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* |If you can solve the home assignment with confidence, you
will do a good job.

 More than 50% from the home assignments.
« ~90% from the examples and the problems from the textbook.

* Try to interpret the problem in terms of physical behaviour.
You will be required to explain your answer physically.
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» Date and Time: 29 March 16:00 — 19:00 (?)
* Location: Seok Jeong Seminar Room (38-118)

* Teaching Assistant will be available for discussion.
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(2= Z20[Ha}) HEE)

Statically Indeterminate Structures (F & & & %) * ~ Nonuniform torsion (2= & HI S &)

Thermal Effects, Misfits, and Prestrains (£ = « Stresses and Strains in Pure Shear

HRE & AIAEHH) (==dMEHUANS S0 HE )

Stresses on Inclined Sections (& At Kl Al 2| ¢ Relationship Between Moduli of Elasticity E and G
=4) (BEtA H = EQH G2l 2HHI)

Strain Energy (H & & 0llLH Xl) « ~Statically Indeterminate Torsional Members (£ & &

=245l = HIEE FH)
Impact Loading (= & 6} =)
=P « = Strain Energy in Torsion and Pure Shear (HI £ & 1t

Stress Concentrations* (S & & 2= 2 F CHO| A 2 B8 0l L X))



33"

\
SUE
\'; 4

Introduction ﬁ‘-g
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+ Torsion (H| &):

— Twisting of a straight bar when it is loaded by moments (or
torques) that tend to produce rotation about the longitudinal axis of
the bar

(a)

(b)

FIG.3-1 Torsion of a screwdriver due to a
torque T applied to the handle



Introduction i,
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o Circular bar subjected to torsion.

1
| Axis
— Each pair of forces forms a couple - p. rg of bar
. d P
(consists of two parallel forces that are " V4

‘MP[

-~

equal in magnitude and opposite in ) = Pyd, Ty= Pyd;
direction). @

— Moments that produce twisting of a bar D
(T, and T,) = torques or twisting > -

moments (b)
T,=PRPd, T,=Pd, [ AT Tun
P \/3

_ . . I3 13
Representation: =3»»— or ;‘3 ©

FIG.3-2 Circular bar subjected to torsion
by torques 7 and 75



Torsional Deformations of a Circular Bar By
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* Pure torsion
— same internal torque T in every cross section

— Cross section do not change in shape —> all cross sections remain
plane and circular and all radii remain straight. Why?




Torsional Deformations of a Circular Bar
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» Angle of Twist (Angle of rotation, H| &2, ®)
— A small angle which the right-hand end will rotate through

— The angle of twist changes along the axis of the bar. P(x) at
intermediate cross sections . Why?

& (x)




Torsional Deformations of a Circular Bar i),
Shear strain at outer surface I
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* An element of a bar between two cross sections

— Magnitude of shear strain at outer surface
bb’  rdg ey (fi -~
ab  dx [ o J

+ Rate of twist, 8 (HIE & H3l=

7/max:

=, angle of twist per unit length)
— Rate of nhnnnn of ® with re

® spect to the distance x measured from

the axis of the bar

d
g-9¢
dx )
— Shear strain at outer surface
rd ro
Vmax — ¢ =ro Viax — 5
dx L

Pure torsion
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Torsional Deformations of a Circular Bar é’j i
Shear strain within the bar / Circular tube e
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» Shear strain within the interior can be found similarly.

— V. shear strain within the bar, p: radius of interior

%0 _rg > y=p0=Ly_.
dx r

7/max:

* Circular tubers¢ r y
_ 27 =1 — 17
7/max_ |_ 7/m|n r2 7/max |_



Circular Bars of Linearly Elastic Materials
Shear Stress

o Corresponding shear stress?

— Direction of shear stress

— Magnitude of shear stress

=Gy
P
_ 1=Gpl="—1
rr1/Tmax =Gro \ P r ™ (b) (c)
Maximum’shear stress at
the outer surface of the bar shear stress at an interior point

— Shear stress vary linearly with r.



Circular Bars of Linearly Elastic Materials Mé
Shear Stress v
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— Tacting on a cross-sectional plane are accompanied by 1 of the
same magnitude on longitudinal planes < equal 1 always exist at
mutually perpendicular planes.

— Stresses on an element oriented at an angle of 45°

FIG. 3-8 Tensile and compressive stresses
acting on a stress element oriented at
45° to the longitudinal axis

Tmax

FIG. 3-7 Longitudinal and transverse
shear stresses in a circular bar subjected
to torsion



Circular Bars of Linearly Elastic Materials g";w
Torsional Formula P

* Relationship between shear stress & Torque (T)
* In a small element,

— Shear stress resultant = Applied torque
dM = rpdA:T”‘Taxpsz

T T
— __ max 2 _ “max S
T= dAdM = dA,D dA = |p FIG. 3-9 Determination of the resultant
r r of the shear stresses acting on a cross

section
— Polar moment of inertia of the circular cross section

|, = [ pdA
A

— For a circle of rardius r and diameter d,

ar’ 5 zd?

P2 32




Circular Bars of Linearly Elastic Materials (i
Torsional Formula |
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» Torsional Formula (b

_ e
|

p

==X _?_/\I)
= 0O oS ™M

T

max

— Maximum shear stress is proportional to the applied torque T and
inversely proportional to the polar moment of inertia |,

— For a solid circular cross section with diameter d,
T

max — 43 when diameter (d) is doubled - shear stress?

— (Generalized torsional formula at distance p from the center

T
T:£Tmax =—p
r Ip



Circular Bars of Linearly Elastic Materials (i
Angle of twist |
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« Rate of twist

_Tp Gl torsional rigidity
I
r=Gpb i
» Total Twist (in pure torsion)
p=0L —> ¢=% Gl/L: torsional stiffness
p

— Compare with 5= £t

EA



Circular Bars of Linearly Elastic Materials (i
Circular tubes |
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* Circular tubes are more efficient than solid bars in resisting
torsional loads.

— Maximum shear stress at the outer boundary

— Most of the material in solid bar is stressed significantly below the
maximum shear stress

— Polar moment of inertia of the cross-sectional area of a tubge

B =%(r24—r14):3£2(d§—d14)

FIG.3-10 Circular tube in torsion



Circular Bars of Linearly Elastic Materials %-w
limitations P v
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* Linearly elastic material
 Away from stress concentration

* Equations for circular bars and tubes cannot be used for bars
of other shapes.

— EXx) rectangular bars or | shaped cross sections

— More advanced method needed for other shapes



Example 3-1 %Mg
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» G5=80 GPa, T=340 Nm
— Maximum shear stress? Angle of twist between the ends?

— If allowable shear stress is 42 MPa, allowable angle of twist is 2.5
°, what is the maximum permissible torque?

d =40 mm

T l 7

FIG.3-11 Example 3-1. Bar in pure T
torsion [ E=13m

\ 4



Nonuniform Torsion

* Nonuniform Torsion
— Bar need not be prismatic AL,JHJHJ

— Applied torques may vary along the axis

* Approach & -
— Divide into the segment with constant torque h
— Find torque in each segment by FBD & (N
T =T, Ty =—T,—T, T =T,-T,+T, P
— Make a summation (s

— . _ SIS analogy _ N L (d)
¢ ; ¢I ; Gi ( | 5 )i D J— 5 o _ — FIG.3-14 Bar in nonuniform torsion



Nonuniform Torsion i,
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 More general case with continuously varying cross sections
and torques

{

L gEegacea o
o= dg=[ LN Lolle |
.

0 Gl (x)

|
(a)

!
/i T(x)
—

b

(b)

FIG. 3-16 Bar in nonuniform torsion
(Case 3)



Q&A [
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* Moment of Inertia (or rotational Inertia) < as defined in
‘Physics’

— a measure of the resistance of an object to a change in its
rotational motion)

=) mr’ |=jp2dm

* Polar moment of inertia of plane area

l, = [ p*dA

0

FIG.12-17 Plane area of arbitrary shape



Stresses and Strains in Pure Shear Gy
Stresses and strains during twisting?
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* A barin torsion

— The only stresses acting on the stress element abcd is shear

stresses on four side faces = Pure Shear —T*b
a y ’
* Sign convention of shear  ;/ l OLX T
d c
— (+) face of an element : w
|(+) if it acts in the (+) direction of one of the coordinate axes,
](-) ifitacts in the (-) direction of one of the coordinate axes, T

— (-) face of an element All four are (+)

](+) = ifitacts in the (-) direction of one of the coordinate axes.

](-) =2 ifitactsin the (+) direction of one of the coordinate axes.



Stresses and Strains in Pure Shear
stresses on inclined pianes

o Strategy?

— We follow the same techniques used for stresses on inclined
sections ]

Z F(Tg direction — 0 Z Frgdirection =0 T| }L ‘T Tl 0

— Sign convention:

§0y: (+) for tension

{T,: () for counterclockwise rotation

———
TAq tan 6

Free Body Diagram
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Stresses and Strains in Pure Shear L
stresses on inclined planes
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* Force Equilibrium on FBD

Z Faedirection =0 — o,A,secd=7A,sinfd+7A, tandcosd

o, =2rsindcos§ ———> o, =7Sin260

z Fredirection =0 — r,A,secd=1A cos0—rA tandsing

z, =r(c0326’—sin20) —> 1, =7C0S20

ToAq sec 0
\0’6 Aq sec 6

Ay | 9000

-
TAqp tan 6



Stresses and Strains in Pure Shear G
stresses on inclined pianes o0 Ao GRS

— Normal and shear stresses acting on any inclined plane in terms of
shear stress T acting on x and y planes

o,=78IN20  1,=7C0S20 I AN

— Top face of the element (6 =90),  _gp

: 90°
c,=0 T,=-T Ji I
— 1: absolute maximum: 0 °, 90 °, 180 °, 270° -
— 0. maximum at 45 °

— _ — LY S
O,=T7 7=0 y ) /N
I} =]

— 0. minimum at -45 °

P
0-9 = -7 T = O Omax = T Omin="T7
(a) (b)



Stresses and Strains in Pure Shear G
stresses on inclined pianes o0 Ao GRS

— An experiment

T ( \\45" Crack a T

-

— Why?
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Stresses and Strains in Pure Shear ﬁL_|
Strains in pure Shear SEOUL NATIOZ':LUNIVERSITY
« Shear Strains for the element oriented at8 =0 °
T

s

* Normal strain for the element oriented at 6 = 45°
gmax:£+‘/£ 545:m
E E E

Produce positive
strain at 45 ° direction

o]
(945 = —p —mn min
E
Also produce positive

strain at 45 ° direction




Example 3-6 Ao
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« Maximum shear, tensile and compressive stresses? Show
these on sketches of properly oriented stress element.

« Maximum shear and normal strains? Show these on sketches
of the deformed elements.

T=4.0kN-m

FIG.3-26 Example 3-6. Circular tube in
torsion
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Relationship between moduli of elasticity E and G g’ .,-f

-‘A;.{A
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* E, v(Poisson’s ratio) and G are not independent!

— The relationship can be obtained from the geometry during the
pure shear

_E
- 2(+v)

— If any two of them are known, the third can be calculated.

/ b h b
A - . T 7y “ o 4
b 4 2 4 2
h h Lpy
-
C
d c d~— e« dlm_ Y
h > 4 4 2

(a) (b) (c)



Statically Indeterminate Torsional Members
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o Statically indeterminate < internal torques and all reactions
can not be obtained from Equilibrium Equations alone.

Solid bar and the tube joined

i / to a rigid end plate at B
- B

plate




Statically Indeterminate Torsional Members Y
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* (General methodology

/Tube 2) ¢

A /\B
.
— 1) Equations equilibrium sl 1 .
End
l plate
T+T,=T [C)L
— 2) Compatibility equation ¢,
) y A la’| /;; .
¢ = o, T Bar (1) L —
— 3) torque-displacement relations T; developed in the solid bar
T1 L ¢ -|-2 L ®, angle of trist in the solid bar
¢ = = : @2
1 Gllpl i GZIpZ : ld f/; T,
— Combining 1), 2) & 3)

G | G | T \Tuhc (2)
T =T 1°pl T =T 2p2 T, developed in the tube
1 2 @, angle of trist in the solid bar
Gyl +G,l ), Gyl +G,l ), 2ang



Statically Indeterminate Torsional Members Mﬁ
Example 3-9
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* General methodology - &
— 1) Equations equilibrium T, +T,=T ) Je

— 2) Compatibility equation ¢ =g,

— 3) torque-displacement relations R
_ Tl :_TBLA_TBLB i )
¢1_GIPA & Gl,, Gl .

c ® B

— Combining 1), 2) & 3) =7l

ToLa _TBLA _TBLB -0
Glpy, Glpy Gl

(c)
b
A C 2 B -
:[] I Iy
ce——
(d)

FIG.3-33 Example 3-9. Statically
indeterminate bar in torsion

T =T I—BIPA T =T I—AIPB
g ’ I—BIPA_|_|—AIPB ’ ’ I—BIPA—i_LAIPB
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Statically Indeterminate Torsional Members §;| '|‘*"/

Example 3-9 i
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M

— Reactive torques, max shear stress & rotation? <t & 1* .

B

~ Equation of Equilibrium 7, 4+, =T T T

(a)

— Compatibility Equation 4 =4,

Ipa /I
A/ /B B

— Torque-displacement relations =L >r, | <~
§Angle of twist at the end B due to T, alone L Ly
T,L, ) ‘
¢ = Gl., (b)
§Angle of twist at the end B due to T alone . ¢ Yirg
¢ :_TBLA_TBLB skl
‘ GI PA GI PB

— Solution of equations

A
T =T LBIPA T =T LAIPB | "‘—TB
g ’ LBIPA+LAIPB ’ ’ LBIPA+LAIPB

(d)




Statically Indeterminate Torsional Members

Example 3-9

 Two options

‘%1:2- A dA (-*3
B textbook
To )5‘2
(a)

Ipa /1
A ¢ PB B

Ty 4 Ty
e To e
<Ly 4’\'7 Lp—

L

(b) . .
Similar to

p.107-108

Both approaches should result in
the same results

7 (|
(c)
A C qb?'/'s .
Tg
P .
(d)
T Ta,
/!./ P
—s

Ipa /I
C PB
Ty &

‘_LAA'L*LB_

L

¢ :TOLA
' GIPA
¢ :_TBLA_TBLB
2
GIPA GIPB
¢ :TALA
' GIPA
¢ __TBLB
2
GIPB



Statically Indeterminate Torsional Members Mé’
Example 3-9

— Maximum shear stress

Tr T.d T.d
= > TS0 Ty
' i "8 (a)
T L.d T.L,d Ipa ¢ /lps B
e = Ll L o =S, + L] 2 gl
2(LB|PA+LAIPB) ( glpa T La pB) 0
— Angle of rotation e
T.L,  Telg T,L,Ls ®
¢C = = =
Glpy Glyy  G(Lglps +Lulo) .
A B
> 1o
(c)
A ¢ "rp -

(d)



Strain Energy in Torsion and Pure Shear %Mi
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» Work is performed by the load applied to a structure and
strain energy Iis developed in the structure.

FIG. 3-34 Prismatic bar in pure torsion



Strain Energy in Torsion and Pure Shear %Mi
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» Strain energy U due to torsion (assuming linearly elastic)

U =W :M Torque
2
T
U T’L _Gl¢’
2Gl, 2L
* Nonuniform torsion ¢

Angle of rotation

T T Ty T,

C Ti2 Li

_ FIG. 3-35 Torque-rotation diagram for

A(Bﬂ(_z Zl 2G. ( | ) a bar i.n pure torsion (linearly elastic
J? J : I\"PJi material)
Lap—r—Lpc Lep
2 ! >

4 @Efgeasa & [TOOT dx
%IJ Hm U= jo 2G1, (x)




Strain Energy in Torsion and Pure Shear £,
Strain energy density in pure shear e
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— Shear force V acting on the side of the element

V =zht | 1 — | = -
— Displacement at the top face I . ‘ //
5=7h .
— Strain energy stored in the element - v,
U=W =V25 > U = Wgzt ‘]V /”»Z\ /)
— Strain energy density divided by the volu 4--:,:" -
A ’

2 2G 2



Strain Energy in Torsion and Pure Shear YERY

Example 3-11 i~
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* Derive a formula for the strain energy of the bar

* Evaluate the strain energy of a hollow shaft used for drilling
into the earth if the data are as follows.
T=2100 Nm/m, L=3.7m, G=80GPa, Ip=7.15x10-% m*

FIG.3-38 Example 3-11. Strain energy
produced by a distributed torque




