Ranking with Indexes
406.424 Internet Applications

Jonghun Park
jonghun@snu.ac.kr
Dept. of Industrial Eng.
Seoul National University

9/1/2010

mailto:jonghun@snu.ac.kr

Indexes and ranking

 data structures designed to make search faster

e most common data structure Is inverted index
— general name for a class of structures

— “inverted” because documents are associated with words,
rather than words with documents

 text search engines use a particular form of search:
ranking

— documents are retrieved in sorted order according to a score
computing using the document representation, the query, and a
ranking algorithm

e what Is a reasonable abstract model for ranking?

Infomngadon Management Lab

abstract model of ranking

Fred's Tropical Fish Shop is
the best place to find

tropical fish at low, low / 82 seaweed

prices. Whether you're
locking for a little fish or a
big fish, we've got what you

need. We even have fake
seaweed for your fishtank

(and little surfboards too). \

Document

Informafion Management Lab

9.7 fish
4.2 tropical
22.1 tropical fish

4.2 surfboards

Topical Features

14 incoming links

3 days since last update

Quality Features

tropical fish
Query

Ranking Function

24.5

Document Score

more concrete model

R(Q,D) = ZgAQ)ﬁ(D)

fi is a document feature function
g; 1s a query feature function

p fish 5.2

f 9.7 fish <

_p tropical 3.4 gi

1 4.2 tropical 4
Fred's Tropical Fish Shop is 1)
the best place to find 22.1 U'Oplcal fish -—

p tropical fish 9.9

tropical fish at low, low =W g5 (. v.q

prices. Whether you're
locking for a little fish or a 4.2 surfboards

big fish, we've got what you
need. We even have fake
seaweed for your fishtank
(and little surfboards too).

Topical Features

N

chichlids 1.2
barbs 0.7
tropical fish

Topical Features Query

14 incoming links q—— g incominglinks 1.2

3 update count

Document Quality Features

p update count 0.9

Quality Features

303.01

Document Score

Informafion Management Lab

Inverted index

e each index term Is associated with an inverted list

— contains lists of documents, or lists of word occurrences in
documents, and other information

— each entry is called a posting

— the part of the posting that refers to a specific document or
location is called a pointer

— each document in the collection is given a unique number
— lists are usually document-ordered (sorted by document number)

Informmation Management Lab

example “Collection”

S1 Tropical fish include fish found in tropical environments
around the world, including both freshwater and salt water
species.

So Fishkeepers often use the term tropical fish to refer only
those requiring fresh water, with saltwater tropical fish re-
ferred to as marine fish.

S3 Tropical fish are popular aquarium fish, due to their often
bright coloration.

S4+ In freshwater fish, this coloration typically derives from iri-
descence, while salt water fish are generally pigmented.

Four sentences from the Wikipedia entry for tropical fish

informmaiion Management Lab

simple inverted index

and only
aquarium plgmented
are popular
around refer
as referred
both requiring
bright salt
coloration saltwater
derives specles
due term
environments the
fish their
fishkeepers this
found those
fresh to
freshwater tropical
from typically
generally use
in water
include while
including with
iridescence world
marine
often

Informafion Management Lab

2]]

N
]

]

EEEEENERENRERERNEREREREEIE
]

Inverted index with word counts

* supports better
ranking algorithms

Informafion Management Lab

and
aguarium
are

around
as

both
bright
coloration
derives
due

environments

fish
fishkeepers
found
fresh
freshwater
from
generally
in

include
including
iridescence
marine

often

oall R ol IR I Rl ol | Rl RS 1Bl R
[HRgY PSNIY | Y | Y | Y | P | Y| iy | iy | iy |

iy
—

iy
—

2 12:8] |3:2] | 4:2|

B [b || e || = || = | =] e | e || =] =] D
(S| U Y | U | U | | US| Y U | | o

iy
—

iy
—

oo
—

only
pigmented
popular
refer
referred
requiring
salt
saltwater
species
term

the

their

this
those

to
tropical
typically
use
water
while
with

world

b= == =] =] === == =] =] =]
—t —

—

B
[~

o
=]

Lo =
—] = || b

L:1] [2:1) [4:1]

oy
—

— [D
—_ || —

Inverted index with word positions

* supports
proximity
matches

and
aquarium
are

around
as

both
bright
coloration
derives

due

environments

Informafion Management Lab

fish

fishkeepers
found
fresh
freshwater
from
generally
in

include
including

iridescence

marine
often
only
1.9 plgmented

popular
refer
3,11 referred

4.5 requiring
4,7 salt

saltwater
species
‘1,2 ‘ ‘1,4 ‘ ‘2,7 ‘ ‘2,18 ‘ ‘2,23‘ term
32 |36 |[43 | the

their

this
those
2,13 to

tropical
4.8 typically

use
4,1 water
13 | while
with
4.9 world

e
B
B

~
[S\]

o
[y
e}

e

.

[y
[

ol

[l

"

—
0o

-
[y
[

—_

"

[y
[

| D
—| =
[o.o10 et

[

"

o

—_
—_
-

[F]

"y

]

=
s

[

.

—_
—_

Lo
—_
o=

-
—
—

"

= 2

i

—| o

6 | [217] 31

P

-

]

-

Lol O

[1,17] [2,14] [4,12]

\-\qu
|| p—t
o O

—_

-

[y
—_

proximity matches

e matching phrases or words within a window
— e.g., "tropical fish", or “find tropical within 5 words of

fish”

e word positions in inverted lists make these types of query

features efficient
o 691

tropical |1,1
ﬁSh 1 72]- ?4

Informafion Management Lab

1.7

26

2.1.¢

3.1

2.7

2,18

2.23

27

3.6

43

413

fields and extents

e document structure is useful in search

— field restrictions
* e.g., date, from:, etc.

— some fields more important
* e.g.,title
e options:
— separate inverted lists for each field type
— add information about fields to postings
— use extent lists

Informafion Management Lab

extent lists

e an extent Is a contiguous region of a document

— represent extents using word positions
— Inverted list records all extents for a given field type
- e.g., (5,9) if title of a book started on the 5" word and ended just

before the 9t word

ﬁSh]-:-2 1?4

title [1:(1,3)

\

extent list

Infomngadon Management Lab

2.7

218

2,93

3.0

3.6

13

113

2:(1,5)

4:(9,15)

other 1ssues

e precomputed scores in inverted list

— e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total feature
value (e.g., TF*IDF) for “fish” in document 1

— Improves speed but reduces flexibility

e score-ordered lists

— query processing engine can focus only on the top part of each
Inverted list, where the highest-scoring documents are recorded

— very efficient for single-word queries

Infomnatfon Menagement Lab

compression

 Inverted lists are very large
— much higher if n-grams are indexed

e compression of indexes saves disk and/or memory space
— typically have to decompress lists to use them

— best compression techniques have good compression ratios and
are easy to decompress

* |ossless compression — no information lost

e basic idea: common data elements use short codes
while uncommon data elements use longer codes

Informnaion Management Lab

compression example

e ambiguous encoding
— given0,1,0,2,0,3,0
— a possible encoding: 00 01 00 10 00 11 00

— another encoding by encoding 0 using a single 0

e 0010100 11 0: only 10 bits but ambiguous (since the spaces are not
stored)

e itcanalso be interpretedas0010100110
— an unambiguous encoding

Number | Code 0101 0111 0 1100
0 0
1 101
2 110
3 111
Infarmnaton Management Lab

delta encoding

e word count data Is good candidate for compression
— many small numbers and few larger numbers
— encode small numbers with small codes

e document numbers are less predictable

— but differences between numbers in an ordered list are smaller
and more predictable

 delta encoding:
— encoding differences between document numbers (d-gaps)

Infomngadon Management Lab

delta encoding

 given inverted list (containing doc numbers)
1,5,9,18.23, 24, 30, 44, 45, 48

« differences between adjacent numbers
1,4,4,9.5,1,6,14,1.3

- differences for a high-frequency word are easier to compress, €.g.,
1. 1.2: 1.8, §dy 1o 128,00

« differences for a low-frequency word are large, e.g.,
109, 3766,453, 1867, 992, ...

Informafion Management Lab

bit-aligned Codes

* breaks between encoded numbers can occur after any bit
position
e unary code

— encode k by k 1s followed by 0
— 0 at end makes code unambiguous

Number | Code
0

10

110
1110
11110
111110

s N = O

Informafion Management Lab

unary and binary Codes

* unary Is very efficient for small numbers such as 0 and 1,
but quickly becomes very expensive

— 1023 can be represented in 10 binary bits, but requires 1024 bits
In unary

e binary Is more efficient for large numbers, but it may be
ambiguous

informnaton Menagement Lab

Elias-y code

e combines the strengths of unary and binary codes
e to encode a number k, compute
- ky=Ylog,k — 1/
_ kr — k_ 2 Iog2kad
° kd
— the number of binary digits needed to write k in binary form
minus 1
— encoded in unary
— tells us how many bits to expect
° kr
— the remaining binary digits after removing the leftmost binary
digit (which is 1) of k
e e0.,k=3
- k;=1,k =1

Infomnatfon Menagement Lab

Elias-y code examples

Number (k) | kq | k. | Code
1| O 00
2| 1 0100
3 1 11101
6| 2 2 | 110 10
15| 3 ¢ | 1110:11]
16 | 4 0 | 11110 0000
266 | ‘7| 127 | 11111110:1111111
1023 9 | 511 | 1111111110 111111111
Informmation Menagement Lab

byte-aligned codes

 variable-length bit encodings can be a problem on
processors that process bytes

e v-byte Is a popular byte-aligned code
— similar to Unicode UTF-8

— uses short codes for small numbers and longer codes for longer
numbers

 shortest v-byte code is 1 byte

 numbers are 1 to 4 bytes

— low seven bits of each byte contain numeric data in binary
— high bit is 1 in the last byte

Infomnatfon Menagement Lab

v-byte encoding

k Number of bytes

k< 2° 1
2"< k<24 |2
pidag | 2D || .3
R | =% || 4

k Binary Code | Hexadecimal

1 1 0000001 81

6 1 0000110 86

127 11111111 FF

128 0 0000001 1 0000000 01 80

130 0 0000001 1 0000010 01 82

20000 | 0 0000001 0 0011100 1 0100000 01 1C A0

Informmation Management Lab

compression example

e assume (document, count, [positions])

e consider inverted lists with positions:
(1,2,[1,7])(2,3,[6,17,197])(3, 1, [1])

* delta encode document numbers and positions:
— can make the number smaller
(1,2,[1,6])(1,3,[6,11,180])(1,1, [1])

e compress using v-byte (without the brackets):
81 82 81 86 81 82 86 8B 01 B4 81 81 81

Informafion Management Lab

skipping

 search involves comparison of inverted lists of different
lengths
— can be very inefficient
— need to avoid reading all the information in the inverted list

— “skipping” ahead to check document numbers i1s much better
e skip pointers are additional data structure to support
skipping

Infomngadon Management Lab

need for skipping

e query: “galago AND animal”
— 300M docs containing animal, and 1M for galago

— 1inverted lists for “galago” and “animal” are in doc order
* avery simple algorithm
— dg: first doc number in the inverted list for “galago”

— d,: first doc number in the inverted list for “animal”

— while there are still docs in the lists for “galago” and “animal”
* Ifdy<d,, setd, to the next doc number in the “galago” list
* Ifdy>d,, setd, to the next doc number in the “animal” list

* Ifd,=d,, the document d, contains both “galago” and “animal”. move
both d; and d, to the next doc in the inverted lists respectively

— Very expensive

Infomnatfon Menagement Lab

skip pointer

* Detter approach

— every time we find that d, > d,, we skip ahead k docs in the
“animal” list to a new doc S,

— If s, <dg, we skip ahead by another k docs
— we do this until s, >=d,

 askip pointer (d, p) contains a document number d and a
byte (or bit) position p
— means there is an inverted list posting that starts at position p,
and that the posting immediately before it is for document d

N Inverted list

skip pointers
Informafion Management Lab

skip pointer

e example
— inverted list with document numbers, uncompressed

5,11, 17,21, 26,:34,36, 37,45, 48,51, 52,57,80, 89,91, 94,101, 104, 119
— d-gaps
5,6,6,4,5,9,2,1,8,3,3,1,5,23,9,2,3,7,3,15
— add some skip pointers
* e.0., (17, 3): doc number 17 is immediately before position 3

(17,3), (34,6), (45,9), (52,12), (89, 15), (101, 18)

* e.g., find the doc number 80 iIn the list

— scan the list of skip pointers until we find (52, 12) and (89, 15)
— start decoding at position 12 in the d-gaps list
— we find52+5=57and 57 + 23 =80

Infarmmaton Management Lab

auxiliary structures

 Inverted lists usually stored together in a single file for
efficiency
— Inverted file

 additional directory structure: lexicon

— contains a lookup table from index terms to the byte offset of
the inverted list in the inverted file

— either hash table in memory or B-tree for larger vocabularies
e term statistics stored at start of inverted lists
 collection statistics stored in separate file

Infomngadon Management Lab

Index construction

e simple, sequential in-memory indexer
— |- new inverted list
— result: a hash table of tokens and inverted lists

procedure BUILDINDEX(D) > D is a set of text documents
I «— HashTable() > Inverted list storage
n«— 0 > Document numbering
for all documents d € D do
n«—n+1
T « Parse(d) > Parse document into tokens

Remove duplicates from T
for all tokens t € T do
if I, € I then
I; — Array()
end if
I;.append(n)
end for
end for
return /
end procedure

Informafion Management Lab

merging

 addresses limited memory problem
— build the inverted list structure until memory runs out
— then write the partial index to disk, start making a new one

— at the end of this process, the disk is filled with many partial indexes,
which are merged

* partial lists must be designed so they can be merged in small
pieces

— e.g., storing in alphabetical order

Index A aardvack |2 |3 |4 |5 | apple |2 | 4

Index B aardvark | 6 | 9 | actor | 15 | 42 | 68

[ndex A aardvartk |2 |3 | 4|5 apple |2 | 4
Index B aardvark 6191 actor | 15 | 42 | 68
Combined mdex aardvark [2 |3 [4 |56 | 2| actor | 15 | 42 | 68 | apple |2 | 4
Informnadon Menagement Lab

distributed indexing

e distributed processing driven by need to index and
analyze huge amounts of data (i.e., the web)

 large numbers of inexpensive servers used rather than
larger, more expensive machines

 MapReduce is a distributed programming tool designed
for indexing and analysis tasks

Infomnatfon Menagement Lab

MapReduce

e distributed programming framework that focuses on data
placement and distribution
* mapper

— generally, transforms a list of items into another list of items of
the same length

* reducer
— transforms a list of items into a single item
— definitions not so strict in terms of number of outputs

e many mapper and reducer tasks on a cluster of machines

Infomngadon Management Lab

MapReduce

Input

Reduce

Ou tput

MapReduce

 basic process

— map stage which transforms data records into pairs, each with a
key and a value
* e.g., (word, document:position)

— shuffle uses a hash function so that all pairs with the same key
end up next to each other and on the same machine

— reduce stage processes records in batches, where all pairs with
the same key are processed at the same time

e Idempotence of mapper and reducer provides fault
tolerance
— multiple operations on same input gives same output

Infomngadon Management Lab

Indexing example

procedure MAPDOCUMENTSTOPOSTINGS(input)
while not input.done() do
document < input.next()
number < document.number
position « 0
tokens « Parse(document)
for each word w in tokens do
Emit(w, document:position)
position = position + 1
end for
end while
end procedure

procedure REDUCEPOSTINGSTOLISTS(key, values)
word «— key
WriteWord(word)
while not input.done() do
EncodePosting(values.next())
end while
end procedure

Inflarmrnaon Management Lab

guery processing

e document-at-a-time

— calculates complete scores for documents by processing all term
lists, one document at a time

e term-at-a-time

— accumulates scores for documents by processing term lists one at
a time

* Bbth approaches have optimization techniques that
significantly reduce time required to generate scores

Infarmmaton Management Lab

document-at-a-Time

salt

water
tropical

score

Informnadon Management Lab

1:1

1:1

2:1

1:2

2.2

1:4

2:3

4:1
4:1
3:1
3:1 4:2

document-at-a-time

procedure DOCUMENTATATIMERETRIEVAL(Q, I, f, g, k)
L — Array()
R « PriorityQueue(k)
for all terms w; in Q do
l; + InvertedList(w;, I)
L.add([;)
end for
for all documents d € I do
for all inverted lists [; in L do
if [; points to d then
sp — sp + gi(Q) fi(l;) > Update the document score
[; . movePastDocument(d)
end if
end for
R.add(sp, D)
end for
return the top k results from R
end procedure

Informnstion Management Lab

term-at-a-time

salt

partial scores

old partial scores
water

new partial scores

old partial scores
tropical

final scores

Informafion Management Lab

1:1 4:1

1:1 4:1

1:1 4:1

1:1 2:1 4:1

1:2 2:1 4:2

1:2 2:1 4:2
1:2 2:2 3:1

1:4 2:3 2:2 4:2

term-at-a-time

procedure TERMATATIMERETRIEVAL(Q, I, f, g k)
A «— HashTable()
L «— Array()
R « PriorityQueue(k)
for all terms w; in Q do
l; < InvertedList(w;, I)
L.add([;)
end for
for all lists [; € L do
while /; is not finished do
d « l;.getCurrentDocument|()
Ag— Aq+gi(Q) f (i)
[;.moveToNextDocument()
end while
end for
for all accumulators A; in A do
sp — Ay > Accumulator contains the document score
R.add(sp,D)
end for
return the top k results from R
end procedure

Inflarmrnaon Management Lab

optimization techniques

e term-at-a-time uses more memory for accumulators, but
accesses disk more efficiently

e two classes of optimization

— read less data from inverted lists
* e.g., skip lists
 better for simple feature functions
— calculate scores for fewer documents
e e.g., conjunctive processing
 better for complex feature functions

Informafion Management Lab

1: procedure TermAtATimeRerrieval(€), 1, f, g, &)
A +— LinkedList()

¥ L— Array()

4 R — PrioearyQuene(k)

(]

Be for all terms), in () do
(i |'_l — IivwertedLisedur; .Ir_l
T L.addi L}
B ed Lo
& for all lises {; & L do
10 iy = —1
11: while I} is not finished do
12X il i =1 then
13 d +— ligetCurrentDocument)
14 Ay — Ay + o QL)
1 5: clse
1 d +— I getCurrentDocument)
17 i — .-!|.gL'I:'"-;L':-:I.1u_'|.'u.|:|:l.|];|1-:-r."'n.:l-ll.'rl:lI':l
18 A removeAceumulatorsBerweenidy, d)
14 il 1. getCurrentDocument(} = ' then
2 Ag — Ag + () F L)
2 I moveNextDocument)
2} clae
2% I skipForward To(d")
24 edd if
A& iy = o
2 el il
T citd while
28 erd foe
24 for all accumulators Ag in A do
Ak ap — Ag
31 Fadd! sap. O
i erd Lo
3k returi the top k resules from A
34 end procedure

Informmmstion Management Lab

conjunctive term-at-a-time:
works best when one of the
query terms is rare

B Aceumulator containg the document seore

1:
2
3
4

10:

19:

24:

25;

procedure DOCUMENTATATIMERETRIEVAL(Q, I, f, g, k)
L — Array()
R «— PriorityQueue(k) . .
for all terms w; in (Q do CcO nJ UnCtIVG
l; «+ InvertedList(w;, I) .
Ladd(1;) document-at-a-time
end for
while all lists in L are not finished do
for all inverted lists [; in L do
if [;.getCurrentDocument() > d then
d +— l;.getCurrentDocument()
end if
end for
for all inverted lists /; in L do [;.skipForwardToDocument(d)
if [; points to d then
sq — sa+ g:(Q) fi(l;) > Update the document score
[; . movePastDocument(d)
else
break
end if
end for
R.add(sy, d)
end while
return the top k results from R
end procedure

Informmmstion Management Lab

threshold methods

 threshold methods use number of top-ranked documents
needed (k) to optimize query processing

— for most applications, k is small: 10 or 20
e for any query, there is a minimum score that each

document needs to reach before 1t can be shown to the
user

— score of the kth-highest scoring document

— gives threshold 7

— optimization methods estimate 7' to ignore documents
 MaxScore method compares the maximum score that

remaining documents could have to 7’

— safe optimization in that ranking will be the same without
optimization

Infomngadon Management Lab

MaxScore example

eucalyptus

tree

e query: eucalyptus tree
* Indexer computes ..,

— maximum score for any document containing just “tree”

e assume k =3, 7’ 1s lowest score after first three docs
containing “eucalyptus” and “‘tree”

e likely that v "> p.,
— 7 "1s the score of a document that contains both query terms

 can safely skip over all gray postings

Informafion Management Lab

other approaches

 early termination of query processing
— simply ignore high-frequency word lists in term-at-a-time
e similar to using a stopword list
— Ignore documents at end of lists in doc-at-a-time

— unsafe optimization

e |ist ordering

— order inverted lists by quality metric (e.g., PageRank) or by
partial score

— makes unsafe (and fast) optimizations more likely to produce
good documents

Infomnatfon Menagement Lab

structured queries

e guery language can support specification of complex
features

— similar to SQL for database systems

— guery translator converts the user’s input into the structured
query representation

— Galago query language is the example used here
— e.g., Galago query:
e #od:l: the terms inside it need to appear next to each other in that order

#combine(#od:1(tropical fish) #od:1(aquarium fish) fish)

Informafion Management Lab

evaluation tree for structured query

Hcombine

£ N

Hod:1

ZFod:1

tropical

Informmmstion Management Lab

T~

feature combinations

proximity expressions

aquarium

tish list data

distributed evaluation

 basic process
— all queries sent to a director machine
— director then sends messages to many index servers
— each index server does some portion of the query processing
— director organizes the results and returns them to the user

e two main approaches

— document distribution
* by far the most popular

— term distribution

Informafion Management Lab

distributed evaluation

 document distribution

— each index server acts as a search engine for a small fraction of
the total collection

— director sends a copy of the query to each of the index servers,
each of which returns the top-k results

— results are merged into a single ranked list by the director

* collection statistics should be shared for effective ranking
- e.g., IDF

Infomnatfon Menagement Lab

distributed evaluation

e term distribution

single index is built for the whole cluster of machines

each inverted list in that index Is then assigned to one index
server

e e.g., “dog” by the 3" server, “cat” by the 5% server

one of the index servers iIs chosen to process the query
 usually the one holding the longest inverted list

other index servers send information to that server
final results sent to director

Informafion Management Lab

caching

e query distributions similar to Zipf
— about % each day are unigue, but some are very popular

 caching can significantly improve effectiveness
— cache popular query results
— cache common inverted lists

* Inverted list caching can help with unique queries
e cache must be refreshed to prevent stale data

Infomngadon Management Lab

