Mechanics in Energy Resources Engineering - Chapter 2. Axially Loaded Members

Ki-Bok Min, PhD

Assistant Professor
Energy Resources Engineering
Seoul National University

1st exam

- 31 March 09:30 10:45 (09:00 10:45)
- If you can solve the home assignment with confidence, you will do a good job.
- More than 50% from the home assignments.
- ~90% from the examples and the problems from the textbook.
- Try to interpret the problem in terms of physical behaviour.
 You will be required to explain your answer physically.

Review

- Introduction to Mechanics of Materials (재료역학)
- Normal Stress and Normal Strain (수직응력과 수직변형율)
- Mechanical Properties of Materials (역학적 성질)
- Elasticity, Plasticity, and Creep (탄성, 소성 및 크리프)
- Linear Elasticity, Hooke's Law, and Poisson's Ratio (선형탄성, Hooke의 법칙, 포아송비)
- Shear Stress and Shear Strain (전단응력과 전단변형율)
- Allowable Stresses and Allowable Loads (허용응력과 허용하중)
- Design for Axial Loads (축하중의 설계)
- Review of Statics (정역학 복습)

Q & A Example 1-3.

• Increase of $\Delta d_1 \& \Delta d_2$?

FIG. 1-23 Example 1-3. Steel pipe in compression

 I do understand that d₂ will increase but I don't understand why d₁ will also increase.
 Doesn't d₁ decrease?

Q & A Example 1-3.

There were

increase in both

-0.5

-1.5

-2

-2.5

-3.5

• Increase of $\Delta d_1 \& \Delta d_2$?

 An investigation by a numerical method (a computer simulation of mechanical behavior)

Preview

- Introduction
- Changes in Lengths of Axially Loaded Members (축하중을 받는 부재의 길이변화)
- Changes in Lengths Under Nonuniform Conditions (균일봉 길이변화)
- Statically Indeterminate Structures (부정정 구조물)
- Thermal Effects, Misfits, and Prestrains (열효과, 어긋남 및 사전변형)
- Stresses on Inclined Sections (경사면에서의 응력)
- Strain Energy (변형율 에너지)
- Impact Loading (충격하중)
- Stress Concentrations* (응력집중)

Introduction

Axially loaded members

- Structural components subjected only to tension or compression
- Solid bars with straight longitudinal axes
- Examples) truss members,
 connecting rods in engines, columns in buildings.
- We already learned the 'stress-strain' behavior and normal stress and strain.

Drilling rig comprised of axially loaded members

Changes in lengths of axially loaded members

The relationship between the load and elongation

$$P = k\delta$$
 $\delta = fP$

P: load

δ: elongation f: flexibility

k: stiffness (강성도) (compliance)

(spring constant)

Changes in lengths of axially loaded members

- Prismatic bar (균일단면봉)
 - A structural member having a straight longitudinal axis and constant cross section throughout its member
- Elongation of a bar

$$\delta = \frac{PL}{EA}$$

EA: axial rigidity

$$k = \frac{EA}{I}$$
 stiffness

Example 2.2

More general situation with one or more axial loads

- Identify the segments of the bar
- Determine the *internal* axial forces N₁, N₂ and N₃. From equilibrium,

$$N_1 = -P_B + P_c + P_D$$

$$N_2 = P_c + P_D$$

$$N_3 = P_D$$

Determine the length changes in segments

$$\delta_1 = \frac{N_1 L_1}{EA}$$
 $\delta_2 = \frac{N_2 L_2}{EA}$ $\delta_3 = \frac{N_3 L_3}{EA}$

Total changes (← be careful about the sign)

$$\delta = \delta_1 + \delta_2 + \delta_3$$

FIG. 2-10 Bar consisting of prismatic segments having different axial forces, different dimensions, and different materials

Bars with (different loads + dimension + materials)

$$S = \sum_{i=1}^{n} \frac{N_i L_i}{E_i A_i}$$

- N is the total number of segments
- *N_i* is not an external load but is the internal axial force in segment *i*.

- Axial force N and cross-sectional area A vary continuously by the tapered bar.
 - Single force P_B & distributed forces p(x)
 - Define at differential element

$$d\delta = \frac{N(x)dx}{EA(x)} \longrightarrow \delta = \int_0^L d\delta = \int_0^L \frac{N(x)dx}{EA(x)}$$

Nonuniform conditions problem 2.3-3

- $-A = 260 \text{ mm}^2$, $P_1 = 12 \text{ kN}$, $P_2 = 8 \text{ kN}$, $P_3 = 6 \text{ kN}$
- A = 1.5 m, b = 0.6 m, c = 0.9 m
- E = 210 GPa, δ?

PROB. 2.3-3

Prob: 2.3-3, (a) total elongation, (b) increase of P₃ for zero elongation

- Identify the segments of the bar
- Determine the *internal* axial forces N_{AB}, N_{BC} and N_{CD}. From equilibrium,

$$N_{AB} = P_1 + P_2 - P_3$$

$$N_{BC} = P_2 - P_3$$

$$N_{CD} = -P_3$$

Determine the length changes in segments

$$\delta_1 = \frac{N_{AB}L_1}{EA}$$
 $\delta_2 = \frac{N_{BC}L_2}{EA}$ $\delta_3 = \frac{N_{CD}L_3}{EA}$

Total changes (← be careful about the sign)

$$\delta = \delta_1 + \delta_2 + \delta_3$$

Statically indeterminate structure example

- Structures 1 &2 are fixed at both ends and are under a force P in different locations as shown in the left.
 - Can be determine the reactions R_A &
 R_B with equilibrium equations alone?
 - R_{B1} vs. R_{B2}. Which is bigger? What is the reason for your answer?
 - → In addition to equilibrium equation, we need to consider that both ends are fixed (compatibility equations) and deformation characteristics (forcedisplacement relation) to determine the reactions.

Statically indeterminate structure Definition

$$R = P_1 + P_2$$

Unknowns can be solved by Equil. Eq. →정정

$$R_A + R_B = P$$

Equil. Eq. is not enough to solve the unknowns → 부정정

- Statically determinate (정정, 靜定)
 - reactions and internal forces can be obtained from equilibrium equations alone (via Free Body Diagram)
 - No need to know the properties (e.g., E, v,
 G) of the materials
- Statically indeterminate (부정정, 不靜定)
 - Equilibrium + additional equations related to the displacement
 - Need to know the properties (e.g., E, v, G) of the materials

Statically indeterminate structure

1) Equilibrium Equation

$$\sum F_{ver} = 0 \longrightarrow R_A - P + R_B = 0$$

- 2) Clue for additional equation:
 - A bar with both ends fixed does not change in length

$$\mathcal{S}_{AB} = 0 \qquad \mbox{Compatibility equation: the change in length must be compatible with the conditions at the supports}$$

3) Compat. Eq. in terms of Forces: force-displacement relations

$$\delta = \frac{PL}{EA} \longrightarrow \delta_{AC} = \frac{R_A a}{EA} \qquad \delta_{CB} = -\frac{R_B b}{EA}$$

• By combining 2) and 3),

Why minus here?

$$\delta_{AB} = \delta_{AC} + \delta_{CB} = \frac{R_A a}{EA} - \frac{R_B b}{EA} = 0$$

Finally, combining above with 1) Equil. Eq.

$$R_A = \frac{Pb}{L}$$
 $R_B = \frac{Pa}{L}$

We can also calculate the displacements

$$\delta_C = \delta_{AC} = \frac{R_A a}{EA} = \frac{Pab}{LEA}$$

Statically indeterminate structure

1) Equilibrium Equation

$$\sum \mathbf{F} = 0$$

2) Compatibility Equation

Conditions on the displacement of the structure ex) $\delta_{AB} = 0$

3) Force-displacement Equation

$$\delta = \frac{PL}{EA}$$

1) + 2) + 3) → Unknown forces & displacement

Statically indeterminate structure Example 2-5

- Compressive force in the steel cylinder, P_s & in copper tube
 P_c?
- Stresses, $\sigma_s \& \sigma_c$?

Preview

- Introduction
- Changes in Lengths of Axially Loaded Members (축하중을 받는 부재의 길이변화)
- Changes in Lengths Under Nonuniform Conditions (균일봉 길이변화)
- Statically Indeterminate Structures (부정정 구조물)
- Thermal Effects, Misfits, and Prestrains (열효과, 어긋남 및 사전변형)
- Stresses on Inclined Sections (경사면에서의 응력)
- Strain Energy (변형율 에너지)
- Impact Loading (충격하중)
- Stress Concentrations* (응력집중)

Thermal Effects, misfits, and prestrains

- Other sources of stresses and strains other than 'external loads'
 - Thermal effects: arises from temperature change
 - Misfits: results from imperfections in construction
 - Prestrains: produced by initial deformation

- Changes in temperature produce expansion or contraction →
 thermal strains
- Thermal strain, ε_T

$$\varepsilon_{T} = \alpha (\Delta T)$$

- α : coefficient of thermal expansion (1/K or 1/°C). e.g., granitite: ~1.0 ×10⁻⁵ /°C
- Heated → Expansion (+), Cooled → contraction (-)
- Displacement by thermal expansion

$$\delta_T = \varepsilon_T L = \alpha (\Delta T) L$$

- No restraints → free expansion or contraction
 - Thermal strain is NOT followed by thermal stress

Generally, statically determinate structures do not produce thermal

– How much thermal stress?

Thermal stress generated

Two bars in the left were under uniform temperature increase of ΔT .

- E: Elastic Modulus
 α: Coefficient of Thermal Expansion
- If $E_1=E_2$ and $\alpha_1>\alpha_2$, which bar will generate the higher thermal stress?
- If $\alpha_1 = \alpha_2$ and $E_1 > E_2$, which bar will generate the higher thermal stress?
- Will R_A and R_B the same?

Calculation of Thermal stress (Example 2-7)

- Approach similar to the analysis of statically indeterminate structure
 - Equation of Equilibrium $\sum \mathbf{F} = 0$
 - Equation of compatibility $\delta_{AB} = 0$
 - Displacement relation

$$\delta_T = \alpha \left(\Delta T \right) L$$

$$\delta = \frac{PL}{EA}$$

Calculation of Thermal stress (Example 2-7)

Equilibrium Eq.

$$\sum \mathbf{F} = 0 \longrightarrow \sum F_{ver} = R_B - R_A = 0$$

- Compatibility Eq.

$$\delta_{AB} = \delta_T - \delta_R = 0$$

Displacement Relations

$$\delta_T = \alpha (\Delta T) L$$
 $\delta_R = \frac{R_A L}{EA}$

Compat. Eq. ← Displ. Rel.

$$\delta_T - \delta_R = \alpha \left(\Delta T \right) L - \frac{R_A L}{EA} = 0$$

Reactions

$$R_A = R_B = EA\alpha(\Delta T)$$

Thermal Effects Calculation of Thermal stress

Thermal Stress in the bar

$$\sigma_T = \frac{R_A}{A} = \frac{R_B}{A} = E\alpha \left(\Delta T\right)$$

- Stress independent of the length (L) & cross-sectional area (A)
- Assumptions: ΔT uniform, homogeneous, linearly elastic material
- Lateral strain?

Thermal Effects Example 2-8

Calculation of Thermal stress & elongation

Preview

- Introduction
- Changes in Lengths of Axially Loaded Members (축하중을 받는 부재의 길이변화)
- Changes in Lengths Under Nonuniform Conditions (균일봉 길이변화)
- Statically Indeterminate Structures (부정정 구조물)
- Thermal Effects, Misfits, and Prestrains (열효과, 어긋남 및 사전변형)
- Stresses on Inclined Sections (경사면에서의 응력)
- Strain Energy (변형율 에너지)
- Impact Loading (충격하중)
- Stress Concentrations* (응력집중)

Normal stress

$$\sigma_{x} = P/A$$

- P act at the center (centroid)
- Cross section n is away from localized stress concentration

- Stresses on inclined sections ←a more complete picture
 - Finding the stresses on section pq.
 - Resultant of stresses : still P
 - Normal Force (N) and Shear Force (V)

$$N = P\cos\theta$$
 $V = P\sin\theta$

- Normal Stress (σ) and shear stress (τ)

$$\sigma = \frac{N}{A_1} \qquad \tau = \frac{V}{A_1}$$

A: area of cross-section $A_1 = \frac{A}{\cos \theta}$

Notation and sign convention

- Notation: Subscript θ indicate that the stresses on a section inclined at an angle θ
- Sign convention: norm (positive tension), shear (+, for tendency of counter clockwise rotation)

Based on the sign convention (note minus shear stress),

$$\sigma_{\theta} = \frac{N}{A_{1}} = \frac{P}{A}\cos^{2}\theta$$
 $\sigma_{\theta} = -\frac{V}{A_{1}} = -\frac{P}{A}\sin\theta\cos\theta$

$$\cos^2 \theta = \frac{1}{2} (1 + \cos 2\theta)$$
 $\sin \theta \cos \theta = \frac{1}{2} \sin 2\theta$

$$\sigma_{\theta} = \sigma_{x} \cos^{2} \theta = \frac{1}{2} \sigma_{x} \left(1 + \cos 2\theta \right) \quad \tau_{\theta} = -\sigma_{x} \sin \theta \cos \theta = -\frac{\sigma_{x}}{2} \sin 2\theta$$

- Above equation are independent of material (property and elastic...).
- Maximum stresses…why is this important?

When
$$\theta$$
 = -45°
$$\tau_{\max} = \frac{\sigma_x}{2}$$
 When θ = 0

• Element A:

- maximum normal stress
- no shear

Element B:

- The stresses at $\theta = 135^{\circ}$, -45° and -135° can be obtained from previous equations.

- Maximum shear stresses
- One-half the maximum normal stress

FIG. 2-36 Normal and shear stresses acting on stress elements oriented at $\theta = 0^{\circ}$ and $\theta = 45^{\circ}$ for a bar in tension

- Same equations can be used for uniaxial compression
- What will happen if material is much weaker in shear than in compression (or tension)
 - Shear stress may cause failure

Stresses on inclined sections Example 2-10

1) Determine the stresses acting on an inclined section pq cut through the bar at an angle θ =25°.

A=1200 mm²

$$\sigma_x = -\frac{P}{A} = \frac{90 \, kN}{1200 mm^2} = -75 MPa$$

$$\sigma_{\theta} = \sigma_{x} \cos^{2} \theta = (-75MPa)(\cos 25^{\circ})^{2} = -61.6MPa$$

$$\tau_{\theta} = -\sigma_{x} \sin \theta \cos \theta = (75MPa)(\sin 25^{\circ})(\cos 25^{\circ}) = 28.7MPa$$

Stresses on inclined sections Example 2-10

2) Determine the complete state of stress for θ =25° and show the stresses on a properly oriented stress element.

A=1200 mm²

- For face ab, normal and shear stresses are just obtained
- For face ad, we substitute θ =25°-90° = -65°

$$\sigma_{\theta} = \sigma_{x} \cos^{2} \theta = (-75MPa)(\cos - 65^{\circ})^{2} = -13.4MPa$$

$$\tau_{\theta} = -\sigma_{x} \sin \theta \cos \theta = (75MPa)(\sin - 65^{\circ})(\cos - 65^{\circ}) = -28.7MPa$$

- The same applies to the faces bc and cd by putting θ =115° & 205°.

Summary

- Introduction
- Changes in Lengths of Axially Loaded Members (축하중을 받는 부재의 길이변화)
- Changes in Lengths Under Nonuniform Conditions (균일봉 길이변화)
- Statically Indeterminate Structures (부정정 구조물)
- Thermal Effects, Misfits, and Prestrains (열효과, 어긋남 및 사전변형)
- Stresses on Inclined Sections (경사면에서의 응력)
- Strain Energy (변형율 에너지)
- Impact Loading (충격하중)
- Stress Concentrations* (응력집중)