)
e ) A ] y
T
| e
[
v e
G Gy
X’X'f G S
0,0'] 7y/
y
r.B

3 The cargo is moved right side
4 )

@ Center of mass of total weight is
moved from G to G;.

Wo
GGl — F d ,(w,: The weight of cargo)
\ G J
® Moment due to total weight
about origin O about z axis
TE = El X G

® A ship is heeled about origin O
through an angle of ¢ by a moment

O'x'y'z" : Body fixed frame
Oxyz : Waterplane fixed frame

2009 Fall, Ship Stability
Fig = T : Moment due to total weight
75 - Moment due to buoyancy

G : Center of total mass

G,: Changed center of total mass

B: Center of buoyancy

B,: Changed center of buoyancy

Fg: Total weight (=W=Wgpn+Wiyeighe)

Fg : Buoyant force acting
on ship (=pgv)

due to total weight

% secu! SDAL 93
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Transverse Righting Moment due to

Movement of Cargo

Case2 : Considering Weight of Cargo is included in

Weight of Ship (3)

PR,

= Heel case
T,gravity +1 I\/lT ,Buoyancy +|I MT Ext,static I~ 0
+|r X kFBuoyancy IHI MT Ext, statlc = 0

——————— -—-=-

| g xkF

gravity

~

~
~~o
-~
S

(@ Center of buoyancy is changed
from B to B;.

.

>
Changed center of mass(G,) and

changed center of buoyancy (B,) are in the
same vertical line which is perpendicular to

waterplane. Then it become in static
equilibrium at angle of heel 4.

Dot o+

PR — — = o

=, xFg!+ g xFy

O'x'y'z" : Body fixed frame
Oxyz : Waterplane fixed frame

2009 Fall, Ship Stability
[ = T : Moment due to total weight

75 - Moment due to buoyancy

G : Center of total mass

G,: Changed center of total mass

B: Center of buoyancy

B,: Changed center of buoyancy

Fg: Total weight (=W=Wgpn+Wiyeighe)
Fg : Buoyant force acting

on ship (=pgv)

[ —— — L %
I T R T ¢
=0 VYo, Z |+ Te=[0 Vg, Zg
0 0 F, 0 0 F
=1Ys, - Fg =1Yg, Fg
— :i(yGl Fo+ Vs 'FB)
> F=F; +F, =o:> Fe =
b they | th =
e eyl e ey, =y,
— Zﬂ: (_ysl'FB"‘yBl'FB)
=0




Transverse Righting Moment due to Movement of Cargo
Case2 : Considering Weight of Cargo is included in

Weight of Ship (4)

r, xk;

B

T=rxF

TE:EX s

Z TE=Ex 3

O'x'y'z" : Body fixed frame
Oxyz : Waterplane fixed frame

@ The cargo is moved to centerline
| of ship again.

Center of total mass is moved
from G, to G.

dorer o+

Because moment due to total
weight is decreased from static
equilibrium of moment, moment
due to buoyancy is larger than
heeling moment.

A ship returns to upright floating
position due to transverse righting
moment.

2009 Fall, Ship Stability
; - . -|l¢

T : Moment due to total weight
75 - Moment due to buoyancy

G : Center of total mass

G,: Changed center of total mass

B: Center of buoyancy

B,: Changed center of buoyancy

Fg: Total weight (=W=Wgpn+Wiyeighe)

Fg : Buoyant force acting
on ship (=pgv)

- b 22 Seoul 05
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Transverse Righting Moment due to Movement of Cargo
Case2 : Considering Weight of Cargo is included in
Weight of Ship (5)

Z
z,7’ ki (+)
y ( . ) )
FG h ] @ A ship is rotated in counter-
clock wise direction.
. N
2 Center of total mass(G) and center
of buoyancy (B) are in the same
vertical line which is perpendicular to
- waterplane. It becomes in static
> Y equilibrium of moment.
/
y ZT‘H‘ st B
I
B3 i ] Kk i J k
K 1.=0 0 z,| ,tz=[0 0 z,
K _/ 0 0 K 0 0 K
FB Z‘cn‘ st s
G : Center of total mass
O'x'y'z" : Body fixed frame G,: Changed center of total mass — O + O — O
Oxyz : Waterplane fixed frame B: Center of buoyancy \_ )
B,: Changed center of buoyancy
2009 Fall, Ship Stability - T Fq: Total weight (=W=Wsyip+Wieight)

Tg : Moment due to total weight Fg : Buoyant force acting

. : IRy 20 96
Ty - Moment due to buoyancy | on ship (=pgv) — Yy @ﬁg;jq//}gﬁgﬁ?;ﬁgg%gn Automation Lab.  [124




Transverse Righting Moment due to Movement of Cargo
Case2 : Considering Weight of Cargo is included in

Weight of Ship (6)

T=rxF

TE=EX% ¢

T estoring = GZ - F

O'x'y'z" : Body fixed frame
Oxyz : Waterplane fixed frame

2009 Fall, Ship Stability

T : Moment due to total weight
75 - Moment due to buoyancy

G : Center of total mass

G,: Changed center of total mass

B: Center of buoyancy

B,: Changed center of buoyancy

Fg: Total weight (=W=Wgpn+Wiyeighe)
Fg : Buoyant force acting

on ship (=pgv)

W .
—d cos¢g =GM sin
W ¢ ¢

restoring
GZ=CGM sing
GM = KB+ BM —-KG
Calculation of KG in static equilibrium of
moment at angle of heel ¢
4 )
GG, cos¢p =GZ
GG, = d
\ W
w
—d cos¢g=GZ
W
By geometric shape
)  GZ=GMsing

. GM w-d w-d

:W-tan¢:Ag-tan¢

GM =KB+BM - KG
KG = KB +BM -GM

KG=KB+BM —— V9
A Ay -tan ¢
known known
f =

If we know an anglé‘
calculate KG.

+eel ¢, we can

That is a same way for “Inclining Test’.

2 TToTTE AT Advanced Ship Design Auto
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Sec.6 Calculation of Heeling Angle due to Shift of Center of Mass

2009 Fall, Shi Stability
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Calculation of Heel Angle due to the shift of center of mass

« Given : Shift distance of center of buoyancy

- Righting Arm due to Shift of Center of Buoyancy(KN) .z

« Find : Righting arm KN — An angle of heel ¢

[Righting arm due to shift of] KN
center of buoyancy
(Moment about origin K about KK axis) Z' z

K | y
\ f

|

I

I

_— E

K about KK' axis is as follows

Righting moment arm(KN) about origin ]

y
—_———————— e e e T A e — — e ——— — —
y
-]
K
Calculation of KN
veod © | =1 4[] 4]
k in body Fixed in body Fixed in body Fixed
flame. frame. frame.

= KBsing + oy cos¢ + oz, Sing
1 i) i)

Rotational Transformation

O'x'y'z" : Body fixed frame

. G: Center of
Oxyz : Waterplane fixed frame enter of mass

B: Center of buoyancy
B,: Changed center of buoyancy , K : Keel Fo: Weight of ship (=W)

M : The intersection of the line of buoyant force through B1 Fg : Buoyant force (=pgVv’)
with the centerline of the ship

Method @ Waterplane fixed frame

Z: The intersection of the line of buoyant force through B1 with the transverse line through G

N : The intersection of the line of buoyant force through B1 with the transverse line through K = KG Sl N ¢ + GZ
2009 Fall, Ship Stability

(Righting arm)

% seou/ SDAL 99
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Calculation of Heel Angle due to the shift of center of mass
- Heeling Arm due to Shift of Center of Mass (h.) S T TR o

« Find: Heeling arm ha — An angle of heel ¢

[ Heeling arm due to shift of ] h
center of mass a

(Moment about origin K about KK" axis) . A :
y

Heeling moment arm(h,) about origin K
about KK' axis is as follows

Zl

A
|
|
|
|
|
|
|
|

G oY's
iha (¢) = IV +V +VI
e i in body Fixed in body Fixed

frame.\l/ frame.\l/

= KGsing H oy, cgsqﬁ H Oz, siAnqﬁ
| |

Rotational Transformation

~

O'x'y'z" : Body fixed frame
Oxyz : Waterplane fixed frame

Waterplane fixed frame
= KGsing + GG, tan ¢cos¢ + 5z, sin ¢
= (KG+GG,)sing + oz; sing

G: Center of mass
G,: Changed center of mass
Fgs : Weight of ship (=W)

K : Keel

2009 Fall, Ship Stability - Transverse Righting Moment

100
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Calculation of Heel Angle s =Fo G2
due to the Shift of Center of Mass R

* Given : Changed center of mass G,(Y's,2'g)
* Find: Heeling arm ha — An angle of heel ¢

Calculation of Heel Angle ]
_due to the Shift of Center of Mass

(Moment about origin K about KK’ axis)

Heeling Moment = Righting Moment | Fz-KN(@) = F; °ha(¢)[> [ KN (¢) = ha(¢)]

Static Equilibrium of Force:
Buoyant force = Gravitational force

KN(¢) = h,(¢) <
ﬂ (KN = KGsing + GZ)

KGsHg + GZ = KGSHTS + Syg cos¢ + 5z sin ¢

GZ =JYy; Cosg+ Sz Sing
GZ = GMssing (if gis small)

q: | Meaning of equation ?
GM sin ¢ — 5y’G COS¢ + 52(’5 sin ¢ (i; @ If we know angle of heel ¢ and oy'; , 67'c, we can

calculate GM. (= ‘Inclining Test')
@ After calculating GM, if another shift of center of mass
(0y's , 07'c) happens, we can calculate an angle of heel ¢.

2009 Fall, Ship Stability - Transverse Righting Moment
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Trestoring — l:B -GZ
GZ ~GM ssing

GM =KB+BM —-KG

Calculation of Heel Angle

Calculation of Heel Angle
due to the Shift of Center of Mass

-1 Heeling Moment = Righting Moment

(KES XILtD y2 B R0 £2121 =0f Chet 2 E)
Fg -KN(¢) = F5 -h, ()

Static Equilibrium of Force:

| Buoyant force = Gravitational force
F=FK

(Review) Transverse Righting Moment due to Movement of Cargo
Case2 : Considering Weight of Cargo is included in Weight of Ship

> | KN(¢) = h,(¢) GG, cos¢ =GZ

D By geometric shape
GG, cos¢g =GM sin ¢

= GG, is a shift of center of
mass in y’ direction dy's

GM sing =5y, cos¢ + 5z, sing
'!':
(i; Is it related with transverse righting

GM sing =9y, Cos¢@

GG, =09y,

| Transverse Righting Moment due to Movement of
o \| Cargo’ considered shift of center of mass in only y’
direction.

If we consider a shift of center of mass in z' direction,

: Wv may derive same equation. 02

moment due to movement of cargo ?

2009 Fall, Ship Stability

- Transverse Righting Moment
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Movement of Center

caused by Movement of Area (1)

y
Y 4 il (+)

G, : Centroid of total area, Area, : Total area

X

g : Centroid of large circle, Area,, : Area of large circle

g, : Centroid of small circle, Area, : Area of small circle

2009 Fall, Ship Stability - Transverse Righting Moment

1) Gere, Mechanics of Materials, 6t ,Ch.12.3, 2006
First Moment of Composite Area[QX]”
Q, : 1t Moment

n
= X
Q Z; AX A, : Each Area
. _ 1 A:Total Area
A-X= le A-X i X : Coordinate of
" ' Centroid

<1st moment of area>

Let's consider 1st moment of area about
origin g about Y axis,

gG, -Area, = }qgf Area , , +09, -Area,

(99 =0)
gG, -Area, = gg, - Area,

9G, Area,
g9, Area,

']

104
Ad d Ship Design Automation Lab.
@hﬁ;f/"/sidmzzaz%g" utomation Lab. 124




Movement of Center

1) Gere, Mechanics of Materials, 6t ,Ch.12.3, 2006

First Moment of Composite ArealQ,)"
caused by Movement of Area (2) & Q1 Moment
Q= Z_; AX : A, : Each Area
A% nZE:A . i A:Total Area
(+) AT "% 1 X: Coordinate of
y Areaa i X = ' Centroid

G, : Centroid of total area, A : Total area
g : Centroid of large circle, A-a : Area of large circle

g, : Centroid of small circle, a : Area of small circle

2009 Fall, Ship Stability

- Transverse Righting Moment

=d g S0I0 1 B0l =Xt =0 et
1Xl E’S*. DHEZ 11d0tH

gG, - Area , =/g(f- Area ,_, +09,-Area,

(99 =0)
gG, - Area, = g9, - Area,
gG, Area,
gy, Area,

P
Fpp%y seou! 105
iy Netional Advanced Ship Design Automation Lab. /124
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Movement of Center

caused by Movement of Area (3)

Y+ Area,

(+)

96, _Area, o oG, Area, ®
gg, Area, g9 ~ Area
2 A
G, : Centroid of total area, A : Total area

2(9
40

Centroid of large circle, A-a

Centr0|d of small circle, a

: Area of large circle

: Area of small circle

269G, = 29,99, - ®

By @, @, ®

Triangle AG,9G, and Ag,09, are similar.
(SAS(Side-Angle-Side) similarity)

GG, /19,9,
GG, Area, Area
= = a X
1--t» 0,0, Area, » 1—2 Area , 99

In case that partial area is moved,
moving distance of total area can be calculated by

using @ areas of each shape and @ moving distance

of partial area.

area.

4 2 Seoul
iy Vational Adl/anced Ship Design Automation Lab.
Univ. http.//asdal.snu.ac kv

Path of the total area is parallel to path of the Darﬂéj

106
124



(Ref.) Gaussian quadrature

Given: function f(t)
Find: Integral of f(t) over [-1,1]

1 n
L f)d &8> A -f(t)
j=1
In case of 3" order Gaussian quadrature

[ FOd £ A TR+ A )+ A (L)

/n Coefficients A. Node tj \

j
A, = 0.5555555556 t, = -0.7745966692
3 A, = 0.8888888889 t,=0
A; = 0.5555555556 t, = 0.7745966692

o

2009 Fall, Ship Stability

SDAL
e ¥ Nationa; &
s Univ.

Advanced Ship Design Automation Lab.
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Examples
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Example 1> Heeling Moment caused by Fluid in Tanks(1)

Question) A ship with section of breadth B, depth D is afloat in water, and fluid is
partially filled in tank with draft T (Waterline WL). Waterline of a fluid in tank is shifted
from WL to W,L, due to heel. Calculated heeling moment arm about origin K about the
axis which is perpendicular to waterline W,L,.

«Given:B,D, T, @
e Find : Heeling arm h, about the axis which is perpendicular to waterline W,L,

N

z 4
,ng B

o

O
@
R . ——-1--|--»

o)

ﬁ
=
Iﬁ

G : Center of mass,
G': Changed cemter of mass, B': Changed center of buoyancy

20009 Fall, Ship Stability - Transverse Righting Moment OilXil5.1
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o «Given:B,D, T, @ «Find : Heeling arm h, about the axis which
Example 1> HEEIIng Moment : is F;re]rpend?:ula?taoWater?in:\;Vltha S
caused by Fluid in Tanks(2) h, =y, COS @+ 2 sing
Question) A ship with section of breadth B, depth | Solution) L fz
D is afloat in water, and fluid is partially filled in / I
tank with draft T (Waterline WL). Waterline of a !
fluid in tank is shifted from WL to W;L, due to heel. :
Calculated heeling moment arm about origin K :
about the axis which is perpendicular to waterline &
WlLl-
AZ
B |
W i vl
D G -y
T | i
KYI Ef‘rf: Heeling arm about new waterline ha:  h. =Yg COs@+Zgsing
¢ 2
Al i
- e o
: ! ¢
W G [ :
ey L e - G
0 T G(:)<—>A ~— L /I ' Yo ’
Yol Zs B’ Base + i B
1 N\ 1 G 1
/ K1 Ny Tine i z,sing
; ¢: \ V) ha
. KA
G : Center of mass, 1
G': Changed cemter of mass, B': Changed center of buoyancy ! ¢ 110
2009 Fall, Ship Stability - Transverse Righting Moment L yG cos ¢ 24



Example 1> Heeling Moment

caused by Fluid in Tanks(3)

Question) A ship with section of breadth B, depth
D is afloat in water, and fluid is partially filled in
tank with draft T (Waterline WL). Waterline of a

fluid in tank is shifted from WL to W;L, due to heel.

Calculated heeling moment arm about origin K
about the axis which is perpendicular to waterline
W,L,.

AZ
B |
W i vl
D G -y
T :
1 Base
KY' Line
YA
.
W G |
e e e e e e _____>
D Gol A y /I
H r T>5—
i :yG\ZGB n _Base +
/ K? a Line

G : Center of mass,
G': Changed cemter of mass,

2009 Fall, Ship Stability

B': Changed center of buoyancy

- Transverse Righting Moment

«Given:B,D, T, @ «Find : Heeling arm h, about the axis which
is perpendicular to waterline W,L,

Solution)
W___
D
-

@ Calculation of b

/

h, =Y, COS@+Z;Sing

1D +(b——D )D =BT
2 tan ¢ tan ¢
BT D
= +
D 2tang

(@ Calculation of a

From the equation,

a=>b

D

BT

b—a:L
tan ¢

D

_tan¢: D —2tan¢

L .2
Lo a
S S L,
o y
a8
& A; Base
/ A K Line
T 4 B
W, i (L
_______________________ b-a
Heelingarm ha : h, = Ys C0s¢+2;sing
+ = = BT

111
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Example 1> Heeling Moment
caused by Fluid in Tanks(4)

Question) A ship with section of breadth B, depth
D is afloat in water, and fluid is partially filled in
tank with draft T (Waterline WL). Waterline of a
fluid in tank is shifted from WL to W;L, due to heel.
Calculated heeling moment arm about origin K
about the axis which is perpendicular to waterline
W,L,.

AZ
B |
W i vl
D G -y
T :
1 Base
KY' Line
YA
.
W G |
e e e e e e _____>
D Gol A y /I
H r T>5—
i :yG\ZGB n _Base +
/ K? a Line

G : Center of mass,
G': Changed cemter of mass,

2009 Fall, Ship Stability

B': Changed center of buoyancy

- Transverse Righting Moment

Solution)

(3 The transverse moment of

«Given:B,D, T, @ «Find : Heeling arm h, about the axis which
is perpendicular to waterline W,L,

h, =Y, COS@+Z;Sing

A2
Lo a
i G’ L

oo deee-- e ARl - - — - - - >
i ('5(3 o oB y
ia—%: G
; , Base

K! b Line

about A-A' axis

IVly: Yo = Yo t /I Yoo
_ap24+ 8= 5=
2 3
_(BT)Z_BTD+ D3 B D3
2D 2tang 8tan’g 6tan’g
@ Transverse center of mass about center line
M B
—— Y _(g——
Yo =57 ( 2)
B BT D3
S=—= — 112
2 2D 24tan2¢ BT 24



Example 1> Heeling Moment
caused by Fluid in Tanks(5)

Question) A ship with section of breadth B, depth
D is afloat in water, and fluid is partially filled in
tank with draft T (Waterline WL). Waterline of a
fluid in tank is shifted from WL to W;L, due to heel.
Calculated heeling moment arm about origin K
about the axis which is perpendicular to waterline
W,L,.

AZ
B |
W i vl
D G -y
T :
1 Base
KY' Line
YA
.
W G |
e e e e e e _____>
D Gol A y /I
H r T>5—
i :yG\ Zs B n _Base +
/ K? a Line

G : Center of mass,
G': Changed cemter of mass,

2009 Fall, Ship Stability

B': Changed center of buoyancy

- Transverse Righting Moment

Solution)

& Vertical moment of

M =

z

«Given:B,D, T, @ «Find : Heeling arm h, about the axis which
is perpendicular to waterline W,L,

h, =Y, COS@+Z;Sing

L .2
[ a
_ S c A N
| e B y
| 4
& © Base
! Line
t B
Heeling arm ha : N, = Yo COS@ +Zgisin ¢
about base line
g = Lot A g2
_ap2,6-3,D
2 2 3
3
Dy D
12tan¢ BT

® Vertical center of mass about baseline

D D3

z

T BT 2 12tangBT
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Example 1> Heeling Moment
caused by Fluid in Tanks(6)

Question) A ship with section of breadth B, depth
D is afloat in water, and fluid is partially filled in
tank with draft T (Waterline WL). Waterline of a
fluid in tank is shifted from WL to W;L, due to heel.
Calculated heeling moment arm about origin K
about the axis which is perpendicular to waterline
W,L,.

AZ
| B | |
[ ! |
W i v L
D G! =y
T :
1 Base
KY' Line
N
| /Ll : B |
[ / : |
Wl A 6 fL, I
D G(I) N y A
€ '
TI :yG\ Zs B n _Base +
/ K? a Line

G : Center of mass,
G': Changed cemter of mass,

2009 Fall, Ship Stability

B': Changed center of buoyancy

- Transverse Righting Moment

«Given:B,D, T, @ «Find : Heeling arm h, about the axis which

is perpendicular to waterline W,L,

h, =Y, COS@+Z;Sing

Solution)

(& When center of mass is shifted from G to G1(yg,zg),

then heeling arm ha is

y_E_BT_ D
© 2 2D 24tan’¢ BT
D D

T —
2 12tang BT
h, =Y, COS¢+2,Sing




Example2>Heel Angle caused by Movement
of Passengers in Ferry (1)

* Given : KB, KG, Iy, Heeling moment M,
* Find : An angle of heel ¢
» GZ of wall sided ship

GZ :[GM +%BM tan2¢jsin¢

Question) Emergency circumstance happens in Ferry with displacement (mass) 102.5 ton.
Heeling moment of 8 ton-m occurs due to passengers moving to the right of the ship.

What will be an angle of heel?

Assume that wall sided ship with KB=0.6m, KG=2.4m, 1-:=200m*.

Solution) If it is in static equilibrium at an angle of heel ¢

Righting moment in wall sided ship(M,)

— A(GM +% BM tan? ¢jsin¢

Heeling moment (M,)

gton-m

@ Calculation of BM

A =102.5 ton
1200
VvV 100

@ Calculation of GM

GM =KB +BM —-KG
=06+2-24=02m

?':

—> (0.2+tan’ g)sing=——— Non

102.5

2009 Fall, Ship Stability

- Transverse Righting Moment

linear
about ¢ ?

— V=A/1.025=100 m®

equation

@SDAL
] d dShpD sign Automation Lab.
http.//asdal.snu.ac kv
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* Given : KB, KG, Iy, Heeling moment M,

Example2>Heel Angle caused by Movement I DT
of Passengers in Ferry (2) Gz:[GMgBM tan2¢jsin¢

Question) Emergency circumstance happens in Ferry with displacement (mass) 102.5 ton.
Heeling moment of 8 ton-m occurs due to passengers moving to the right of the ship.
What will be an angle of heel?

Assume that wall sided ship with KB=0.6m, KG=2.4m, 1,:=200m*.

Solution) If it is in static equilibrium at an angle of heel ¢

Righting moment in wall sided ship(M,) = Heeling moment (M,)
1 :
A(GM +§BM tan2¢jsm¢ = gton-m
2 -
(0.2+tan’ #)sin ¢ =0.078 Righting
Because of nonlinear equation, solve it by arm
numerical method. 1 /
o 0.0858
Result of calculation is about $=16.0°.
o ~ LHs RHS 0.0778------, C TR
(Righting arm) | (Heeling arm) 0.0703 ;tre:hng
15° 0.0703 0.0780
16° 0.0778 0.0780
17° 0.0858 0.0780 15° | 17° g
In static
equilibrium

2009 Fall, Ship Stability - Transverse Righting Moment
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Example3> Heel Angle caused by Movement of Cargo (1)

Question) A cargo carrier of 10,000 ton displacement is floating. KB=4.0m,
BM=2.5m, KG=5.0m. Cargo in hold of cargo carrier is shifted in vertical
direction through a 10 meter, and shifted in transverse direction through a 20
meters. Find an angle of heel.

« Given : displacement (A), KB, BM, KG, weight of cargo(w) and moving distance
e Find :angle of heel ¢

i T
!
. d=200m |
|
i

\/ | ™

A | [

- | N
| 200 ton
2
5.0m
Base \ , | -y )
Line :
.20_09 Fall, Ship ;bility - Transverse Ri hing Mom ' _ OllHi5.3
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» GZ of wall sided ship

Example3> Heel Angle caused by Movement .
M, =A£GM +>=BM tan2¢jsin¢ .
of Cargo (2) 2 &
I d=20.0m
Question) A cargo carrier of 10,000 ton displacement is floating. \Vi | N
KB=4.0m, BM=2.5m, KG=5.0m. Cargo in hold of cargo carrier is shifted = G : -/
in vertical direction through a 10 meter, and shifted in transverse — 2% 2001ton
direction through a 20 meters. Find an angle of heel 5.0 4o B .9 h=100m
Base \m ;O m, N\ J
Line i

« Given : displacement (A), KB, BM, KG, weight of cargo(w) and moving distance
* Find :angle of heel ¢ (L

Solution) If it is in static equilibrium at an angle of heel ¢

Heeling moment due to —
shift of center of mass

Righting moment

W (KGSing +,0Y4Cosg+p7isin @) = A-KN

@ Shift of center of mass of the ship

w-d 200-20
5yG = = =
A 10,000
w-h 200-10
0, =
A 10,000

2009 Fall, Ship Stability - Transverse Righting Moment
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Example3> Heel Angle caused by Movement

1 .
M, =A|GM +=BM tan2¢jsm¢
of Cargo (3) [ 2
I d=20.0 m
Question) A cargo carrier of 10,000 ton displacement is floating. v i A
KB=4.0m, BM=2.5m, KG=5.0m. Cargo in hold of cargo carrier is shifted -~ G : -/
in vertical direction through a 10 meter, and shifted in transverse S 20Q1ton
direction through a 20 meters. Find an angle of heel. 20| 4 On;‘ B-*~ “T h=10.0m
Base \m y v N J
« Given : displacement (A), KB, BM, KG, weight of cargo(w) and moving distance Line i
* Find : angle of heel ¢ (L

Solution) If it is in static equilibrium at an angle of heel ¢

Heeling moment due to shift of center of mass

W (KGsing+dYy, cosg+ 0z Sin @)

Righting moment

A-KN

(2 From the equation of moment equilibrium
W (KGsing+0Y; cosg+9z;sing) =A-KN
= A-(KGsing+GZ)

T~ UF

5. 0YsCOSP+02,SiNg=GZ! e
~ C‘.;

Casel) Assumption of small angle of Casel) Assumption of large angle of
heel (¢<70) heel (¢<70)

Gz=GMsing GZ:(GM +%BM tan2¢jsin¢

. . s ——N »
s - ..._\ - g 3 b Seoq/ 119
. ] National Advanced Ship Design Automation Lab.  [124
o RESESE Univ. http.//asdal.snu.ac kv
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Example3> Heel Angle caused by Movement
of Cargo (4)

M, =A£GM +%BM tan2¢jsin¢

I d=20.0 m
Question) A cargo carrier of 10,000 ton displacement is floating. v | A
KB=4.0m, BM=2.5m, KG=5.0m. Cargo in hold of cargo carrier is shifted = G : /
in vertical direction through a 10 meter, and shifted in transverse — 2% 20Q1ton
direction through a 20 meters. Find an angle of heel. " kr5ﬁ0,4.0ni: Bl h=10.0 rg
« Given : displacement (A), KB, BM, KG, weight of cargo(w) and moving distance Line i
* Find : angle of heel ¢ (L
Solution) If it is in static equilibrium at an angle of heel ¢
Heeling moment due to shift of center of mass = Righting moment
W(KGsing+dy, cosg+0oz,sing) = A-KN
5.0y, COSP+0Z,SINg = 'EB_Z-' <;.>2
Casel) Assumption of small angle of heel (¢9<70) GZ =GM -sin ¢
Also small angle of heel follows, 67 -Sing =0
> JYy,;c08¢=GM -sing
o
Yo _ tan )
L0y ,04 ) Because of ¢>70°
¢ =tan 1—GI\Z = tan 1E:O-2666 rad (=14.93°) . This result contradicts the

assumption

S Sk — »
d Ad dsh D Automation Lab.
g, - Univ. e ek, besgn Automation Lab. — [124
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Example3> Heel Angle caused by Movement
of Cargo (5)

45 Z8{40| 6Z

M, =A£GM +%BM tan2¢jsin¢

: d=20.0 m

Question) A cargo carrier of 10,000 ton displacement is floating. v i S

KB=4.0m, BM=2.5m, KG=5.0m. Cargo in hold of cargo carrier is shifted B G : _/
in vertical direction through a 10 meter, and shifted in transverse 9 2001ton

direction through a 20 meters. Find an angle of heel. 20| 4 On;‘ B-"~ “1 h=10.0m

Base \m y w7 J

« Given : displacement (A), KB, BM, KG, weight of cargo(w) and moving distance Line i
* Find :angle of heel ¢ (L
Solution) If it is in static equilibrium at an angle of heel ¢
Heeling moment due to shift of center of mass = Righting moment
W(KGsing+dy, cosg+0oz,sing) = A-KN
— .85 OS¢+ 52 8iNg=GZ | &
Casel) Assumption of large angle of heel (¢<70)
Also assumption of wall sided ship GZ = (GM +% BM tan® ¢)sin ¢
: 1 _ ! .

——> 5y, Cosg+05z,sing=(GM s BM tan® ¢)sin ¢ R =
i 14.9 0.4532 0.4227 107%
Because of nonlinear equation, solve it by numerical method. i 15.1 0.4540  0.4293 106%
Initial value? ﬁj; Start with value 14.9° from case 1 . 153 04547] 04359  104%
! 15.5| 0.4555 0.4426 103%
If we divide cos¢ for both side, we can get an cubic ; 15.7| 0.4562]  0.4494 102%
equation about tang. i > 159 04570  0.4562 100%
1 : r . . . %
Sy, + 07 tan g = (GM +=BM tan® g) tan ¢ : o) o467 DA 19;3/
20009 Fall, Ship Stability - Transverse Righting Moment 2 ; ¢ ~15.9 24



Example4> Change of Center
caused by Movement of Cargo (5)

Question) As below cases partial weight w of the ship is shifted. What is the
shift distance of center of mass of the ship?

Case1) Vertical shift of the partial weight Case2) Horizontal shift of the partial weight
& b (-
N I
, . N
2 i i i d
ZAN ! —" !
i i
= G, = G l50G,
A :
| - G| i
Base ! | ) : Yy | Base \_ : Yy
Line : i Line :
2009 Fall, Ship ;bility _ | ' __“. _ Gl Xi5.5
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Example5> Calculation of Deadweight of Barge

Question)
A barge is 40m length, 10m breadth,

5m depth, and is floating at 1 m draft.
The vertical center of mass of the ship
is located in 2 m from the baseline.

A cargo is supposed to be loaded in
center of the deck. Find the maximum
loadable weight that keeps the \
stability of ship. i

Problem to calculated position of the ship when
external force are applied.

2009 Fall, Ship Stability - Calculation of Righting Force And Stability
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Example6> Calculation of Position of Ship
when Cargo is moved by Crane

Question)

A Cargo carrier of 18,000 ton displacement
is afloat and has GM = 1.5m. And we want
to transfer the cargo of 200 ton weight
from bottom of the ship to land.

27.0m 200 ton

A lifting height of cargo is 27.0 m from the -
original position. =

|
|
I
|
!
After lifting the cargo, turn the cargo to ase | O r
|
¢

the right through a distance of 16.0 m Line
from the centerline.

What will be the angle of heel of the ship?

Problem to calculated position of the ship when
external force are applied.

2009 Fall, Ship Stability - Calculation of Righting Force And Stability
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