
Architecture of a Search 

Engine
406.424 Internet Applications

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Eng.

Seoul National University

9/1/2010

mailto:jonghun@snu.ac.kr


search engine architecture

 software architecture consists of software components, 

the interfaces provided by those components, and the 

relationships between them

- describes a system at a particular level of abstraction

 architecture of a search engine determined by 2 

requirements

- effectiveness: quality of results

- efficiency: response time and throughput

 2 major components

- indexing process

- query process 



indexing process

 text acquisition: identifies and stores documents for indexing

 text transformation: transforms documents into index terms or 
features
 e.g., word, phrase, name, date, link, … 

 index creation: takes index terms and creates data structures 
(indexes) to support fast searching
 inverted index: a list for every index term of the documents that contain that 

index term 



query process

 user interaction: supports creation and refinement of query, display of 

results

 ranking: uses query and indexes to generate ranked list of documents

 evaluation: monitors and measures effectiveness and efficiency

 primarily offline



text acquisition

 crawler

- identifies and acquires documents for search engine

- many types: web, enterprise, desktop

- web crawlers follow links to find documents

 must efficiently find huge numbers of web pages (coverage) and keep 

them up-to-date (freshness)

 single site crawlers for site search

- e.g., “site:snu.ac.kr” for google search 

 topical or focused crawlers for vertical search

- needs classification techniques 

- document crawlers for enterprise and desktop search

 follow links and scan directories



text acquisition

 feeds 

- a mechanism for accessing a real-time stream of documents

 e.g., web feeds for news, blogs, video, radio, tv

- RSS is common standard

 RSS “reader” can provide new XML documents to search engine

 cf: atom feed 

 conversion

- convert variety of documents into a consistent text plus 

metadata format

 e.g. HTML, XML, Word, PDF, etc. → XML

- convert text encoding for different languages

 using a Unicode standard like UTF-8



text acquisition

 document data store

- stores text, metadata, and other related content for documents 

 metadata: information about document such as type and creation date

 other content includes links & anchor text

- provides fast access to document contents for search engine 

components

 e.g. result list generation

- could use relational database system 

 more typically, a simpler, more efficient storage system is used due to huge 

numbers of documents



text transformation

 parser

- processing the sequence of text tokens in the document to 

recognize structural elements

 e.g., titles, links, headings, etc.

- tokenizer recognizes “words” in the text

 must consider issues like capitalization, hyphens, apostrophes, non-alpha 

characters, separators

 e.g., 장동건결혼, on-line, Ph.D., … 

- both doc and query must be transformed into tokens in the same 

manner so that they can be easily compared 

- markup languages such as HTML, XML often used to specify 

structure

 tags: e.g., <h2> Overview </h2>

 tags and other control sequences must be treated appropriately



text transformation

 stopping

- remove common words: non-topical, function words

 e.g., “and”, “or”, “the”, “in”

- some impact on efficiency and effectiveness

- can be a problem for some queries

 e.g., “to be or not to be” 

 stemming

- group words derived from a common stem

 e.g., “computer”, “computers”, “computing”, “compute”

- increase the likelihood that words used in queries and docs will 

match 

- usually effective, but not for all queries

 e.g., “fish”, “fishing” 



text transformation

 link analysis

- makes use of links and anchor text in web pages

 indexed separately from general text content 

- link analysis identifies popularity and community information

 e.g., PageRank

- anchor text can significantly enhance the representation of pages 

pointed to by links

- significant impact on web search

 less importance in other applications



text transformation

 information extraction

- identify index terms that are more complex than single words 

- e.g., noun phrases: require POS (part-of-speech) tagging 

- e.g., named entity recognizers identify classes such as people, 

locations, companies, dates, etc.

 classifier

- identifies class-related metadata for documents

 i.e., assigns labels to documents for categorization 

 e.g., topics, reading levels, sentiment, genre

 e.g., spam filtering, identifying non-content parts  

- use depends on application



index creation

 document statistics

- gathers statistical information about words, features, and 

documents

 e.g., term occurrences, positions, lengths of docs

- used in ranking algorithm

 weighting

- computes weights for index terms

- used in ranking algorithm

- needs to be done during indexing process as much as possible

- query dependent vs. query independent   

- e.g., tf.idf weight

 combination of term frequency in document and inverse document 

frequency in the collection



index creation

 inversion

- core of indexing process

- converts document-term information to term-document for creating 

inverted indexes 

 difficult for very large numbers of documents

- format of inverted file is designed for fast query processing

 must also handle index updates

 compression used for efficiency

 index distribution

- distributes indexes across multiple computers and/or multiple sites

- essential for fast query processing with large numbers of documents

- many variations: document distribution, term distribution, replication

- indexing & query processing can be done in parallel 



user interaction

 query input

- provides interface and parser for query language

- most web queries are very simple, other applications may use 

forms

 keyword: a word that is important for specifying the topic of a query 

 a small # of operators: “ ”, |, …

- query language used to describe more complex queries and 

results of query transformation

 e.g., boolean queries, Indri and Galago query languages

 e.g., AND, OR, NOT, proximity operator

 similar to SQL language used in database applications



user interaction

 query transformation

- involves some of the same text transformation techniques used 

on doc text, including tokenizing, stopping, and stemming

- spell checking and query suggestion provide alternatives to 

original query

- query expansion and relevance feedback modify the original 

query with additional terms

 relevance feedback: expands queries based on term occurrences in docs 

that are identified as relevant by the user 



user interaction

 results output

- constructs the display of ranked documents for a query

- generates snippets to show how queries match documents

- highlights important words and passages

- retrieves appropriate advertising in many applications

- may provide clustering and other visualization tools



ranking

no retrieval boolean retrieval

ranked retrieval



ranking issues 

 scoring
- calculates scores for documents using a ranking algorithm

- a basic form of score is 
 qi and di are query and document term weights for term i

 e.g., tf.idf weight

- many variations of ranking algorithms and retrieval models

 performance optimization
- designing ranking algorithms and the associated indexes for efficient 

processing

- term-at-a time vs. document-at-a-time scoring 

- safe vs. unsafe optimizations
 safe optimization guarantees that the scores calculated will be the same as the 

scores without optimization

 distribution
- ranking can also be distributed 

- query broker distributes queries and assembles results

- caching is a form of distributed searching



popular ranking features

 term matching

 term frequency 

 inverse document frequency 

 term proximity: e.g., white house vs. white …. house 

 term location: title? heading? 

 quality: authority, popularity, … 

 web specific 

- url text, url length 

- anchor text



ranking experiments

 http://www.langreiter.com/exec/yahoo-vs-google.html



evaluation

 logging

- logging user queries and interaction is crucial for improving search 

effectiveness and efficiency

 documents in a result list that are clicked on and browsed tend to be relevant 

- query logs, clickthrough data, dwell time can be used for query 

suggestion, spell checking, query caching, ranking, advertising search, 

and other components

 ranking analysis

- measuring and tuning ranking effectiveness

- emphasis on the top-ranked documents 

 performance analysis

- measuring and improving system efficiency

- cf: round trip from US to China is 250ms while human 

“instantaneous” window is 150ms



Google search engine architecture (2001)



Google facts (as of 2006)

500 million queries a day

200 million a day with 100 million unique queries 

450,000 computers 

Power cost: $157.5 million/year


