
Crawls & Feeds
406.424 Internet Applications

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Eng.

Seoul National University

9/1/2010

mailto:jonghun@snu.ac.kr

web crawler

 finds and downloads web pages automatically

 web is huge and constantly growing

- at least tens of billions of pages

 web is not under the control of search engine providers

 web pages are constantly changing

retrieving web pages

 every page has a unique uniform resource locator

(URL)

 web pages are stored on web servers that use HTTP to

exchange information with client software

 e.g.,

retrieving web pages

 web crawler client program connects to a domain name

system (DNS) server

 DNS server translates the hostname into an internet

protocol (IP) address

 crawler then attempts to connect to server host using

specific port

 after connection, crawler sends an HTTP request to the

web server to request a page

- usually a GET request

- e.g., GET /csinfo/people.html HTTP/1.0

crawling the web

web crawler

 starts with a set of seeds, which are a set of URLs given to

it as parameters

 seeds are added to a URL request queue

 crawler starts fetching pages from the request queue

 downloaded pages are parsed to find link tags that might

contain other useful URLs to fetch

 new URLs added to the crawler’s request queue, or

frontier

 continue until no more new URLs or disk full

web crawling

 web crawlers spend a lot of time waiting for responses to

requests

 to reduce this inefficiency, web crawlers use threads and

fetch hundreds of pages at once

 crawlers could potentially flood sites with requests for

pages

 to avoid this problem, web crawlers use politeness

policies

- e.g., delay between requests to same web server

controlling crawling

 even crawling a site slowly will anger some web server

administrators, who object to any copying of their data

 robots.txt file can be used to control crawlers

simple crawler thread

freshness

 web pages are constantly being added, deleted, and

modified

 web crawler must continually revisit pages it has already

crawled to see if they have changed in order to maintain

the freshness of the document collection

- stale copies no longer reflect the real contents of the web pages

freshness

 HTTP protocol has a special request type called HEAD

that makes it easy to check for page changes

- returns information about page, not page itself

- Last-Modified: indicates the last time the page content was

changed

freshness

 not possible to constantly check all pages

- must check important pages and pages that change frequently

 freshness is the proportion of pages that are currently

fresh

 optimizing for this metric can lead to bad decisions, such

as not crawling popular sites

 age is a better metric

- page has age 0 until it is changed, and then its age grows until

the page is crawled again

freshness vs. age

an inventory control problem!

age

 P(page changed at time x): probability that the page

actually changed at time x

 expected age of a page t days after it was last crawled:

 web page updates follow the Poisson distribution on

average

- time until the next update is governed by an exponential

distribution

age

 older a page gets, the more it costs not to crawl it

- e.g., expected age with mean change frequency λ = 1/7 (one

change per week)

focused crawling

 attempts to download only those pages that are about a

particular topic

- used by vertical search applications

 rely on the fact that pages about a topic tend to have links

to other pages on the same topic

- popular pages for a topic are typically used as seeds

 crawler uses text classifier to decide whether a page is on

topic

deep web

 sites that are difficult for a crawler to find are collectively

referred to as the deep (or hidden) web

- much larger than conventional web: 550B (as of 2001)

 3 broad categories:

- private sites

 no incoming links, or may require log in with a valid account

- form results

 sites that can be reached only after entering some data into a form

- scripted pages

 pages that use JavaScript, Flash, or another client-side language to generate

links

sitemaps

 sitemaps contain lists of URLs and data about those

URLs, such as modification time and modification

frequency

 generated by web server administrators

 tells crawler about pages it might not otherwise find

 gives crawler a hint about when to check a page for

changes

sitemap example

distributed crawling

 3 reasons to use multiple computers for crawling

- helps to put the crawler closer to the sites it crawls

- reduces the number of sites the crawler has to remember

- reduces computing resources required

 distributed crawler uses a hash function to assign URLs to

crawling computers

- hash function should be computed on the host part of each URL

desktop crawls

 used for desktop search and enterprise search

 differences to web crawling:

- much easier to find the data

- responding quickly to updates is more important

- must be conservative in terms of disk and CPU usage

- many different document formats

- data privacy very important

document feeds

 many documents are published

- created at a fixed time and rarely updated again

- e.g., news articles, blog posts, press releases, email

 published documents from a single source can be ordered

in a sequence called a document feed

- new documents found by examining the end of the feed

document feeds

 2 types:

- push feed alerts the subscriber to new documents

- pull feed requires the subscriber to check periodically for new
documents

 most common format for pull feeds is called RSS

- Really Simple Syndication, RDF Site Summary, Rich Site
Summary, or ...

- ttl tag (time to live)

 amount of time (in minutes) contents should be cached

- RSS feeds are accessed like web pages

 using HTTP GET requests to web servers that host them

- easy for crawlers to parse

- easy to find new information

- cf: atom

RSS example

conversion problem

 text is stored in hundreds of incompatible file formats

- e.g., raw text, RTF, HTML, XML, Microsoft Word, ODF, PDF

 other types of files also important

- e.g., PowerPoint, Excel

 typically use a conversion tool

- converts the document content into a tagged text format such as

HTML or XML

- retains some of the important formatting information

character encoding

 a mapping between bits and glyphs

- i.e., getting from bits in a file to characters on a screen

- can be a major source of incompatibility

 ASCII is basic character encoding scheme for english

- encodes 128 letters, numbers, special characters, and control

characters in 7 bits, extended with an extra bit for storage in

bytes

character encoding

 other languages can have many more glyphs

- e.g., chinese has more than 40,000 characters, with over 3,000 in

common use

 many languages have multiple encoding schemes

- e.g., CJK (Chinese-Japanese-Korean) family of east asian

languages, hindi, arabic

- must specify encoding

- can’t have multiple languages in one file

 Unicode developed to address encoding problems

Unicode

 single mapping from numbers to glyphs that attempts to
include all glyphs in common use in all known languages

- many ways to translate Unicode numbers to glyphs: UTF-8,
UTF-16, UTF-32

 proliferation of encodings comes from a need for
compatibility and to save space

- UTF-8 uses one byte for English (ASCII), as many as 4 bytes for
some traditional Chinese characters

 variable length encoding, more difficult to do string operations

- UTF-32 uses 4 bytes for every character

 many applications use UTF-32 for internal text
encoding (fast random lookup) and UTF-8 for disk
storage (less space)

UTF-8

- e.g., Greek letter pi (π) is Unicode symbol number 960

- to encode decimal 2047, we only need 11 bits

- in binary, 00000011 11000000 (3C0 in hexadecimal)

- final encoding: 11001111 10000000 (CF80 in hexadecimal)

storing the documents

 many reasons to store converted document text

- no need for crawling again when page is not updated

- provides efficient access to text for snippet generation,

information extraction, etc.

 database systems can provide document storage for some

applications

- web search engines use customized document storage systems

storing the documents

 requirements for document storage system:

- random access

 request the content of a document based on its URL

 hash function based on URL is typical

- compression and large files

 reducing storage requirements and efficient access

- update

 handling large volumes of new and modified documents

 adding new anchor text

large files

 store many documents in large files, rather than each

document in a file

- avoids overhead in opening and closing files

- reduces seek time relative to read time

 compound documents formats

- used to store multiple documents in a file

- e.g., TREC Web

TREC Web Format

compression

 text is highly redundant (or predictable)

 compression techniques exploit this redundancy to make

files smaller without losing any of the content

 popular algorithms can compress HTML and XML text

by 80%

- e.g., DEFLATE (zip, gzip) and LZW (UNIX compress, PDF)

- may compress large files in blocks to make access faster

BigTable

 Google’s document storage system

- customized for storing, finding, and updating web pages

- handles large collection sizes using inexpensive computers

BigTable

 tablets are stored in a replicated file system that is

accessible by all BigTable servers

 logically organized into rows

 a row stores data for a single web page

 BigTable can have a huge number of columns per row

 rows are partitioned into tablets based on their row keys

- simplifies determining which server is appropriate

detecting duplicates

 duplicate and near-duplicate documents occur in many

situations

- copies, versions, plagiarism, spam, mirror sites

- 30% of the web pages in a large crawl are exact or near

duplicates of pages in the other 70%

 duplicates consume significant resources during crawling,

indexing, and search

- little value to most users

duplicate detection

 exact duplicate detection is relatively easy

 checksum techniques

- checksum: a value that is computed based on the content of the

document

 e.g., sum of the bytes in the document file

- possible for files with different text to have same checksum

 functions such as a cyclic redundancy check (CRC),

have been developed that consider the positions of the

bytes

near-duplicate detection

 more challenging task

- are web pages with same text context but different advertising or

format near-duplicates?

 a near-duplicate document is defined using a threshold

value for some similarity measure between pairs of

documents

- e.g., document D1 is a near-duplicate of document D2 if more

than 90% of the words in the documents are the same

near-duplicate detection

 search scenario

- find near-duplicates of a document D

- O(N) comparisons required

 discovery:

- find all pairs of near-duplicate documents in the collection

- O(N2) comparisons

 IR techniques are effective for search scenario

 for discovery, other techniques used to generate compact

representations

fingerprints

fingerprint example

select all n-grams whose hash value modulo p is zero

simhash

 similarity comparisons using word-based representations

more effective at finding near-duplicates

- problem is efficiency

 simhash combines the advantages of the word-based

similarity measures with the efficiency of fingerprints

based on hashing

 similarity of two pages as measured by the cosine

correlation measure is proportional to the number of bits

that are the same in the simhash fingerprints

simhash

a web page is defined as a near-duplicate of another page if

simhash fingerprints agree on more than prespecified x bits

simhash example

removing noise

 many web pages contain text, links, and pictures that are

not directly related to the main content of the page

 this additional material is mostly noise that could

negatively affect the ranking of the page

 techniques have been developed to detect the content

blocks in a web page

- non-content material is either ignored or reduced in importance

in the indexing process

noise example

finding content Blocks

 cumulative distribution of tags in the example web page

- main text content of the page corresponds to the “plateau” in the

middle of the distribution

finding content blocks

 represent a web page as a sequence of bits, where bn = 1

indicates that the nth token is a tag

 optimization problem where we find values of i and j to

maximize both the number of tags below i and above j

and the number of non-tag tokens between i and j

 i.e., maximize

finding content blocks

 other approaches use

DOM structure and

visual (layout)

features

