
Ranking with Indexes
406.424 Internet Applications

Jonghun Park

jonghun@snu.ac.kr

Dept. of Industrial Eng.

Seoul National University

9/1/2010

mailto:jonghun@snu.ac.kr

indexes and ranking

 data structures designed to make search faster

 most common data structure is inverted index

- general name for a class of structures

- “inverted” because documents are associated with words,

rather than words with documents

 text search engines use a particular form of search:

ranking

- documents are retrieved in sorted order according to a score

computing using the document representation, the query, and a

ranking algorithm

 what is a reasonable abstract model for ranking?

abstract model of ranking

more concrete model

inverted index

 each index term is associated with an inverted list

- contains lists of documents, or lists of word occurrences in

documents, and other information

- each entry is called a posting

- the part of the posting that refers to a specific document or

location is called a pointer

- each document in the collection is given a unique number

- lists are usually document-ordered (sorted by document number)

example “Collection”

simple inverted index

inverted index with word counts

 supports better

ranking algorithms

inverted index with word positions

 supports

proximity

matches

proximity matches

 matching phrases or words within a window

- e.g., "tropical fish", or “find tropical within 5 words of

fish”

 word positions in inverted lists make these types of query

features efficient

- e.g.,

fields and extents

 document structure is useful in search

- field restrictions

 e.g., date, from:, etc.

- some fields more important

 e.g., title

 options:

- separate inverted lists for each field type

- add information about fields to postings

- use extent lists

extent lists

 an extent is a contiguous region of a document

- represent extents using word positions

- inverted list records all extents for a given field type

- e.g., (5,9) if title of a book started on the 5th word and ended just

before the 9th word

extent list

other issues

 precomputed scores in inverted list

- e.g., list for “fish” [(1:3.6), (3:2.2)], where 3.6 is total feature

value (e.g., TF*IDF) for “fish” in document 1

- improves speed but reduces flexibility

 score-ordered lists

- query processing engine can focus only on the top part of each

inverted list, where the highest-scoring documents are recorded

- very efficient for single-word queries

compression

 inverted lists are very large

- much higher if n-grams are indexed

 compression of indexes saves disk and/or memory space

- typically have to decompress lists to use them

- best compression techniques have good compression ratios and

are easy to decompress

 lossless compression – no information lost

 basic idea: common data elements use short codes

while uncommon data elements use longer codes

compression example

 ambiguous encoding

- given 0, 1, 0, 2, 0, 3, 0

- a possible encoding: 00 01 00 10 00 11 00

- another encoding by encoding 0 using a single 0

 0 01 0 10 0 11 0: only 10 bits but ambiguous (since the spaces are not

stored)

 it can also be interpreted as 0 01 01 0 0 11 0

- an unambiguous encoding

delta encoding

 word count data is good candidate for compression

- many small numbers and few larger numbers

- encode small numbers with small codes

 document numbers are less predictable

- but differences between numbers in an ordered list are smaller

and more predictable

 delta encoding:

- encoding differences between document numbers (d-gaps)

delta encoding

• given inverted list (containing doc numbers)

• differences between adjacent numbers

• differences for a high-frequency word are easier to compress, e.g.,

• differences for a low-frequency word are large, e.g.,

bit-aligned Codes

 breaks between encoded numbers can occur after any bit

position

 unary code

- encode k by k 1s followed by 0

- 0 at end makes code unambiguous

unary and binary Codes

 unary is very efficient for small numbers such as 0 and 1,

but quickly becomes very expensive

- 1023 can be represented in 10 binary bits, but requires 1024 bits

in unary

 binary is more efficient for large numbers, but it may be

ambiguous

Elias-γ code

 combines the strengths of unary and binary codes

 to encode a number k, compute
- kd = log2k - 

- kr = k – 2⎣log2k⎦kd

 kd

- the number of binary digits needed to write k in binary form
minus 1

- encoded in unary

- tells us how many bits to expect

 kr

- the remaining binary digits after removing the leftmost binary
digit (which is 1) of k

 e.g., k = 3
- kd = 1, kr = 1

Elias-γ code examples

byte-aligned codes

 variable-length bit encodings can be a problem on

processors that process bytes

 v-byte is a popular byte-aligned code

- similar to Unicode UTF-8

- uses short codes for small numbers and longer codes for longer

numbers

 shortest v-byte code is 1 byte

 numbers are 1 to 4 bytes

- low seven bits of each byte contain numeric data in binary

- high bit is 1 in the last byte

v-byte encoding

compression example

 assume (document, count, [positions])

 consider inverted lists with positions:

 delta encode document numbers and positions:

- can make the number smaller

 compress using v-byte (without the brackets):

skipping

 search involves comparison of inverted lists of different

lengths

- can be very inefficient

- need to avoid reading all the information in the inverted list

- “skipping” ahead to check document numbers is much better

 skip pointers are additional data structure to support

skipping

need for skipping

 query: “galago AND animal”

- 300M docs containing animal, and 1M for galago

- inverted lists for “galago” and “animal” are in doc order

 a very simple algorithm

- dg: first doc number in the inverted list for “galago”

- da: first doc number in the inverted list for “animal”

- while there are still docs in the lists for “galago” and “animal”

 if dg < da, set dg to the next doc number in the “galago” list

 if dg > da, set da to the next doc number in the “animal” list

 if dg = da, the document da contains both “galago” and “animal”. move

both dg and da to the next doc in the inverted lists respectively

- very expensive

skip pointer

 better approach

- every time we find that dg > da, we skip ahead k docs in the

“animal” list to a new doc sa

- if sa < dg, we skip ahead by another k docs

- we do this until sa >= dg

 a skip pointer (d, p) contains a document number d and a

byte (or bit) position p

- means there is an inverted list posting that starts at position p,

and that the posting immediately before it is for document d

skip pointers
Inverted list

skip pointer

 example

- inverted list with document numbers, uncompressed

- d-gaps

- add some skip pointers

 e.g., (17, 3): doc number 17 is immediately before position 3

 e.g., find the doc number 80 in the list

- scan the list of skip pointers until we find (52, 12) and (89, 15)

- start decoding at position 12 in the d-gaps list

- we find 52 + 5 = 57 and 57 + 23 = 80

auxiliary structures

 inverted lists usually stored together in a single file for

efficiency

- inverted file

 additional directory structure: lexicon

- contains a lookup table from index terms to the byte offset of

the inverted list in the inverted file

- either hash table in memory or B-tree for larger vocabularies

 term statistics stored at start of inverted lists

 collection statistics stored in separate file

index construction

 simple, sequential in-memory indexer

- It: new inverted list

- result: a hash table of tokens and inverted lists

merging

 addresses limited memory problem
- build the inverted list structure until memory runs out

- then write the partial index to disk, start making a new one

- at the end of this process, the disk is filled with many partial indexes,
which are merged

 partial lists must be designed so they can be merged in small
pieces
- e.g., storing in alphabetical order

distributed indexing

 distributed processing driven by need to index and

analyze huge amounts of data (i.e., the web)

 large numbers of inexpensive servers used rather than

larger, more expensive machines

 MapReduce is a distributed programming tool designed

for indexing and analysis tasks

MapReduce

 distributed programming framework that focuses on data

placement and distribution

 mapper

- generally, transforms a list of items into another list of items of

the same length

 reducer

- transforms a list of items into a single item

- definitions not so strict in terms of number of outputs

 many mapper and reducer tasks on a cluster of machines

MapReduce

MapReduce

 basic process

- map stage which transforms data records into pairs, each with a

key and a value

 e.g., (word, document:position)

- shuffle uses a hash function so that all pairs with the same key

end up next to each other and on the same machine

- reduce stage processes records in batches, where all pairs with

the same key are processed at the same time

 idempotence of mapper and reducer provides fault

tolerance

- multiple operations on same input gives same output

indexing example

query processing

 document-at-a-time

- calculates complete scores for documents by processing all term

lists, one document at a time

 term-at-a-time

- accumulates scores for documents by processing term lists one at

a time

 Bbth approaches have optimization techniques that

significantly reduce time required to generate scores

document-at-a-Time

document-at-a-time

term-at-a-time

term-at-a-time

optimization techniques

 term-at-a-time uses more memory for accumulators, but

accesses disk more efficiently

 two classes of optimization

- read less data from inverted lists

 e.g., skip lists

 better for simple feature functions

- calculate scores for fewer documents

 e.g., conjunctive processing

 better for complex feature functions

conjunctive term-at-a-time:

works best when one of the

query terms is rare

conjunctive

document-at-a-time

threshold methods

 threshold methods use number of top-ranked documents
needed (k) to optimize query processing

- for most applications, k is small: 10 or 20

 for any query, there is a minimum score that each
document needs to reach before it can be shown to the
user

- score of the kth-highest scoring document

- gives threshold τ

- optimization methods estimate τ′ to ignore documents

 MaxScore method compares the maximum score that
remaining documents could have to τ′

- safe optimization in that ranking will be the same without
optimization

MaxScore example

 query: eucalyptus tree

 indexer computes μtree

- maximum score for any document containing just “tree”

 assume k =3, τ′ is lowest score after first three docs

containing “eucalyptus” and “tree”

 likely that τ ′ > μtree

- τ ′ is the score of a document that contains both query terms

 can safely skip over all gray postings

other approaches

 early termination of query processing

- simply ignore high-frequency word lists in term-at-a-time

 similar to using a stopword list

- ignore documents at end of lists in doc-at-a-time

- unsafe optimization

 list ordering

- order inverted lists by quality metric (e.g., PageRank) or by

partial score

- makes unsafe (and fast) optimizations more likely to produce

good documents

structured queries

 query language can support specification of complex

features

- similar to SQL for database systems

- query translator converts the user’s input into the structured

query representation

- Galago query language is the example used here

- e.g., Galago query:

 #od:I: the terms inside it need to appear next to each other in that order

evaluation tree for structured query

distributed evaluation

 basic process

- all queries sent to a director machine

- director then sends messages to many index servers

- each index server does some portion of the query processing

- director organizes the results and returns them to the user

 two main approaches

- document distribution

 by far the most popular

- term distribution

distributed evaluation

 document distribution

- each index server acts as a search engine for a small fraction of

the total collection

- director sends a copy of the query to each of the index servers,

each of which returns the top-k results

- results are merged into a single ranked list by the director

 collection statistics should be shared for effective ranking

- e.g., IDF

distributed evaluation

 term distribution

- single index is built for the whole cluster of machines

- each inverted list in that index is then assigned to one index

server

 e.g., “dog” by the 3rd server, “cat” by the 5th server

- one of the index servers is chosen to process the query

 usually the one holding the longest inverted list

- other index servers send information to that server

- final results sent to director

caching

 query distributions similar to Zipf

- about ½ each day are unique, but some are very popular

 caching can significantly improve effectiveness

- cache popular query results

- cache common inverted lists

 inverted list caching can help with unique queries

 cache must be refreshed to prevent stale data

