
Architecture of a Search 

Engine
406.424 Internet Applications

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Eng.

Seoul National University

9/1/2010

mailto:jonghun@snu.ac.kr


search engine architecture

 software architecture consists of software components, 

the interfaces provided by those components, and the 

relationships between them

- describes a system at a particular level of abstraction

 architecture of a search engine determined by 2 

requirements

- effectiveness: quality of results

- efficiency: response time and throughput

 2 major components

- indexing process

- query process 



indexing process

 text acquisition: identifies and stores documents for indexing

 text transformation: transforms documents into index terms or 
features
 e.g., word, phrase, name, date, link, … 

 index creation: takes index terms and creates data structures 
(indexes) to support fast searching
 inverted index: a list for every index term of the documents that contain that 

index term 



query process

 user interaction: supports creation and refinement of query, display of 

results

 ranking: uses query and indexes to generate ranked list of documents

 evaluation: monitors and measures effectiveness and efficiency

 primarily offline



text acquisition

 crawler

- identifies and acquires documents for search engine

- many types: web, enterprise, desktop

- web crawlers follow links to find documents

 must efficiently find huge numbers of web pages (coverage) and keep 

them up-to-date (freshness)

 single site crawlers for site search

- e.g., “site:snu.ac.kr” for google search 

 topical or focused crawlers for vertical search

- needs classification techniques 

- document crawlers for enterprise and desktop search

 follow links and scan directories



text acquisition

 feeds 

- a mechanism for accessing a real-time stream of documents

 e.g., web feeds for news, blogs, video, radio, tv

- RSS is common standard

 RSS “reader” can provide new XML documents to search engine

 cf: atom feed 

 conversion

- convert variety of documents into a consistent text plus 

metadata format

 e.g. HTML, XML, Word, PDF, etc. → XML

- convert text encoding for different languages

 using a Unicode standard like UTF-8



text acquisition

 document data store

- stores text, metadata, and other related content for documents 

 metadata: information about document such as type and creation date

 other content includes links & anchor text

- provides fast access to document contents for search engine 

components

 e.g. result list generation

- could use relational database system 

 more typically, a simpler, more efficient storage system is used due to huge 

numbers of documents



text transformation

 parser

- processing the sequence of text tokens in the document to 

recognize structural elements

 e.g., titles, links, headings, etc.

- tokenizer recognizes “words” in the text

 must consider issues like capitalization, hyphens, apostrophes, non-alpha 

characters, separators

 e.g., 장동건결혼, on-line, Ph.D., … 

- both doc and query must be transformed into tokens in the same 

manner so that they can be easily compared 

- markup languages such as HTML, XML often used to specify 

structure

 tags: e.g., <h2> Overview </h2>

 tags and other control sequences must be treated appropriately



text transformation

 stopping

- remove common words: non-topical, function words

 e.g., “and”, “or”, “the”, “in”

- some impact on efficiency and effectiveness

- can be a problem for some queries

 e.g., “to be or not to be” 

 stemming

- group words derived from a common stem

 e.g., “computer”, “computers”, “computing”, “compute”

- increase the likelihood that words used in queries and docs will 

match 

- usually effective, but not for all queries

 e.g., “fish”, “fishing” 



text transformation

 link analysis

- makes use of links and anchor text in web pages

 indexed separately from general text content 

- link analysis identifies popularity and community information

 e.g., PageRank

- anchor text can significantly enhance the representation of pages 

pointed to by links

- significant impact on web search

 less importance in other applications



text transformation

 information extraction

- identify index terms that are more complex than single words 

- e.g., noun phrases: require POS (part-of-speech) tagging 

- e.g., named entity recognizers identify classes such as people, 

locations, companies, dates, etc.

 classifier

- identifies class-related metadata for documents

 i.e., assigns labels to documents for categorization 

 e.g., topics, reading levels, sentiment, genre

 e.g., spam filtering, identifying non-content parts  

- use depends on application



index creation

 document statistics

- gathers statistical information about words, features, and 

documents

 e.g., term occurrences, positions, lengths of docs

- used in ranking algorithm

 weighting

- computes weights for index terms

- used in ranking algorithm

- needs to be done during indexing process as much as possible

- query dependent vs. query independent   

- e.g., tf.idf weight

 combination of term frequency in document and inverse document 

frequency in the collection



index creation

 inversion

- core of indexing process

- converts document-term information to term-document for creating 

inverted indexes 

 difficult for very large numbers of documents

- format of inverted file is designed for fast query processing

 must also handle index updates

 compression used for efficiency

 index distribution

- distributes indexes across multiple computers and/or multiple sites

- essential for fast query processing with large numbers of documents

- many variations: document distribution, term distribution, replication

- indexing & query processing can be done in parallel 



user interaction

 query input

- provides interface and parser for query language

- most web queries are very simple, other applications may use 

forms

 keyword: a word that is important for specifying the topic of a query 

 a small # of operators: “ ”, |, …

- query language used to describe more complex queries and 

results of query transformation

 e.g., boolean queries, Indri and Galago query languages

 e.g., AND, OR, NOT, proximity operator

 similar to SQL language used in database applications



user interaction

 query transformation

- involves some of the same text transformation techniques used 

on doc text, including tokenizing, stopping, and stemming

- spell checking and query suggestion provide alternatives to 

original query

- query expansion and relevance feedback modify the original 

query with additional terms

 relevance feedback: expands queries based on term occurrences in docs 

that are identified as relevant by the user 



user interaction

 results output

- constructs the display of ranked documents for a query

- generates snippets to show how queries match documents

- highlights important words and passages

- retrieves appropriate advertising in many applications

- may provide clustering and other visualization tools



ranking

no retrieval boolean retrieval

ranked retrieval



ranking issues 

 scoring
- calculates scores for documents using a ranking algorithm

- a basic form of score is 
 qi and di are query and document term weights for term i

 e.g., tf.idf weight

- many variations of ranking algorithms and retrieval models

 performance optimization
- designing ranking algorithms and the associated indexes for efficient 

processing

- term-at-a time vs. document-at-a-time scoring 

- safe vs. unsafe optimizations
 safe optimization guarantees that the scores calculated will be the same as the 

scores without optimization

 distribution
- ranking can also be distributed 

- query broker distributes queries and assembles results

- caching is a form of distributed searching



popular ranking features

 term matching

 term frequency 

 inverse document frequency 

 term proximity: e.g., white house vs. white …. house 

 term location: title? heading? 

 quality: authority, popularity, … 

 web specific 

- url text, url length 

- anchor text



ranking experiments

 http://www.langreiter.com/exec/yahoo-vs-google.html



evaluation

 logging

- logging user queries and interaction is crucial for improving search 

effectiveness and efficiency

 documents in a result list that are clicked on and browsed tend to be relevant 

- query logs, clickthrough data, dwell time can be used for query 

suggestion, spell checking, query caching, ranking, advertising search, 

and other components

 ranking analysis

- measuring and tuning ranking effectiveness

- emphasis on the top-ranked documents 

 performance analysis

- measuring and improving system efficiency

- cf: round trip from US to China is 250ms while human 

“instantaneous” window is 150ms



Google search engine architecture (2001)



Google facts (as of 2006)

500 million queries a day

200 million a day with 100 million unique queries 

450,000 computers 

Power cost: $157.5 million/year


