Mechanics in Energy Resources Engineering - Chapter 4 Shear Forces and Bending Moments

Ki-Bok Min, PhD

Assistant Professor Energy Resources Engineering Seoul National University

- Mean: 65.3, standard deviation: 12.9
- Max: 86.0, Min: 30.0

- In general, you demonstrated your understanding to a reasonable extent and you are in good positions to study further.
- Try to thoroughly understand the home assignments. I encourage discussion with your peers.
- This time only, partial point was around 10% 70%. However, it will be minimized next time. Max partial point will be 30%.
- Level of difficulty will be similar in the 2nd and 3rd exam.
- 2nd exam: Ch. 4, 5 & 12
- 3rd exam: entire chapters.

- Introduction
- Torsional Deformations of a circular bar (원형봉의 비틀림 변형)
- Circular bars of linearly elastic materials (선형탄성 원형봉)
- Nonuniform torsion (불균질 비틀림)
- Stresses and Strains in Pure Shear (순수전단에서의 응력과 변형율)
- Relationship Between Moduli of Elasticity E and G (탄성계수 E와 G의 관계)
- Statically Indeterminate Torsional Members (부정정 비틀림 부재)
- Strain Energy in Torsion and Pure Shear (비틀림과 순수전단에서의 변형에너지)

Change of schedule

SEOUL NATIONAL UNIVERSITY

- 5 April (Ch.4)
- 12 April (Ch.4)
- 19 April (Ch.5), hw#5 due
- 26 April (Review),

7 April (Ch.12) by Jae-Won Lee
14 April (Ch.5), hw#4 due
21 April (Ch.5)
28 April (2nd Exam), hw#6 due

Shear Forces and Bending Moments Preview

- Introduction
- Types of Beams, Loads, and Reactions
- Shear Forces and Bending Moments
- Relationships Between Loads, Shear Forces and Bending Moments
- Shear-Force and Bending-Moment Diagrams

- Structural members (구조용 부재)
 - Axially loaded bar (봉): forces along the axis
 - A bar in torsion: torques along the axis (moment vectors)
 - Beam (보): lateral loads
- *Planar structure* (평면구조물) lie in a single plane
 - Loads and deflections occurs in the *plane of bending*

Types of Beams, Loads, and Reactions beams

- Assumptions
 - Loads act in the plane of the figure: force vectors in the plane of figure & bending moments have their moments vectors perpendicular to the plane of the figure
 - Beam is symmetric about that plane → deflect only in the plane of bending

Types of Beams, Loads, and Reactions Types of Beams

SEOUL NATIONAL UNIVERSITY

• Simple beam (단순보)

• Cantilever beam (캔틸레버보)

• Beam with an overhang (돌출보)

Types of Beams, Loads, and Reactions Types of supports

Types of Beams, Loads, and Reactions Actual Examples

Types of Beams, Loads, and Reactions Loads

- Concentrated load
 - applied over a very small area
- Distributed load
 - Spread along the axis of a beam
 - Measured by their intensity (Force/unit distance)
 - Uniformly distributed & linearly varying load
- Couple
 - The couple of moment M₁ (bending moment) acting on the overhang

Types of Beams, Loads, and Reactions Reactions

SEOUL NATIONAL UNIVERSITY

• Simple beam

Types of Beams, Loads, and Reactions Reactions

SEOUL NATIONAL UNIVERSITY

Cantilever beam

Types of Beams, Loads, and Reactions Reactions

SEOUL NATIONAL UNIVERSITY

• Beam with an overhang

Shear Forces and Bending Moments basic concepts

- Beams under forces or moment → stresses and strains are created throughout the interior of the beam.
- We first find the internal forces and couple (bending moment) on the cross section.
 - Stress resultant (합응력): resultants of stresses distributed over the cross section.
- Free Body Diagram isolate left or right hand part.

(C)

Shear Forces and Bending Moments methodology

SEOUL NATIONAL UNIVERSITY

• Equilibrium Equation

$$\sum F_{ver} = 0 \qquad P - V = 0$$

$$V = P$$

$$\sum M = 0 \qquad M - Px = 0$$

$$M = Px$$

Shear Forces and Bending Moments sign conventions for stress resultants

- 'deformation sign convention'
 - Based on how the material is deformed.
 - (+) shear force: acts clockwise
 - (-) shear force: counter-clockwise
 - (+) bending moment: compress upper part
 - (-) bending moment: lower part
- ' static sign convention'
 - Forces/moments are (+) or (-) according to their directions
 - Sign convention for Equilibrium Equation.

- Introduction
- Types of Beams, Loads, and Reactions
- Shear Forces and Bending Moments

- Relationships Between Loads, Shear Forces and Bending Moments
- Shear-Force and Bending-Moment Diagrams

Next Monday

- Shear force V & bending moment M at the right and left of mid point?
 - $R_A \& R_B?$
 - Free Body Diagram.

$$\sum M_A = 0 \longrightarrow R_B = \frac{P}{4} + \frac{M_0}{L}$$
$$\sum M_B = 0 \longrightarrow R_A = \frac{3}{4}P - \frac{M_0}{L}$$

SEOUL NATIONAL UNIVERSITY

 q_0

- Shear force V & Bending moment M?
 - Intensity of the distributed load at x

$$q = \frac{q_0}{L} x$$

 $\frac{dV}{dx} = -q \qquad \frac{dM}{dx} = V$

SEOUL NATIONAL UNIVERSITY

• Shear force V & bending moment M at D?

Relationships Between Loads, Shear Forces and Bending Moments

- Relationships between loads, shear forces, and bending moments in beams.
 - Useful for investigating the shear forces and bending moments throughout the entire length of a beam
 - Helpful when constructing shear-force and bending-moment diagrams
 - In general, the V & M varies along the axis of the beam.

Relationships Between Loads, Shear Forces and Bending Moments Sign convention

Relationships Between Loads, Shear Forces and Bending Moments Distributed Loads

SEOUL NATIONAL UNIVERSITY

• From Equilibrium of forces

$$\sum F_V = 0 \qquad V - q dx - (V + dV) = 0$$
$$\frac{dV}{dx} = -q$$

- Rate of change of the shear force at any point on the axis of the beam = negative of the intensity of the distributed load
- (-) sign change to (+) for positive upward distributed load
- If q = 0, dV/dx = 0 and V is constant in that part of the beam
- If q = constant, dV/dx is also constant and V varies linearly in that part of the beam

Relationships Between Loads, Shear Forces and Bending Moments Distributed Loads

SEOUL NATIONAL UNIVERSITY

• Integrate above equation after multiplying with dx \int_{a}^{B}

$$\int_{A} dV = -\int_{A} qdx$$
$$V_{B} - V_{A} = -\int_{A}^{B} qdx = -(area \ of \ the \ loading \ diagram \ between \ A \ and \ B)$$

Change in shear force between two points along the axis of the beam

dV

dx

Negative of the total downward load between those points

Relationships Between Loads, Shear Forces and Bending Moments Distributed Loads

SEOUL NATIONAL UNIVERSITY

 Rate of change of the bending moment at any point on the axis of the beam = shear force at that same point

$$\int_{A}^{B} dM = \int_{A}^{B} V dx$$

 $M_B - M_A = -\int_A^B V dx = -(area \ of \ the \ shear - force \ diagram \ between \ A \ and \ B)$

Relationships Between Loads, Shear Forces and Bending Moments Concentrated Loads

• From Force Equilibrium,

 $\sum F_V = 0$ $V - P - (V + V_1) = 0$ $V_1 = -P$

- Shear force decreases by P
- From Moment Equilibrium,

$$\sum M_{left} = 0 -M - P \frac{dx}{2} - (V + V_1) dx + M + M_1 = 0$$
$$M_1 = P \frac{dx}{2} + V dx + V_1 dx$$

- dx is infinitesimally small \rightarrow M₁ is also very small
- Bending moment does notchange as we pass through the point of application of a concentrated load

SEOUL NATIONAL UNIVERSITY

 $M + M_1$

Relationships Between Loads, Shear Forces and Bending Moments Loads in the form of couples

• From Force Equilibrium,

 $V_1 = 0$

Shear force does not change at the point of application of a couple

• From Moment Equilibrium,

$$\sum M_{left} = 0 \qquad -M + M_0 - (V + V_1)dx + M + M_1 = 0$$
$$M_1 = -M_0$$

 Bending moment decreases by M₀ as we move from left to right through the point of load application → bending moment change abruptly.

Shear-Force and Bending-Moment Diagrams

- Graph in which shear force and bending moment are plotted with respect to distance x along the axis of the beam.
- How shear forces and bending moments vary throughout the length of the beam? Maximum?
- Shear Force Diagram (SFD, 전단력선도)
- Bending Moment Diagram (BMD, 굽힘모멘트선도)

Shear-Force and Bending-Moment Diagrams Concentrated Load

SEOUL NATIONAL UNIVERSITY

• Determine Reactions from moment equilibrium,

$$R_A = \frac{Pb}{L}$$
 $R_B = \frac{Pa}{L}$

- V & M at the left part (0 < x < a), $V = R_A = \frac{Pb}{L}$ $M = R_A x = \frac{Pbx}{L}$
- V & M at the right part (a < x < L),

$$V = R_{A} - P = \frac{Pb}{L} - P = -\frac{Pa}{L}$$
$$M = R_{A}x - P(x - a) = \frac{Pbx}{L} - P(x - a) = \frac{Pa}{L}(L - x)$$

Shear-Force and Bending-Moment Diagrams Concentrated Load

SEOUL NATIONAL UNIVERSITY

• Shear Force Diagram,

$$V = \frac{Pb}{L} \qquad (0 < x < a)$$

$$V = -\frac{Pa}{L} \qquad (0 < x < a$$

Bending Moment Diagram

$$M = \frac{Pbx}{L} \qquad (a < x < L)$$

$$M = \frac{Pa}{L}(L - x) \qquad (a < x < l_M)$$

$$x < I_M$$
 Slope d

 $-\frac{Pa}{L}$

Slope dM/dx = V

Shear-Force and Bending-Moment Diagrams Uniform Load

SEOUL NATIONAL UNIVERSITY

• From Moment Equilibrium,

$$R_A = R_B = \frac{qL}{2}$$

• From Free Body Diagram,

$$V = R_A - qx = \frac{qL}{2} - qx$$

$$M = R_A x - qx \left(\frac{x}{2}\right) = \frac{qLx}{2} - \frac{qx^2}{2}$$

- Slope of V?Slope of M?

Shear-Force and Bending-Moment Diagrams Several Concentrated Loads

SEOUL NATIONAL UNIVERSITY

• From Moment Equilibrium,

 $R_A + R_B = P_1 + P_2 + P_3$

• From Free Body Diagram,

$$V = R_A M = R_A x \quad (0 < x < a_1)$$
$$V = R_A - P_1 M = R_A x - P_1 (x - a_1) \quad (a_1 < x < a_2)$$

$$V = -R_B + P_3$$

$$M = R_B(L - x) - P_3(L - b_3 - x) \qquad (a_2 < x < a_3)$$

$$V = -R_B$$
$$M = R_B(L - x) \qquad (a_3 < x < L)$$

Shear-Force and Bending-Moment Diagrams Several Concentrated Loads

SEOUL NATIONAL UNIVERSITY

• Bending moment,

$$M_1 = R_A a_1$$
$$M_2 = R_A a_2 - P_1 (a_2 - a_1)$$
$$M_3 = R_B b_3$$

- Maximum positive moment
- Maximum negative moment → numerically largest negative moment

Shear-Force and Bending-Moment Diagrams Several Concentrated Loads

- Maximum positive and negative bending moments
 - A cross section where a concentrated load is applied and shear force changes sign
 - A cross section where the shear force =0
 - A point of support where a vertical reaction is present
 - A cross section where a couple is applied

- Introduction
- Types of Beams, Loads, and Reactions
- Shear Forces and Bending Moments
- Relationships Between Loads, Shear Forces and Bending Moments
- Shear-Force and Bending-Moment Diagrams

Next three lectures

